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Mental visual imagery, especially the ability to construct naturalistic scenes
seems central to vivid episodic autobiographical memory (AM). This mini review
will first highlight the neural anatomy of different aspects of mental imagery,
focusing on the roles of the hippocampus, ventromedial prefrontal cortex and
posterior neocortex and the consequences of damage to these regions to AM.
We will then contrast the consequences of missing images for AM in two special
populations with no apparent brain damage: Congenital Aphantasia (i.e., lack
of visual imagery) and congenital blindness (i.e., lack of visual perception). We
propose that Aphantasia leads to impaired scene construction and reduced AM
reliving. Despite limited evidence on AM in congenitally blind individuals, they
seem to rely on auditory and tactile information to construct (scene) imagery,
which in turn may support vivid AM reliving. The main findings here suggest
that mental scene imagery, rather than visual encoding, is crucial for AM. This
conclusion has far-reaching implications for understanding memory disorders,
mental health, and a call to protect our imagination.
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1 Introduction

Vivid mental imagery features as a central cornerstone in episodic autobiographical
memory (AM; Tulving, 2002; Sheldon and Levine, 2013). Decades of neuroimaging and
neuropsychological research have established the tight link between these mental images
and our ability to remember past events, which shape our sense of self and identity
(Tulving, 2002). AM is not only vital for envisioning the future (Addis et al., 2007), making
complex decisions (Buckner, 2010), and showing compassion (Strikwerda-Brown et al.,
2019), but its impairment is also associated with conditions such as neurodegenerative
dementias (Strikwerda-Brown et al., 2019), temporal lobe epilepsy (St-Laurent et al.,
2009; McCormick et al., 2018b), and limbic encephalitis (Miller et al., 2020), carrying
severe personal and economic impacts. Despite this significance, the neural mechanisms
underlying AM remain poorly understood. While much of the research focuses on the
neural networks of AM and the consequences of brain damage, two special populations,
those with congenital Aphantasia (diminished visual imagery) and congenital blindness
(diminished visual perception), provide a valuable lens to examine the impact of missing
images on episodic AM retrieval. This opinion piece will briefly recapitulate what is known
about the connection between AM and mental imagery before focusing on these two
populations, ultimately drawing conclusions and proposing new hypotheses about the
importance of images for AM.

A defining feature of AM is its vivid, detail-rich reliving experience. Some individuals
virtually “see the event unfold” in their mind’s eye. Without this, AM appears vague and
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dim (Viskontas et al., 2000). Vivid mental imagery, especially in
the visual domain seems therefore crucial for vivid AM (Greenberg
and Knowlton, 2014). In line, visualization abilities predict the
detailedness of an imagined event and the vividness of a memory
(Greenberg and Knowlton, 2014; Conway and Pleydell-Pearce,
2000; Greenberg et al., 2005; Greenberg and Rubin, 2003). A key
question is whether all kinds of mental imagery are important for
episodic, detail-rich AM. Are individual episodic elements (e.g.,
visual detail—the redness of a dress, or emotional detail—the joy
felt) important or is the mental model of a visuospatial scene
(e.g., standing in front of a house door) crucial (Maguire and
Mullally, 2013)? In favor for naturalistic scenes, AM vividness is
strongly predicted by our ability to mentally construct naturalistic
scenes (Clark and Maguire, 2020). Participants recall events more
vividly when AM can unfold with the visuoperceptual scaffold of
scene-cues, as opposed to people-cues (Robin et al., 2018). When
only people- cues are used, participants automatically add visual
scenes. Additionally, mind-wandering episodes contain for the vast
majority naturalistic scene imagery (McCormick et al., 2018c).
These findings form the basis of the scene construction theory
(Maguire and Mullally, 2013), which proposes that naturalistic
scenes are the building blocks for vivid AM. In contrast, specific
deficits in mental imagery, such as color or face blindness
(prosopagnosia), do not lead to dramatic AM deficits (Epstein
et al., 1999; Kanwisher, 2000). Thus, some forms of mental imagery
seem more important to AM than others. This differentiation is
also supported by the fact that different forms of mental imagery
are supported by different brain structures. Box 1 will focus on
the contributions and interactions of the hippocampus, posterior
neocortex, and ventromedial prefrontal cortex (vmPFC).

