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Accumulating evidence suggests that category representations are based on features. 
Distinguishing features are considered to define categories, because of all-or-none 
responses for objects in different categories; however, it is unclear how distinguishing 
features actually classify objects at various category levels. The present study included 
75 animals within three classes (mammal, bird, and fish), along with 195 verbal features. 
Healthy adults participated in memory-based feature-animal matching verification tests. 
Analyses included a hierarchical clustering analysis, support vector machine, and inde-
pendent component analysis to specify features effective for classifications. Quantitative 
and qualitative comparisons for significant features were conducted between super-ordi-
nate and sub-ordinate levels. The number of significant features was larger for super-or-
dinate than sub-ordinate levels. Qualitatively, the proportion of biological features was 
larger than cultural/affective features in both the levels, while the proportion of affective 
features increased at the sub-ordinate level. To summarize, the two types of features 
differentially function to establish category representations.

Keywords: category representation, distinguishing feature, long-term memory, classification analysis, support 
vector machine

inTrODUcTiOn

Our environment is full of natural and artificial objects, and we classify and deal with these objects 
(e.g., avoid dangerous animals) during our daily lives. Throughout our development, we do not 
necessarily learn how to classify objects based on instructions from other people; instead, we learn to 
recognize that dogs and cats, for instance, are classified into the same class. This type of observation 
suggests that semantic knowledge is constructed with a non-supervised learning mechanism, likely 
the result of using cue information from overlapping properties across objects (Sloutsky, 2003).  
A feature (e.g., “has a beak” for “sparrow” and “crow”) is widely considered as the building block for 
category representation (Rosch et al., 1976; McRae et al., 1999; Tyler and Moss, 2001; Caramazza 
and Mahon, 2003). Several neuro-cognitive models have been proposed for feature-based object 
representations (Caramazza and Mahon, 2003). Among these models, distributed memory models 
have been widely supported (Tyler and Moss, 2001). Such models depend on overlapping features 
among objects for category representation. Many models share this feature-based concept, including 
the parallel-distributed model (Rumelhart et  al., 1986; Farah and McClelland, 1991; Rogers and 
McClelland, 2004), the feature model (Damasio, 1990), the relevance-based model (Sartori and 
Lombardi, 2004; Mechelli et al., 2006), and the distributed-plus-hub model (Patterson et al., 2007).
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Certain features effectively classify objects in different catego-
ries and have been termed “distinguishing” (Rosch et al., 1976) or 
“deterministic” (Deng and Sloutsky, 2015) features (D-features). 
D-features may be non-uniformly represented in the brain. For 
instance, salient D-features may undergo strong memory consoli-
dation through feature–object associations shared by members 
of the same category (Sloutsky, 2003; Rogers et al., 2004), since 
such associations attract attention (Deng and Sloutsky, 2015). The 
nature of D-features is summarized through the notion of cue 
validity (Rosch et al., 1976). Cue validity represents the probabil-
ity of a co-occurrence for certain features and objects in the same 
category. D-features with higher cue validity (e.g., “has wings”) 
possess an “all-or-none” response pattern across categories: they 
selectively occur for exemplars in specific categories (e.g., “a bird”)  
but not for those in other categories (e.g., “a mammal”) with 
high probability. Such an all-or-none response property of a 
D-feature may mirror an objective property of an external world, 
where features, such as structural, ecological properties of living 
organisms (Breed and Moore, 2015) are non-uniformly associ-
ated with objects in a perceived world (Rosch, 1978). D-features 
may have developmental advantages in that they could attract 
even infants (Deng and Sloutsky, 2015), and be acquired during 
their first 3–4 months of life (Behl-Chadha, 1996). Neurological 
studies also suggest that people with semantic dementia (SD) 
tend to retain objective features to make not sub-ordinate (e.g., 
“a hammer”), but super-ordinate classifications (e.g., “a tool”) 
even after cortical damages (Warrington, 1975; Warrington and 
Shallice, 1984; Hodges et al., 1995). Taken together, D-features 
with an all-or-none response pattern may be useful as a probe to 
elucidate a constructive property of mental object representation 
as a mirror of an external world.

