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Commutativity of probabilistic
belief revision

Bart Jacobs*

iHub, Radboud University, Nijmegen, Netherlands

Bayesian updating, also known as belief revision or conditioning, is a core

mechanism of probability theory, and of AI. The human mind is very sensitive

to the order in which it is being “primed”, but Bayesian updating works

commutatively: the order of the evidence does not matter. Thus, there is

a mismatch. This paper develops Bayesian updating as an explicit operation

on (discrete) probability distributions, so that the commutativity of Bayesian

updating can be clearly formulated and made explicit in several examples. The

commutativity mismatch is underexplored, but plays a fundamental role, for

instance in the move to quantum cognition.

KEYWORDS

Bayesian updating, multiset, commutativity, notation, cognition

1 Introduction

In mathematics an operation is called commutative if swapping its arguments does not

change the outcome, as in addition of numbers: n+m = m+n. Also, actions can be called

commutative when the effect does not depend on the order in which they are taken: if I

first give someone n Euros and then another m Euros, the financial effect is the same as

first giving you m and then n Euros. However, the emotional effect on the receiver’s side

may be quite different, for instance when n is much greater than m: first giving the higher

amount n thenmmay lead to disappointment, whereas after first giving the lower amount

m and then n the receiver may end up in a more positive mood.

Similar differences are well-known in human cognition, especially when one looks at

how the mind processes (new) information—in what is called priming. The order of such

priming (or updating) is highly relevant. Here is a simple example, involving two sentences

p and q, about Alice and Bob, which will be presented below in two orders: (a) as p and q,

and (b) as q and p. This makes no difference in (Boolean) logic, but watch carefully what

effect the different orders has on your understanding of the situation.

(a) “Alice is sick” and “Bob visits Alice”;

(b) “Bob visits Alice” and “Alice is sick.”

In the first case (a) youmay think that Bob is a nice guy, but maybe less so in the second

case (b). It is surprising how quickly the human mind makes a (causal) connection. The

strength of this effect depends on many factors, including one’s own background (priors).

Check for instance what the effect is of replacing in the above two sentences “sick” with

“pregnant.” This dependence on the order is called the order effect in Uzan (2023). It is

the main motivation to switch to quantum logic in cognition theory (see e.g., Busemeyer

and Bruza, 2012; Yearsley and Busemeyer, 2016; Gentili, 2021), since conjunction (“and”)

in quantum logic is not commutative.

This paper offers reflections on commutativity in probability theory, and in particular

in probabilistic updating. Bayesian updating is introduced as an explicit operation that

takes a probability distribution ω with some form of evidence p and produces a new,
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updated distributionω|p. This formulation generalizes the common

approach. The (mathematical) details will appear later, but at

this stage it is relevant to emphasize that this new formulation

of Bayesian updating makes it possible to clearly express

commutativity: for two pieces of evidence p and q one has:

ω|p|q = ω|q|p. (1)

In words: updating a distribution ω first with p and then with

q gives the same result as updating ω first with q and then with

p. This commutativity cannot be expressed using the traditional

notation P(E | D) of conditional probabilities, since it leaves the

distribution implicit.

To add some terminology: this updating is also called

conditioning or belief revision. The distribution ω, before the

update, is called the prior, and the distribution ω|p, after the

update, is called the posterior. The task of computing the posterior

distribution is called inference, or also (probabilistic) learning.

Probabilistic updating is an essential part of the ongoing AI-

revolution, in various forms, via learning and training. Generative

and conversational AI are becoming part of professional and

private environments. If these tools are meant to behave like

humans, their updating should be non-commutative, as illustrated

above, with the different effects resulting from different orders (a)

and (b). Bayesian updating, however, is commutative (Equation 1).

Hence there is a mismatch [as also emphasized in Uzan (2023)].

One aim of this paper is increase the awareness of this gap, by

making the commutativity of Bayesian updating explicit, in a new

form (Equation 1).

The paper starts with some simple observations about lists and

multisets. One can have a list of letters, say (a, b, c, a, c, b, a). In

a list, elements can occur multiple times and the order of their

occurrence matters. Notice that in a subset like {a, c}, elements can

occur at most once, and their order does not matter. Mulitsets are

“inbetween” lists and subsets: elements may occur multiple times,

but their order does not matter. The latter property makes them

relevant in the current context. Multisets are a highly undervalued

datatype. The fact that they are so little usedmay be part of our poor

understanding of the role of commutativity. We can already make

a connection with what we saw above: updating a distribution with

two pieces of evidence—as in Equation 1—should not be done with

a list (p, q) or (q, p), but with a multiset of evidence containing both

p and q, where the order does notmatter. Section 2 below starts with

an informal introduction to multisets and ends with some notation

and definitions that are relevant in this setting.

Multisets form a natural preparation for (discrete probability)

distributions, in Section 3. Distributions keep count of elements

via probabilities or weights (in the unit interval [0, 1]) that add

up to one. Multisets can be turned into “fractional” distributions

via normalization. A basic fact is that every distribution can be

obtained as limit of such fractional distributions, just like every real

number can be obtained as a limit of fractions. Mathematically,

this is described as: the set D(X) of distributions on a finite set X

is a compact complete metric space, with (normalized) multisets

as dense subset, see Theorem 1. This denseness formalizes the

“frequentist” perspective on probability distributions, as results of

long-term experiments.