In conclusion, constructing vivid, imagery-rich mental events,
like episodic AM, relies on an intricate neural machinery that
allows us to mentally “see” events unfold upon a visuospatial stage.
Brain damage to any of these regions can impair our mind’s eye,
potentially leading to AM deficits and significant cognitive and
emotional changes. Research suggests the visual system drives the
construction of vivid mental events, especially in sighted people.
Thus, a major gap in our understanding is whether inner visual
scene imagery depends on visual experience. The following will
synthesize evidence from two special populations: people with
Aphantasia, who lack inner visual images, and people blind from
birth, who lack visual perceptual experience.

2 Autobiographical memory and scene
construction in Aphantasia

Aphantasia is a neuropsychological normvariante characterized
by a significant reduction or complete lack of voluntary sensory
imagery (Monzel et al., 2022) with its neural underpinnings
still being debated (Blomkvist and Marks, 2023; Pearson, 2019).
Typically, Aphantasia is identified by low subjective ratings on
the Vividness of Visual Imagery Questionnaire (VVIQ; Marks,
1973) and it is associated with psychophysiological changes, such
as reduced imagery-induced pupil contraction (Kay et al., 2022) and
diminished imagery-induced priming effects (Keogh and Pearson,
2018; Monzel et al., 2021).

In terms of AM, several studies have reported convergent
evidence that people with Aphantasia recall fewer AM details
compared to controls (Monzel et al., 2024; Dawes et al., 2020;
Milton et al., 2021; Zeman et al., 2020; Dawes et al., 2022). This
effect was found for recent and remote AM (Monzel et al., 2024;
Milton et al., 2021) and consistent over multiple sensory details,
including visual (Dawes et al., 2022), time, place, and emotion
(Monzel et al., 2024). Thus, the AM deficit in Aphantasia is not
only confined to missing visual details, but rather to a global
reduction in episodic details. Albeit marked differences between
healthy people with Aphantasia and individuals with pathological
hippocampal damage, this profile of AM deficits resembles this
found in individuals with hippocampal damage (Rosenbaum et al.,
2008). Memories of people with Aphantasia also tend to be
less emotional and are reported with less confidence (Monzel
et al., 2024; Dawes et al., 2022; Wicken et al., 2021). A recent
neuroimaging study indicated that Aphantasia is associated with
decreased hippocampal activity and increased visual-perceptual
cortex activity during AM retrieval (Monzel et al., 2024). In
controls, stronger connectivity between the hippocampus and
visual-perceptual cortex was linked to better visualization skills,
however, in Aphantasia, this connectivity correlated with worse
visualization skills. Other recent neuroimaging studies also suspect
the early visual cortices and their neocortical connectivity to play
a crucial part in the neural underpinnings of Aphantasia (Cabbai
et al., 2024; Montabes de la Cruz et al., 2024; Chang et al., 2025).
For example, decoding of perceptual content from early visual
cortex was less in Aphantasia (Chang et al., 2025). Together,
these findings suggest that mental imagery construction is crucial
for vivid AM retrieval and is supported by hippocampus-visual
cortex connectivity.

In addition to the significant differences in the subjective
relieving of AM, people with Aphantasia also tend to report less
details if they are asked to conjure up atemporal, novel scenes and
future scenarios (Milton et al., 2021; Dawes et al., 2022). These
findings are reflected by their low ratings on the VVIQ, which
requires individuals to construct vivid mental scenes (Bainbridge
et al., 2021), but also employing more extended interview
techniques (Milton et al., 2021). Together, the recent evidence on
Aphantasia suggests that, despite an intact visual system (Cabbai
et al., 2024; Chang et al., 2025) and no gross brain pathology
(Milton et al., 2021), the lack of vivid mental imagery leads to
profound deficits in recalling episodic AM and constructing mental
models of scenes. Interpreting this constellation by referring to
Box 1, it seems likely that the neural underpinnings of Aphantasia
lie especially in the visual cortices and their communication with
the hippocampus. This conclusion leads to the imminent question
whether people who are blind from birth and thus, lack visual
perception, also display these AM alterations.

3 Autobiographical memory and scene
construction in blind people

In contrast to people with Aphantasia, people who are blind
due to ophthalmological reasons (see Box 1 for the impact on
AM due to CNS-damage to the visual system) cannot encode the
world visually, which hampers their ability to encode naturalistic
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BOX 1 The anatomy of AM and mental imagery.

Autobiographical memory (AM) is intricately tied to mental imagery and the construction of visuospatial scenes (Hassabis et al., 2007; Maguire and Mullally, 2013)
relying on a shared neural network that includes the hippocampus, ventromedial prefrontal cortex (vmPFC), and posterior neocortex (Hassabis and Maguire, 2009;
McCormick et al., 2015; Robin et al., 2019; Svoboda et al., 2006). Each contributing unique features to AM and scene construction.