The current working hypothesis to investigate feature-based 
object representation is described as follows: greater amounts 
of D-features may effectively function at more super-ordinate 
categorical levels. Because super-ordinate categories may be early 
acquired in infants (Behl-Chadha, 1996) and tend to be retained 
in SD (Warrington, 1975; Warrington and Shallice, 1984; Hodges 
et  al., 1995), large amounts of D-features may rigidly support 
a super-ordinate object representation in long-term memory. 
However, less super-ordinate classification is predicted to require 
more specific information collected through accumulated expe-
riences (Mandler and McDonough, 1993, 1998). These features 
probably include variable properties depending on situations, 
experiences, and cultures. For example, even when lions and 
zebras are classified into the mammal class based on shared 
biological features, they are also plausibly classified into different 
sub-categories (e.g., “a predator” vs. “a prey”) based on specific 
features.

We conducted a memory-based feature–object matching 
verification test, using animals across three classes (mammal, 
bird, and fish) and verbal features from a previous study (De 
Deyne et  al., 2008). These three classes generally constitute a 
“super-ordinate” class in the animal domain. However, it should 
be noted that the terms, “super-ordinate” and “sub-ordinate” level 
in the present report denote the relative levels in the classifica-
tion hierarchy. We are interested in comparing how each animal 
is classified into the three classes (super-ordinate classification 

level), and how each of the three classes is classified into their 
sub-classes (sub-ordinate classification level). The sub-ordinate 
classification level may be a category level higher than the basic 
category level (e.g., dog and cat in the mammal category), which 
carries the majority of information and can be most easily accessed 
from memory (Rosch et al., 1976). The sub-ordinate classification 
may be related to the distinction between different sets of basic 
level objects (e.g., “domestic” vs. “wild” animals) in the same 
super-ordinate category. Such level distinctions may result from 
a hierarchical conceptual structural organization, which is found 
upon a non-overlapping or heterogeneous structure of features 
(Ceulemans and Storms, 2010).

Healthy adult participants in the current study, who were not 
animal specialists, judged all animal, and verbal feature pairs. 
Based on participants’ memory-based judgments, similarities 
between animals were calculated indirectly (Rogers et al., 2004; 
De Deyne et  al., 2008; Dry and Storms, 2009), and animals 
were clustered via a hierarchical clustering method. Binary 
classification at each clustering level was used for labeling 
animal groups, and significant features for classification were 
specified by a supervised machine learning method: support 
vector machine (SVM). For each clustering level, classification 
accuracy (CA) for each feature was used as a distinguishing 
ability index. Dominant distinguishing response patterns, 
which were assumed to possess a sigmoid shape (Rogers et al., 
2004), were specified through an independent component 
analysis (ICA). A regression fitting analysis was performed to 
empirically obtain D-features, with a dominant sigmoid-like or 
all-or-none response pattern. Based on these analyses, we newly 
specified sets of salient D-features working at various animal 
classification levels.

MaTerials anD MeThODs

Participants
Sixteen healthy adults (10 women and 6 men; age: mean ± SD, 
35.5  ±  7.6  years old; education: 17.5  ±  5.3  years) participated 
in the present study. All were right-handed (Oldfield, 1971) 
and reported no physical or psychiatric illnesses. According to 
the Declaration of Helsinki, participants gave written informed 
consent. The experimental protocol was approved by the Ethics 
Committee for Human and Animal Research of the National 
Institute of Information and Communications Technology. The 
methods were carried out in accordance with the approved 
guidelines.