Section 4 introduces Bayesian updating ω|p in concrete form,

shows that traditional notation P(E | D) is a special case, and

illustrates usage of updates ω|p in two examples. The first one is a

rather straightforward application, where a prior bird distribution

is updated after a bird count. If there is another bird count one

year later, the bird distribution can be updated once again. It turns

out that eventhough the counts are chronologically ordered, this

order is irrelevant for the distribution updates. The second example

is more challenging. It involves various inference questions about

the sex and ages of children in a family (with a twin), after specific

observations. The possibilities for the offspring are represented as

multisets, based on Section 2. The prior distribution in this case is

a distribution over these multisets. Again, the order of the multiple

updates does not matter. This basic fact is proven in general form

at the end of this section, see Proposition 1.

The commutativity of Bayesian updating may be seen as

folklore knowledge but it is hardly made explicit in the literature.

One reason is that the standard formulation of conditional

probabilities P(E | D) does not lend it self to a commutativity

result, as above in Equation 1, since it hides the distribution,

assuming there is only one implicit distribution. Hence one cannot

express facts about different distributions via traditional notation.

Our formulation of Bayesian updating ω|p as an operation on

distributions thus has advantages—as hopefully also becomes clear

from the illustrations in Section 4. The Appendix derives the update

formulation ω|p from the traditional formulation via Kadison

duality. This is a new result. The derivation is mathematically

sophisticated and is not necessary for the main line of the paper.

This line is part of a new approach to probability theory using the

language and methods of category theory. In the body of the paper

the role of category theory remains in the background and no prior

knowledge of that field is required.

Thus, this paper’s contributions lie in putting the spotlight

on the commutativity of Bayesian updating, in a new form

(Equation 1), via a new formulation ω|p of this update mechanism,

which is both given in concrete form and derived from a

fundamental duality result. At the same time, the paper provides

a gentle introduction to a new approach to the area, in which

multisets and explicitly written distributions play a central role.

2 Multisets, with multiplicities of
elements

Suppose you check how much money you have in your pocket

and you find that you have three 2-Euro coins n2e and two 1-

Euro coins n1e . How would you describe this handful of coins

mathematically? It is not a subset of coins
{ n2e , n1e

}

, since such

a subset ignores the multiplicities of the coins that you have. One

can describe the contents of your pocket as a list, for instance as,
( n2e , n1e , n2e , n1e , n2e

)

, when you lay them out in your hand.

But the order of this list is arbitrary and does not reflect your

answer: I have three of n2e and two of n1e .

The proper way to capture the situation mathematically is via

a multiset. It can be understood as a subset in which elements may

occur multiple times, or as a list in which the order does not matter.

Unfortunately, there is no established notation for multisets. We
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use kets | − 〉, where we put the elements of the multiset inside the

ket and their multiplicity in front. Thus, the coins in your pocket,

are properly described as multiset:

3
∣

∣

∣

n2e
〉

+ 2
∣

∣

∣

n1e
〉

.

These kets | − 〉 are borrowed from quantum theory. They have

no mathematical meaning here and are used only to separate the

elements of a multiset from their multiplicities.

As a practical example, consider the outcome of an election,

say between two candidates Alice (A) and Bob (B). The outcome

may be written as a multiset 55
∣

∣A
〉

+ 45
∣

∣B
〉

, indicating that 55

votes are for Alice and 45 votes for Bob. Describing the outcome

of the election as a list of length 100, say with the chronological

order of casted votes, is a bad idea, for two reasons: the list does

not immediately tell what the outcome is, and the list may leak

information about who voted for whom—when the order of the

voters is recorded.

In which ways can you break a note of 10 Euro into coins of 2

and 1 Euros? The six options can be described as multisets:

5
∣

∣

∣

n2e
〉

4
∣

∣

∣

n2e
〉

+ 2
∣

∣

∣

n1e
〉

3
∣

∣

∣

n2e
〉

+ 4
∣

∣

∣

n1e
〉

2
∣

∣ n2e
〉

+ 6
∣

∣ n1e
〉

1
∣

∣ n2e
〉

+ 8
∣

∣ n1e
〉

10
∣

∣ n1e
〉

.

When we are interested in the ways to break the note of 10, we

do not care about the order of the coins. When we do describe the

break-up options as lists we end up with 10 different lists of coins.

Multisets are a useful “datatype,” in the language of computer

science, for keeping counts of elements. However, multisets are

often not recognized or expounded as such. For instance, in

mathematics, the solutions of a polynomial form a multiset, and

not a set, since solutions may occur multiple times. For example,

the multiset of solutions of the polynomial x3 − 7x2 + 16x − 12 =

(x− 2)(x− 2)(x− 3) takes the form 2|2〉 + 1|3〉, since the number

2 occurs twice as solution and 3 once. Similarly, the eigenvalues of

a matrix form a multiset. In the notation 2|2〉+1|3〉 the kets play a

useful role, since they make clear which numbers are in the multiset

and which numbers are the corresponding multiplicities.

Consider the following basic question. A friend of mine has

three children, but I don’t know if they are girls (G) or boys (B).