The hippocampus

The hippocampus plays a central role in retrieving vivid, detail-rich memories (Scoville and Milner, 1957; Rosenbaum et al., 2008; Viskontas et al., 2000) and
constructing naturalistic scenes (Hassabis et al., 2007; Maguire and Mullally, 2013; McCormick et al., 2018a; Bakermans et al., 2025; Angeli et al., 2025; Clark et al., 2022).
While the anterior segment of the hippocampus seems more engaged during scene construction, its posterior segment may be more engaged during scene perception
(Angeli et al., 2025; Zeidman and Maguire, 2016). Additionally, the pre-/parasubiculum subfields of the hippocampus seem especially engaged in constructing mental
scenes (Dalton and Maguire, 2017; Dalton et al., 2018) and AM (Leelaarporn et al., 2024).

Patients. Autobiographical amnesia is the hallmark of hippocampal damage (Scoville and Milner, 1957; Rosenbaum et al., 2008; Viskontas et al., 2000; Miller et al.,
2020). Additionally, patients with bilateral hippocampal damage exhibit impaired scene construction (Hassabis et al., 2007; McCormick et al., 2018c, 2017, 2016). Thus,
in our model, the hippocampals’ most critical contributions to AM are mental models of naturalistic scenes.

The posterior neocortex

The posterior neocortex is thought to contribute visuo-perceptual details to AM, with specialized regions such as the fusiform gyrus and parahippocampal place area
processing specialized details, such as faces and places (Epstein et al., 1999; Kanwisher, 2000). Higher associative cortices, including the angular gyrus and precuneus,
integrate sensory input to reconstruct visual details, demonstrating the close overlap between visual perception and mental imagery (Svoboda et al., 2006; Dijkstra et al.,
2019).

Patients. Damage to the posterior neocortex typically result in selective perceptual deficits, such as prosopagnosia (Kanwisher, 2000), and sometimes to impaired AM
(Greenberg et al., 2005; Rubin and Greenberg, 1998; Ramirez-Bermudez et al., 2024).

The ventromedial prefrontal cortex

Traditionally, the vmPFC has been linked to roles such as emotion regulation (Bechara et al., 2000), decision-making (Damasio, 1996), and moral reasoning (Koenigs
et al., 2007), but also memory and learning (Gilboa and Marlatte, 2017). We suggested, the vmPFC initiates and elaborates temporally extended mental scenarios,
interacting with the hippocampus and posterior neocortex to integrate snapshots into coherent narratives (McCormick et al., 2018a; Barry et al., 2019; McCormick et al.,
2020; Monk et al., 2021).

Patients. vmPFC-damaged patients show AM and scene construction deficits, as well as a reduced ability to initiate endogenous mental scenarios (Bertossi and
Ciaramelli, 2016; Bertossi et al., 2016a,b). Nonetheless, the construction of individual scenes maybe intact (Kurczek et al., 2015; De Luca et al., 2019). These differences
indicate the vmPFC’s role in integrating successive scenes into extended narratives.

Summary

This figure shows the contributions of the vmPFC, namely event construction, the hippocampus, scene construction and perception, and the posterior neocortex, visual
perception to AM. Damage to any of these regions can result in impaired ability to construct mental events, leading to AM deficits. Thus, hampering with our inner
images, especially in forms of naturalistic scenes, seems to be detrimental to vivid AM recall.
The arrows signify strong functional connectivity. The color gradient symbolizes the transition from fine-grain visual details (blue) to extended, multimodal autobiographical
memories (yellow).
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scenes. To date, there are only a handful of heterogeneous studies
examining AM in blind individuals. We identified seven studies
that examined AM in blind people (Cornell Karnekull et al., 2020;
Pring and Goddard, 2004; Tekcan et al., 2015; Eardley and Pring,
2006; Güneş-Acar and Tekcan, 2024; Goddard and Pring, 2001; Ally
et al., 2013). These were behavioral studies using different AM tasks,
mostly with small sample sizes and including blind participants
with varying onsets and severity of blindness.