Procedures
A series of analyses was performed to specify distinguishing 
features for classifying animals in different category levels 
(Figure  1). First, we summarize, in particular, the core of our 
multiple procedures to specify features with high distinguish-
ing abilities (CA) and an all-or-none response pattern. We first 
used a binary classification method or SVM to calculate CA by 
single feature at super-ordinate and sub-ordinate category levels. 
However, CA revealed by SVM indicates only the quantitative 
distinguishing abilities (%) of features and does not directly 
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FigUre 1 | Experimental procedure. The 75 animals across the three classes and 195 features were selected from previous studies (Procedure 1). Participants 
judged whether animals possessed the given feature via a ternary responses (“Yes,” “No,” or “neither Yes nor No”) (Procedure 2). The 75 animals were clustered by 
a hierarchical clustering analysis using similarities (Euclidean distances) of Yes/No responses from the feature-animal matching verification test (Procedure 3). 
Classification accuracy for each feature was calculated using support vector machine (SVM) and leave-one-out cross-validation tests (Procedure 4). Dominant 
response functions with a sigmoid shape were estimated for each classification level through an independent component analysis and regression analyses of 
response patterns for features via the ICs (Procedure 5). Validity of a classification model with specified distinguishing/deterministic (D-) features was tested by SVM 
following the leave-one-participant-out method (Procedure 6). Quantitative and qualitative properties of specified D-features were examined with χ2 tests (Procedure 7). 
Quantitative analyses compared the numbers of D-features among super-ordinate and sub-ordinate classification levels. Qualitative analyses compared the 
proportions of biological and cultural/affective features between the two classification levels.
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inform us that features with high distinguishing ability actually 
possess an all-or-none response pattern in category classification. 
Hence, we subsequently conducted ICA, extracting a dominant, 
likely sigmoid-shaped response pattern of features. Finally, the 
sigmoid response pattern was fitted to an observed response of 
each feature with high distinguishing ability specified in SVM 
with a univariate linear regression method. Throughout these 
procedures, we attempted to discover salient distinguishing 
features with high CA and an all-or-none response pattern to 
animals.

Procedure 1: selection of animals and 
Features
We selected 75 animals from mammal, bird, and fish classes 
(Table S1 in Supplementary Material) (Procedure 1 from 
Figure 1). Animal categories have been widely used in previous 
studies (Ardila et al., 2006). We referred to six studies (Battig and 
Montague, 1969; Dell’Acqua et al., 2000; Storms, 2001; Yoon et al., 
2004; Nishimoto et al., 2005; De Deyne et al., 2008). Almost all 
of the animals were frequently used across studies and, therefore, 
were utilized in the present study. Although several animals were 
rarely used (“bush warbler” and “ibis” in the bird class; “bonito,” 
“blowfish,” and “flying fish” in the fish class), they were included, 
because they are popular in Japan. Strictly speaking, the present 
fish category included a complex, aquatic-living organism, so as 

to include mollusks (“octopus” and “squid”) and shellfish (“crab” 
and “shrimp”) (De Deyne et al., 2008).

Two feature-listing studies obtained sets related to living cat-
egories (McRae et al., 2005; De Deyne et al., 2008). We utilized 
the features from De Deyne et al. (2008), which highly overlapped 
with features in McRae et al. (2005). First, we obtained 738 fea-
tures associated with mammal, bird, and fish classes [83 animals 
in De Deyne et  al. (2008)] from 764 features related to five 
animal classes. Second, we calculated the frequency of positive 
responses from participants in De Deyne et al. (2008) for each 
feature (maximum value 332 votes: 83 animals × 4 votes), and 
selected 257 features with a dominance value ≥0.1 (frequency/
the maximum frequency of 332) (Garrard et al., 2001). A higher 
dominance value indicates that features are more strongly memo-
rized in association with certain animals. Third, we excluded the 
following features: (i) super-ordinate (e.g., “is an animal”), (ii) 
categorical (e.g., “is a bird” but not “eats fish”), (iii) overlapping 
meanings (e.g., “lives outdoors” and “lives in the open air”). We 
also deleted modifying words, so as not to strongly change any 
meanings (e.g., “mainly” as in “is found mainly in southern coun-
tries” but not “fast” as in “reproduces fast”). We divided complex 
features (e.g., “lives in Africa and India”) into simple features 
(“lives in Africa” and “lives in India”). Five general features were 
added (“has skin,” “breathes,” “makes noise,” “runs,” and “gives 
birth”). This is because these general features were not included, 
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while specific features (e.g., “runs fast”) appeared in the original 
set. In consequence, we obtained a total of 195 features.