How many offspring options are there? Many people will quickly

say: eight, namely:

G,G,G G,G,B G,B,G B,G,G

G,B,B B,G,B B,B,G B,B,B.
(2)

One can also say: there are four options, namely with three, two,

one, or zero girls. These four options are described as multisets:

3
∣

∣G
〉

2
∣

∣G
〉

+ 1
∣

∣B
〉

1
∣

∣G
〉

+ 2
∣

∣B
〉

3
∣

∣B
〉

. (3)

The eight list options in Equation 2 only make sense if there

is an order—e.g. by ascending or descending age—but no order

was specified in the question. Hence the multiset answer, with four

options, seems most natural. It abstracts away from any ordering of

the children.

In the next section we illustrate how multisets form the basis

for discrete probability theory. Indeed, probabilities naturally arise

FIGURE 1

An urn filled with colored balls on the left, written as multiset, and a

possible draw from this urn on the right, also written as a multiset.

One can ask what is the probability of this draw from the urn. This

depends on the mode of drawing: draw-and-delete,

draw-and-replace, draw-and-duplicate (see Jacobs, 2022, 2025) for

details.

from counting, possibly in a limit process. Urns filled with balls

of different colors form a basic model in probability theory (see

e.g. Johnson and Kotz, 1977; Mahmoud, 2008; Ross, 2018) and

many other references. Here, such an urn is identified with a

multiset over the set of colors (see Figure 1). The multiplicities

of the different colors determine the probability of drawing a ball

of a particular color. For instance, in this case, the probability of

drawing a single red ball is 4
9 . A general draw from such an urn is

also a multiset, as on the right in Figure 1.

These introductory observations illustrate that multisets are

useful mathematical abstractions for keeping count of multiple

occurrences of different objects (or data items). We have

mentioned (Equation 1) that the order of data in Bayesian updating

is irrelevant. This implies that data in Bayesian learning is best

organized as a multiset. Indeed, a histogram of data—with heights

in natural numbers—is another example of a multiset.

The next definition fixes the notation and terminology that

we shall use in the sequel. In this setting, a multiset involves only

finitely many elements from a given set. The multiplicities are

natural numbers. One could also allow non-negative real numbers

as multiplicities, but we don’t need such generalizations. Here and

in the sequel we shall use the sign := for definitions.

Definition 1. Let X be an arbitrary set.

1. Amultiset over X is a finite formal sum of the form:

n1|x1 〉 + · · · + nk|xk 〉 with

{

multiplicities n1, . . . , nk ∈ N

elements x1, . . . , xk ∈ X.

Alternatively, a multiset over X may be described as a

function ϕ : X → N with finite support supp(ϕ) : = {x ∈

X | ϕ(x) 6= 0}.

2. The size ‖ϕ‖ ∈ N of a multiset ϕ is its total number of

elements, including multiplicities. Explicitly, both in ket and

function notation:

∥

∥

∑

i ni|xi 〉
∥

∥ :=
∑

i ni and
∥

∥ ϕ
∥

∥ :=
∑

x∈supp(ϕ)

ϕ(x)

=
∑

x∈X

ϕ(x).
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3. We shall write M(X) for the set of all multisets over X. This

operation M is functorial: it works not only on sets X but

also on functions f : X → Y , and then yields a function

M(f ) : M(X)→M(Y) given by:

M(f )
(

∑

i ni
∣

∣xi
〉

)

: =
∑

i ni
∣

∣ f (xi)
〉

. (4)

Notice that in this definition the set X may be infinite,

but a multiset over X has only finitely many elements from X,

in its support. We freely switch between the ket and function

notation for multisets and use whichever is most convenient in a

particular situation.

The ket notation involves a formal sum, with some conventions:

(1) terms 0|x〉 with multiplicity zero may be omitted; (2) a sum

n|x〉 + m|x〉 is the same as (n + m)|x〉; (3) the order and any

round brackets in a sum do not matter. Thus, for instance, there

is an equality of multisets:

2|a〉 +
(

5|b〉 + 0|c〉
)

+ 4|b〉 = 9|b〉 + 2|a〉.

These conventions are especially relevant for functoriality in

item 3, since multiple elements x, x′ may be mapped to the

same outcome f (x) = f (x′). We use this functoriality especially

for projection functions πi : X1 × X2 → Xi. It then yields

marginalisaiton.

As briefly discussed in the introduction, it is illuminating to

compare multisets to the datatypes of lists and subsets.

lists multisets subsets

order of elements

matters
+ - -

multiplicity of

elements matters
+ + -

If we write L(X) and P(X) for the sets of finite lists and of

subsets over a set X, then we can form a diagram in which multisets

sit inbetween lists and subsets:

L(X)
acc

−−−−−−→
forget order

M(X)
supp

−−−−−−−−−→
forget multiplicity

P(X) (5)

The function acc performs accumulation, via acc
(

x1, . . . , xn
)

:=

1|x1 〉 + · · · + 1|xn 〉. It counts the occurrences of elements in a list,

for instance in:

acc
(

c, b, a, a, a, b, c
)

= 3|a〉 + 2|b〉 + 2|c〉.

Similarly, the accumulations of the lists of children

in Equation 2 yields the multisets of children in Equation 3.