One important caveat in interpreting these findings is that
much evidence indicates that the function of the visual cortex
develops postnatally based on visual input (Wiesel and Hubel,
1965). There seems to be a critical period in development,
suggesting that congenital blindness has a profoundly different
impact on cortical development than becoming blind later in life
(Hooks and Chen, 2007). Thus, it likely makes a difference to
AM whether people are congenitally blind or became blind after
some years of visual experience, and whether they are totally blind
or still perceive visual/scenic details. Specifically, remaining visual
perception of sky and ground could still enable scene perception
and facilitate scene construction.

The little coherence in the findings suggests that blind people
may have relatively subtle difficulties recalling specific events. Five
out of the seven studies reported that blind individuals needed
more prompting to retrieve specific memories (Tekcan et al.,
2015; Eardley and Pring, 2006; Güneş-Acar and Tekcan, 2024;
Goddard and Pring, 2001; Ogden and Barker, 2001). These results
were consistent despite different cues (auditory sounds, odors,
concrete, and abstract words). One study did not find this effect
(Cornell Karnekull et al., 2020), and a case study reported even
heightened AM retrieval access in a congenitally blind person
(Ally et al., 2013). Importantly, most studies reported measures of
episodicity, reliving experience, and detail-richness, with no group
differences. These findings indicate that the feeling of re-experience
seems to be as vivid as that of sighted people. Blind people seem
to report more auditory and non-episodic details than sighted
controls (Tekcan et al., 2015; Güneş-Acar and Tekcan, 2024) and
rate their memories as more important and temporally extended
(Güneş-Acar and Tekcan, 2024). A case study of a 20-year old
man who was born prematurely and suffered from retinopathy of
prematurity reported superior AM with heightened accuracy and
reliving of auditory and tactile details. This patient had reduced
hippocampal volume but increased amygdala volume and strong
fMRI resting state connectivity to the right hippocampus (Ally
et al., 2013).

This scare literature reveals a major knowledge gap in our
understanding of AM and its neural signature in blind people;
and whether it makes a different for AM, if a person is
blind from birth or late blind. From the little evidence there
is, the vivid re-experience seems to resemble that of sighted
individuals. These finding mesh well with evidence that their
episodic memory per se appears intact (Roder et al., 1999; Amedi
et al., 2003; Raz et al., 2005), and in some cases, when auditory
cues are presented, even superior to that of sighted controls.
Much more research has been done in spatial navigation and
mental imagery in blind people. While a comprehensive review
of this literature is beyond the scope of this opinion piece,
in the next section, we will briefly explore these topics with

the question in mind whether it is likely that people who are
blind from birth have the ability to construct mental models of
naturalistic scenes.

4 Mental scene imagery in blind
people

To our knowledge, there are no studies specifically examining
the construction of mental models of scenes in congenitally blind
people. Thus, we approach this topic by first reviewing, mental
imagery and its neural correlates, and then spatial representations
and their hippocampal reflections.

4.1 Mental imagery and the posterior
neocortex in congenitally blind people

There is good evidence that mental imagery in many perceptual
domains, especially tactile and auditory imagery, of congenitally
blind people remains intact, sometimes superior to that of sighted
controls (Bleau et al., 2022; Chebat et al., 2020; Renzi et al.,
2013). In the visuospatial domain, however, blind people lack
accuracy and vividness. For example, objects that cannot be
experienced through touch (e.g., wild animals) are rated lower
in vividness by blind individuals compared to objects that can
be touched (e.g., tools; Tian et al., 2024). Their visual concepts
tend to be more abstract and semantic (Cattaneo et al., 2008;
Cornoldi et al., 1993) and reliant on previous tactile exploration
of the objects or descriptions provided by others (Lambert et al.,
2004; Striem-Amit et al., 2018; Xu et al., 2023). An unresolved
debate in this context is whether the mental representations of
congenitally or early blind people are more “propositional” (i.e.,
based on abstract, language- mediated concepts) or analogical
(vision-like). De Volder et al. (2001) introduced the term “shape-
knowledge” (visual semantics) to describe imagery abilities in
congenitally blind individuals. According to this view, auditory
and tactile senses partially create vision in the brain by acting as
a natural substitute for lost visual input during brain maturation,
enabling the development of specific visual functions. Further, non-
visual sensory modalities like auditory, haptic/tactile, and olfactory
imagery enable neuroplastic adaptation of the occipitotemporal
cortex in the absence of early visual stimulation (Xu et al., 2023;
De Volder et al., 2001; Vetter et al., 2020). Specifically, visual
imagery in sighted individuals and tactile imagery in congenitally
blind people recruit the same brain areas, such as the superior
occipital and visual association areas (Lambert et al., 2004). In
addition, support for this model of cross-modal neuroplasticity of
the “blind visual cortex” comes from its involvement in episodic
memory (Raz et al., 2005), language (Sadato et al., 1996), audition
(Vetter et al., 2020), and haptic (Amedi et al., 2010) processing.
Thus, similar to sighted people, the construction of mental images
in blind individuals seems to rely on the activation of occipital
areas (Xu et al., 2023; De Volder et al., 2001; Vetter et al., 2020;
Amedi et al., 2004). Thus, whereas visual mental imagery may
be altered, the mental representations of many types of imagery
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remains intact and reliant on the posterior neocortex, similar to that
of sighted people.