The support map supp in Equation 5 sends a multiset on a

set to its subset of elements, see Definition 1 1. In the example,

supp
(

3|a〉 + 2|b〉 + 2|c〉
)

= {a, b, c}. As an aside for the

mathematically oriented reader, both acc and supp preserve the

monoid structures on these data types and they both are maps of

monads. They are fundamental, well-behaved mappings.

3 Distributions, with probabilities of
elements

This section introduces finite discrete probability distributions,

using ket notation as for multisets. It is shown that multisets give

rise to “fractional” distributions, via normalization, and that each

distribution is in fact a limit of such fractional distributions.

A coin has two sides, namely head (H) and tails (T). A fair coin

assigns a probability of 1
2 to both sides. In ket notation we write it

as on the left below.

1
2 |H 〉 +

1
2 |T 〉

51
100 |H 〉 +

49
100 |T 〉.

On the right, above, there is an almost fair coin, with a slight

bias toward head. Characteristically for distributions, the numbers

before the kets must be probabilties from the unit interval [0, 1] that

add up to one.

Consider the urn multiset υ = 4|R〉 + 3|B〉 + 2|G〉 from

Figure 1, with size ‖υ‖ = 9. The probability of drawing a red ball

is 4
9 =

υ(R)
‖υ‖

. These draw probabilities arise via normalization of the

urn-as-multiset, for which we use a function flrn, as in:

flrn(υ) =
υ(R)

‖υ‖
|R〉 +

υ(B)

‖υ‖
|B〉 +

υ(G)

‖υ‖
|G〉

=
4

9
|R〉 +

3

9
|B〉 +

2

9
|G〉.

The latter distribution captures the probabilities of drawing a

ball of a particular color from the urn υ. The function flrn will be

defined in general form below. It turns a (non-empty) multiset into

a distribution. It learns this distribution by counting, so flrn is used

as abbreviation of frequentist learning.

As argued in Gigerenzer and Hoffrage (1995), people are in

general not very good at probabilistic (esp. Bayesian) reasoning,

but they fare better at reasoning with what are called “frequency

formats” but which are in fact multisets. The information that

there is a 0.04 probability of getting a disease can be captured in

a distribution 1
25 |D〉 +

24
25 |D

⊥ 〉, where D⊥ stands for no-disease.

This appears more difficult to grasp than the information that

4 out of 100 people get the disease, as captured by the multiset

4|D〉 + 96|D⊥ 〉. Applying frequentist learning flrn to the latter

multiset gives the disease distribution.

Definition 2. Let X,Y be arbitrary sets.

1. A distribution on X is a formal finite convex sum r1|x1 〉 +

· · · + rn|xn 〉 with elements xi ∈ X and associated probabilities

ri ∈ [0, 1] satisfying
∑

i ri = 1.

Alternatively, a distribution is given by a “probability mass”

function ω : X→ [0, 1] ⊆ Rwith finite support supp(ω) = {x ∈

X | ω(x) 6= 0} and with
∑

x ω(x) = 1.

2. Each non-empty multiset ϕ =
∑

i ni|xi 〉 ∈ M(X) of size

n =
∑

i ni = ‖ϕ‖ > 0 gives rise to a “fractional” distribution

flrn(ϕ) ∈ D(X), given by:

flrn
(

∑

i ni|xi 〉
)

: =
∑

i
ni
n |xi 〉 i.e. flrn(ϕ) : =

∑

x∈X

ϕ(x)

‖ϕ‖

∣

∣x
〉

.

3. We write D(X) for the set of distributions on X. This D is

functorial, likeM, see Definition 1 (3): for a function f : X→ Y

we write D(f ) : D(X) → D(Y) for the function that produces

the image distribution, as:

D(f )
(

∑

i ri|xi 〉
)

: =
∑

i ri
∣

∣ f (xi)
〉

. (6)
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We apply the same conventions to distributions as formal sums

of ket’s as for multisets, so that terms 0|x〉may be ommitted, etc.

Such fractional distributions flrn(ϕ) have fractions as

probabilities. We recall that the subset Q↪R is dense: each real

number can be expressed as limit of fractions. An analogous

situation applies to distributions. In order to formulate it we use

the following total variation distance on distributions. It is a special

case of the Kantorovich-Wasserstein distance (Kantorovich and

Rubinshtein, 1958). For two distributions ω,ω′ ∈ D(X) one defines

the distance d(ω,ω′) ∈ [0, 1] as:

d(ω,ω′) : = 1
2

∑

x∈X

∣

∣ ω(x)− ω′(x)
∣

∣. (7)

We can now formulate some basic topological properties

of distributions. Stated informally, all distributions come

from multisets.

Theorem 1. For a finite set X, the set D(X) of distributions on X,

with total variation distance (Equation 7), is a compact complete

metric space, containing a countable dense subset of fractional

distributions, given as image of frequentist learning flrn, from

non-empty multisets to distributions.

There is another topic that we need to introduce, namely

random variables, together with their expected value—described

here as validity.

Definition 3. Let X be an arbitrary set.

1. An observable on X is a function p : X → R. These observables

are closed under pointwise sum + and multiplication &. There

are the always-zero and always-one observables 0, 1 : X→ R.

We write Obs(X) : = RX for the vector space of observables

on X.

2. A random variable is a pair (ω, p) of a distribution ω ∈ D(X)

and an observable p : X→ R, on the same set X.

3. For a random variable
(

ω ∈ D(X), p : X → R
)

the expected

value is written as validity ω |H p and defined as:

ω |H p : =
∑

x∈X

ω(x) · p(x); (8)

The expected value is commonly written as E(p) with the

distribution ω left implicit. This may be inconvenient and

confusing, especially when the distribution at hand may change,

for instance in a computational setting. The notation E
x←ω

p(x) fares

better since it makes the distribution ω explicit, but it introduces an

additional bound variable, namely the x that is sampled from ω.

However, since the actual probability ω(x) of the sampled element

x does not occur in this expression E
x←ω

p(x), it can not be used

for calculations. Hence we prefer the (new) validity notation ω |H

p =
∑

x ω(x) · p(x) for the expected value of observable p in

distribution ω.

4 Bayesian updating

There are two main schools in statistics, one of “frequentist”

nature, assigning probabilities to data, and one of “Bayesian”

kind, where probabilities are associated with hypotheses. The

frequentistist approach is captured, in the discrete case, by

distributions
∑

i ri|xi 〉 ∈ D(X), with probabilities ri associated

with elements / objects / data item xi ∈ X. The Bayesian

approach may be formalized in terms of belief functionsObs(X)→

R, assigning values to observables / predicates / hypotheses /

evidence. In Bayesian approaches these assignments are often called

subjective, resulting from individual choices about howmuch value

(like money) people wish to put on which possible outcomes.

The Appendix explores a mathematical perspective and

describes an isomorphism (on the left in Equation 13, Appendix)

that connects these Bayesian and frequentist approaches via a

duality isomorphism Hom
(

Obs(X),R
)

∼= D(X) between belief

functions and distributions. Thus, one could say, the matter is

solved, there is mathematically no difference between the two

approaches—up to isomorphism.

Conditional probabilities are typically developed on the

Bayesian side, in terms of adapted belief functions. Using the

approach of the Appendix, this approach can be pulled across the

duality isomorphism, to the frequentist side. It leads to a form of

updating in terms of adapted distributions ω|p, see Section B in

Appendix for the mathematical details. The next definition already

formulates Bayesian updating of distributions with observables,

in concrete form. It has been developed and used in a series of

papers (Jacobs and Zanasi, 2016, 2017; Jacobs, 2017a; Cho and

Jacobs, 2019; Jacobs, 2019, 2021, 2024) aimed at systematizing

probabilistic updating. It is with this formalization of Bayesian

updating that we can clearly formulate and prove commutativity

of updating, see Proposition 1 below.

Definition 4. Let ω ∈ D(X) be a distribution with a non-negative

observable p : X → R≥0 such that the validity ω |H p is non-zero.

In that case we define the Bayesian update ω|p ∈ D(X) of ω with

“evidence” p as the normalized product:

ω|p : =
∑

x∈X

ω(x) · p(x)

ω |H p

∣

∣x
〉

. (9)

This formulation of Bayesian updating comes alive in

illustrations. We present an example first and then show

how the above formulation ω|p generalizes the traditional

formulation P(E | D).

Example 1. We consider a study involving four common species of

birds: robin (R), crow (C), sparrow (S), and woodpecker (W). We

start from the following species distribution (in a particular area),

on the set X = {R,C, S,W}.

σ = 1
4 |R〉 +

1
3 |C 〉 +

1
4 |S〉 +

1
6 |W 〉

≈ 0.25|R〉 + 0.333|C 〉 + 0.25|S〉 + 0.167|W 〉.

This is our prior distribution. Then a day of bird counting

happens, resulting in a count observable f : X→ N with numbers:

f (R) = 200 f (C) = 150 f (S) = 50 f (W) = 100.

We see that this observable does not really match the prior,

for instance since the number of observed robins is higher than

the number of crows, whereas the robin probability in σ is lower
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than the crow probability. Also, the number of observed sparrows

is low with respect to the woodpecker number. Hence we expect

that updating σ with f will lead to a considerable change of

(relative) probabilities.

We first calculate the expected value, as validity:

σ |H f
(8)
=

∑

x∈X

σ (x) · f (x)

= σ (R) · f (R)+ σ (C) · f (C)+ σ (S) · f (S)+ σ (W) · f (W)

= 1
4 · 200+

1
3 · 150+

1
4 · 50+

1
6 · 100

= 775
6 .

The updated, posterior distribution can now be computed, with

this validity as normalization factor:

σ |f
(9)
=

∑

x∈X

σ (x) · f (x)

σ |H f
|x〉

=
1/4 · 200

775/6
|R〉 +

1/3 · 150

775/6
|C 〉 +

1/4 · 50

775/6
|S〉 +

1/6 · 100

775/6
|W 〉

=
12

31
|R〉 +

12

31
|C 〉 +

3

31
|S〉 +

4

31
|W 〉

≈ 0.387|R〉 + 0.387|C 〉 + 0.0968|S〉 + 0.129|W 〉.

This posterior distribution σ |f incorporates the evidence of

the observable f . Its robin and crow probabilities are equal, and

its woodpecker probability is higher than the sparrow probability,

reflecting the count outcome.