4.2 Spatial representation and the
hippocampus in congenitally blind people

A recent meta-analysis examined neural structures supporting
spatial navigation and spatial representation in congenitally blind
people. They included 31 studies in an activation likelihood
estimation (ALE) analysis and reported significant overlap between
the neural structures supporting spatial cognition in blind and
sighted people (Bleau et al., 2022). Although hippocampal volume
has been found to be reduced in many congenital blindness
[(Chebat et al., 2020; Pan et al., 2021), but see (Fortin et al.,
2008)] the hippocampus was engaged during spatial navigation
tasks (Bleau et al., 2022). Similar conclusions were drawn in
an earlier review (Chebat et al., 2020) in which the authors
report that congenitally blind people can re-interpret auditory
and tactile information to compensate for the lack of vision
in order navigate and represent space equally well to sighted
people. Accordingly, blind people are able to avoid obstacles,
remember locations, integrate paths and generate cognitive maps.
Whereas, the acquisition of spatial representations seems to take
longer and neural differences do exist (Sigismondi et al., 2024;
Pasqualotto and Newell, 2007), in general, congenital blindness
does not lead to a spatial navigational deficit and a deficit in
the mental representation of space. Thus, it seems likely that the
construction of naturalistic scenes, even if they are represented

auditorily [so called soundscapes (Dong and Karmann, 2024)] is
intact in congenitally blind people (Figure 1).

5 Conclusions

Episodic AM is crucial for shaping our sense of self, envisioning
the future, and showing compassion. Impairments in AM, seen in
conditions like dementia and epilepsy, highlight the importance
of understanding how these memories are encoded and retrieved.
The ability to construct naturalistic scenes appears to be a key
driver of the vividness of AM. Despite this strong link, there is
a knowledge gap in understanding the impact of missing images
to AM. This review highlights a stark difference between the
episodic AM recall of two special populations with no gross
brain pathology and for both of which images are missing
for different reasons. Insights from Aphantasia (i.e., lack of
mental imagery) show a significant deficit in constructing mental
scenes and with that, reduced reliving of AM. In contrast,
limited evidence in individuals with congenital blindness (i.e.,
lack of visual perception) suggest a seemingly intact feeling of
AM reliving. We conclude first that more research is needed
to explore AM and scene construction in blind people, and
second, that the construction of mental models of scenes
allow for a rich and vivid re-experience of AM. In fact, the
perception of visual images seems to be of lesser importance
than the internal construction of scenes. This conclusion has
significant implications for diagnosing and treating memory
disorders, enhancing mental health, and understanding the brain’s
adaptability in sensory deficits.

FIGURE 1

The impact of missing images on AM. This figure illustrates the main conclusions that the lack of visual perception (congenital blindness) can be
compensated as along as if the construction of mental scenes is intact. Otherwise, as due to brain damage or Aphantasia, AM reliving is deficient.
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6 Outstanding questions

• Prioritize research into AM in blind individuals: Studies
on AM in blind populations are urgently needed. Given
the critical period for the neurodevelopment of the visual
cortex, it is essential to differentiate between individuals who
are congenitally blind and those who lost their sight later
in life.

• Investigate the neural correlates of AM in blindness: A
deeper understanding of the neural mechanisms underlying
AM in blind individuals is crucial. Does their AM re-
experience rely on the hippocampus and its connectivity in a
manner comparable to sighted individuals, or are alternative
neural pathways recruited?

• Uncover blind individuals’ capacity for scene construction:
While mental imagery and spatial cognition have been studied
in blind individuals, little is known about their ability to
construct scenes and simulate future scenarios. What are the
neural bases of these fundamental cognitive processes in the
absence of visual experience?

• Conduct comparative studies on missing imagery: A direct
comparison between individuals with Aphantasia and those
who are congenitally blind could provide transformative
insights into how missing mental images influence AM and
scene construction.
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