A year later a new bird count happens, resulting in a new

observable g : X → N, say with g(R) = 100, g(C) = 150,

g(S) = 100, and g(W) = 50. This count is more in line with the

prior. One can then update σ |f once again, nowwith observable g—

last year’s posterior is this year’s prior. The resulting second update

takes the form:

σ |f |g =
12
35 |R〉 +

18
35 |C 〉 +

3
35 |S〉 +

2
35 |W 〉

≈ 0.343|R〉 + 0.514|C 〉 + 0.0857|S〉 + 0.0571|W 〉.

This second update brings us a bit closer to the original prior σ .

Interestingly, this double update σ |f |g is equal to the update

σ |g|f with swapped observables f , g. Thus, eventhough there is a

clear order in the yearly bird counting, the mathematics of Bayesian

updating ignores this order and produces the same outcome for

both orders (f , g) and (g, f ) of observables.

We now show how the conditional probability in traditional

form fits into our form of Bayesian updating (9).

Lemma 1. Let ω ∈ D(X) be a distribution, with a subset (event)

E ⊆ X. We write 1E : X → R for the observable given by the

indicator function of E, with associated validity:

1E(x) : =

{

1 if x ∈ E

0 if x 6∈ E
and P(E) : = ω |H 1E =

∑

x∈E

ω(x).

For another subset D ⊆ X one has:

1. 1E & 1D = 1E∩D;

2. The conditional probability P(E | D) is obtained as validity of 1E
in the distribution ω updated with 1D, that is, as:

ω|1D |H 1E =
ω |H 1E & 1D

ω |H 1D
=

P(E ∩ D)

P(D)
= : P(E | D).

This last equation defines the conditional

probability P(E | D).

Proof. 1. For x ∈ X, using that & is given by pointwise

multiplication:

(

1E & 1D

)

(x) = 1 ⇐⇒ 1E(x) · 1D(x) = 1

⇐⇒ 1E(x) = 1 and 1D(x) = 1

⇐⇒ x ∈ E and x ∈ D

⇐⇒ x ∈ E ∩ D ⇐⇒ 1E∩D(x) = 1.

2. We only have to prove the first equation, since the second one

follows from the previous item. Thus:

ω|1D |H 1E
(9)
=

∑

x∈X

ω|1D(x) · 1E(x)

(9)
=

∑

x∈X

ω(x) · 1D(x)

ω |H 1D
· 1E(x)

=

∑

x∈X ω(x) · (1D & 1E)(x)

P(D)

=
P(E ∩ D)

P(D)
. �

The traditional P(−) notation leaves the distribution implicit,

which has many disadvantages. Most relevant in this context

is that this P(−) notation makes it impossible to express

the commutativity of Bayesian updating, as formulated in

Proposition 1 below.

We include another illustration that combines several of

the topics that we discussed earlier: multisets, functoriality (for

marginalization), and updating.

Example 2. Consider the following situation and questions,

describing a typical update situation with observations

about offspring.1

A friend ofmine has three children aged 4 and 5 with one twin.

(a) What is the probability that there are three girls, assuming that the

probability of a girl is 1
2 ?

(b) I ring this friend’s doorbell and I hear a girl’s voice say that she will

open the door soon. If I can assume that this is one of the three

children, what is the probability that my friend has three daughters?

(c) A 4-year-old boy opens the door. Still assuming this is one of the

children, what is the probability that there are three boys?

Questions (b) and (c) are independent.

We address this situation in terms of multisets of children, as

in Equation 3. The situation is more complicated now since we have

to use a set C = {B,G} for the (sex of the) children but also a set

A = {4, 5} for their ages. The possible offspring configurations are

(certain) multisets of size 3 over the product set C × A. After a

1 See the special page https://en.wikipedia.org/wiki/Boy_or_girl_paradox.
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moment’s thought we see that the prior υ is a distribution of the

following form.

υ = 1
16

∣

∣

∣
2|B, 4〉 + 1|B, 5〉

〉

+ 1
16

∣

∣

∣
1|B, 4〉 + 2|B, 5〉

〉

+ 1
8

∣

∣

∣
1|B, 4〉 + 1|B, 5〉 + 1|G, 4〉

〉

+ 1
16

∣

∣

∣
2|B, 5〉 + 1|G, 4〉

〉

+ 1
16

∣

∣

∣
1|B, 5〉 + 2|G, 4〉

〉

+ 1
8

∣

∣

∣
1|B, 4〉 + 1|B, 5〉 + 1|G, 5〉

〉

+ 1
16

∣

∣

∣
2|B, 4〉 + 1|G, 5〉

〉

+ 1
8

∣

∣

∣
1|B, 4〉 + 1|G, 4〉 + 1|G, 5〉

〉

+ 1
16

∣

∣

∣
2|G, 4〉 + 1|G, 5〉

〉

+ 1
8

∣

∣

∣
1|B, 5〉 + 1|G, 4〉 + 1|G, 5〉

〉

+ 1
16

∣

∣

∣
1|B, 4〉 + 2|G, 5〉

〉

+ 1
16

∣

∣

∣
1|G, 4〉 + 2|G, 5〉

〉

.

(10)

This υ is a distribution over multisets, using nested kets. The

outer, big kets are for the probabilities, with inside the different

offspring configurations in the form of a multiset. For instance, the

multisets 1|B, 4〉 + 2|G, 5〉 and 1|G, 4〉 + 2|G, 5〉 in the last line

capture the situations with one boy (or girl) of 4 and two girls of 5

years old.2

We shall write S : = supp
(

υ
)

for the support of this distribution

υ. This set S contains all of the 12 different multisets ϕ inside the

big kets in Equation 10.

For the first question (a) we ask ourselves more generally what

the children distribution is in this situation. It can be obtained

by discarding the ages, via the first marginal of the multisets

inside the big kets. This involves applying the marginalization

function M(π1) : M(C × A) → M(C) to these multisets, see

Definition 1 3. Since we wish to apply this marginalization function

M(π1) inside the bigkets, we have to use functoriality ofD as well,

see Definition 2 3. Thus, the distribution of children marginals is

obtained as:

D

(

M(π1)
)

(υ)
(6)
=

∑

ϕ∈S

υ(ϕ)

∣

∣

∣

∣

M(π1)(ϕ)

〉

(4)
=

∑

ϕ∈S

υ(ϕ)

∣

∣

∣

∣

∑

x,y ϕ(x, y)|x〉

〉

= 1
16

∣

∣

∣

∣

3|B〉

〉

+ 1
16

∣

∣

∣

∣

3|B〉

〉

+ 1
8

∣

∣

∣

∣

2|B〉 + 1|G〉

〉

+ 1
16

∣

∣

∣

∣

2|B〉 + 1|G〉

〉

+ 1
16

∣

∣

∣

∣

1|B〉 + 2|G〉

〉

+ 1
8

∣

∣

∣

∣

2|B〉 + 1|G〉

〉

+ 1
16

∣

∣

∣

∣

2|B〉 + 1|G〉

〉

+ 1
8

∣

∣

∣

∣

1|B〉 + 2|G〉

〉

+ 1
16

∣

∣

∣

∣

3|G〉

〉

+ 1
8

∣

∣

∣

∣

1|B〉 + 2|G〉

〉

+ 1
16

∣

∣

∣

∣

1|B〉 + 2|G〉

〉

+ 1
16

∣

∣

∣

∣

1|B〉 + 2|G〉

〉

= 1
8

∣

∣

∣

∣

3|B〉

〉

+ 3
8

∣

∣

∣

∣

2|B〉 + 1|G〉

〉

+ 3
8

∣

∣

∣

∣

1|B〉 + 2|G〉

〉

+ 1
8

∣

∣

∣

∣

3|G〉

〉

.

The answer to question (a) is thus 1
8 , the probability associated

in the last line with the three girls multiset 3|G〉.

2 One can obtain the distribution υ in Equation 10 itself via conditioning,

namely from the multinomial distribution, of draws of size three from the

uniform distribution on C × A. One updates this multinomial distribution by

keeping only those multiset ϕ in which both ages occur, that is, for which the

support supp(M(π2)(ϕ)) ⊆ A of the second marginal of ϕ has two elements.

This construction of υ distracts from the main line, so we decided to simply

present the relevant prior distribution in Equation 10.

The interested reader may wish to check that taking the second

marginals yields the (expected) age distribution of the form:

D

(

M(π2)
)

(υ) = 1
2

∣

∣

∣
2|4〉 + 1|5〉

〉

+ 1
2

∣

∣

∣
1|4〉 + 2|5〉

〉

.

For question (b) we define an observable g : S → {0, 1} which

is 1 if and only if there is at least one girl:

g(ϕ) = 1 ⇐⇒ M(π1)(ϕ)(g) ≥ 1 ⇐⇒ ϕ(g, 4)+ ϕ(g, 5) ≥ 1.

This observable g is {0, 1}-valued and may be identified with a

subset of S, as in Lemma 1. Updating υ with g involves removing

the multisets ϕ ∈ S with g(ϕ) = 0, that is, with boys only, and then

renormalising. The normalization factor is the validity:

υ |H g =
∑

ϕ∈S

υ(ϕ) · g(ϕ) = 7
8

The answer to question (b) is obtained by computing the update

υ|g and taking its children marginal, as before. This yields:

D

(

M(π1)
)

(

υ|g

)

= D

(

M(π1)
)(

1
7

∣

∣

∣

∣

1|B, 4〉 + 1|B, 5〉 + 1|G, 4〉

〉

+ 1
14

∣

∣

∣

∣

2|B, 5〉 + 1|G, 4〉

〉

+ 1
14

∣

∣

∣

∣

1|B, 5〉 + 2|G, 4〉

〉

+ 1
14

∣

∣

∣

∣

2|B, 4〉 + 1|G, 5〉

〉

+ 1
7

∣

∣

∣

∣

1|B, 4〉 + 1|B, 5〉 + 1|G, 5〉

〉

+ 1
7

∣

∣

∣

∣

1|B, 4〉 + 1|G, 4〉 + 1|G, 5〉

〉

+ 1
7

∣

∣

∣

∣

1|B, 5〉 + 1|G, 4〉1|G, 5〉

〉

+ 1
14

∣

∣

∣

∣

2|G, 4〉 + 1|G, 5〉

〉

+ 1
14

∣

∣

∣

∣

1|B, 4〉 + 2|G, 5〉

〉

+ 1
14

∣

∣

∣

∣

1|G, 4〉 + 2|G, 5〉

〉

)

= 3
7

∣

∣

∣

∣

2|B〉 + 1|G〉

〉

+ 3
7

∣

∣

∣

∣

1|B〉 + 2|G〉

〉

+ 1
7

∣

∣

∣

∣

3|G〉

〉

.

We can conclude that after seeing one girl the probability

that there are three girls has risen from 1
8 to 1

7 . As an aside: the

distribution of age marginals remains the same after this update.

What happens when we see a 4-year old boy? We capture this

via an event / observable b4 : S → {0, 1} with b4(ϕ) = 1 iff

ϕ(B, 4) ≥ 1. Its validity υ |H b4 in the prior distribution υ is 7
12 .

We leave it to the interested reader to verify that the distributions

of children / age marginals, after update with b4, are:

D

(

M(π1)
)

(

υ|b4

)

= 1
5

∣

∣

∣
3|B〉

〉

+ 1
10

∣

∣

∣
2|B〉 + 1|G〉

〉

+ 3
10

∣

∣

∣
1|B〉 + 2|G〉

〉

D

(

M(π2)
)

(

υ|b4

)

= 3
5

∣

∣

∣
2|4〉 + 1|5〉

〉

+ 2
5

∣

∣

∣
1|4〉 + 2|5〉

〉

.

The first equation answers question (c): the probability of three

boys is 1
5 , having seen one 4-year old boy. It is higher than the

probability of seeing three girls, given that there is at least one girl?

The boy-of-4 observation excludes more cases and the remaining

cases thus get higher probability, after re-normalization.

The second equation about the age marginals shows that the

configuration with two 4-year olds is more likely, after seeing at

least one 4-year old (boy). This makes sense.

We can still ask what we can infer if we have seen both a

girl and a boy-of-4. As before the order of updating is irrelevant:
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υ|g|b4 = υ|b4|g. In that situation there are 5 multisets left, out of the

original 12, in υ in Equation 10. The distributions of marginals are:

D

(

M(π1)
)

(

υ|g|b4

)

= 5
8

∣

∣

∣
2|B〉 + 1|G〉

〉

+ 3
8

∣

∣

∣
1|B〉 + 2|G〉

〉

D

(

M(π2)
)

(

υ|g|b4

)

= 5
8

∣

∣

∣
2|4〉 + 1|5〉

〉

+ 3
8

∣

∣

∣
1|4〉 + 2|5〉

〉

.

We conclude by proving in general what we have already seen

several times, namely that multiple Bayesian updates commute

(Equation 1). We do so by using the conjunction p & q

(pointwise multiplication) of observables, in order to emphasize

the close connection between commutativity of conjunction and of

updating. The result below already occurs in Jacobs (2019, Lem.

4.1), together with a generalized formulation of Bayes’ rule for

observables. A proof is included for completeness.

Proposition 1. Let ω ∈ D(X) be a distribution with two non-

negative observables p, q : X → R≥0. Then, assuming that the

relevant validities are non-zero,

ω|p|q = ω|p&q = ω|q&p = ω|q|p.

Proof. We only have to prove the first equation, since the

commutativity of & is obvious (multiplication of numbers is

commutative) and the last equation is an instance of the first (with

p, q swapped). Using the functional description for distributions, we

have for x ∈ X,

ω|p|q(x)
(9)
=

ω|p(x) · q(x)

ω|p |H q

(9)
=

ω(x)·p(x)
ω|Hp · q(x)

∑

y
ω(y)·p(y)

ω|Hp · q(y)

=
ω(x) · (p & q)(x)

ω |H p & q

(9)
= ω|p&q(x). �

5 Concluding remarks

The Bayesian approach is popular in cognition theory, where

the human mind is seen as a Bayesian prediction and inference

engine, see for instance the recent books (Griffiths et al., 2024;

Parr et al., 2022). In that line of work the mismatch caused by the

commutativity of Bayesian updating does not get much attention. It

is however known in the literature, see notably (Uzan, 2023). One

way out is to switch from classical to quantum probability, where

conjunction and updating are non-commutative. This has led to a

new line of “quantum” cognition theory (see e.g. Busemeyer and

Bruza, 2012; Yearsley and Busemeyer, 2016; or Jacobs, 2017b which

is similar in style to this article).

When we take the commutativity of Bayesian updating

seriously, the proper data structure to deal with multiple updates

is: a multiset of observables. Indeed, as we have seen in

Section 2, multisets abstract from lists by ignoring the order. This

perspective is elaborated in Jacobs (2024), where the different

update mechanisms of Pearl and Jeffrey (Jacobs, 2019), and also the

variational free update mechanism from predictive coding (Friston,

2009; Tull et al., 2023), are formulated in terms of such multisets

of observables. Jeffrey’s rule is non-commutative, but in a special

way, namely for multiple such (non-singleton) multisets. All this

suggests that the topic of commutativity may be a decisive element

in further developing probabilistic perspectives in cognition and

in AI.
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