We first specified biological features of animals (Breed 
and Moore, 2015). Structural (STR) features were related to 
sensory-perceptual properties, such as body parts (e.g., “has a 
tail”) and colors (e.g., “is black”). Ecological (ECO) features pos-
sessed behavioral and functional properties (e.g., “flies”) under 
ecospheres. Distributional (DIS) features were associated with 
geographical (e.g., “lives in Africa”) and ecological (e.g., “lives in 
water”) circumstances where animals lived. Evolutional (EVO) 
features were related to development and continuity of species 
(e.g., “exists for ages”). When more than three authors agreed 
that animals possessed given properties, features were defined as 
either of these features. Consequently, 71 STR, 80 ECO, 28 DIS, 
and 3 EVO features were specified (Table S2 in Supplementary 
Material).

Second, we specified non- or less biological, cultural, and affec-
tive features (Leech, 1974; Brownell et al., 1984; Schmitzer et al., 
1997). Cultural (CUL) features were attributes related to human 
activities (e.g., “is edible”). Certain kinds of CUL features also pos-
sessed DIS properties (e.g., “lives on a farm”) or ECO properties 
(e.g., “carries diseases”). Affective (AFF) features were associated 
with emotional response (e.g., “is nasty”), emotional assessment 
(e.g., “is dangerous”), or animal behaviors and characteristics that 
tended to evoke our emotional responses (e.g., “kills people”). 
Several AFF features possessed positive or negative emotional 
assessment properties, and overlapped with STR features (AFF/
STR: e.g., “has beautiful feathers”), ECO features (AFF/ECO: 
e.g., “has a pungent smell”), or CUL features (CUL/AFF: e.g., “is 
popular and appreciated”). Consequently, 27 CUL and 23 AFF 
features were obtained (Table S2 in Supplementary Material).

Procedure 2: Feature-animal Matching 
Verification Test
Participants performed the feature-animal matching verification 
test with 14,625 pairs (75 animals ×  195 features; Procedure 2 
in Figure  1). Participants were instructed to judge the match 
between animals and features via “Yes/No” or “neither Yes nor 
No” responses. Participants conducted tests at home over a 
2-week period, using customized test sheets (Microsoft Excel). 
Participants were instructed to select a number (1–75) cor-
responding to each animal, in order, and successively verify the 
match between the animal and features. Animal and feature 
orders were randomized and counterbalanced across participants. 
Participants were also instructed to report the number of animals 
they answered, and the specific time of day for completion. 
Participants were encouraged to answer each question, depend-
ing on their own recollection. Test sheets were locked with a 
password; therefore, participants could not view stimulus content 
and could not modify their answers after test sheets were closed. 
Nevertheless, because there were too many trials to complete 
during several weeks, it is unlikely that all the participants could 
answer questions under a constant condition, which is a limita-
tion of our long-term, homework study. In fact, two participants 
made identical responses for all features in one animal, therefore 
these data were discarded from grand averaging.

Procedure 3: Feature-Based hierarchical 
clustering of animals
Feature-animal matching verification responses among the  
16 participants were averaged for each feature as the pre-process 
for specification of D-features. This averaging procedure increases 
signal-to-noise ratios for memory-dependent verification 
responses by enhancing feature-animal matching responses rela-
tively common to the participants and reduces artifact responses 
varying across the participants. Salient features, which are rigidly 
memorized in association with objects across participants, tend to 
have high average scores (that is, average scores show the greatest 
score of “1” when all participants make positive responses during 
the verification test).

To examine the feature-based classifications of animals, we 
first performed a hierarchical clustering analysis (Procedure 3 
in Figure 1), in which most adjacent items or clusters were suc-
cessively paired until convergence of a single cluster covered all 
members. Similarities between animals were calculated based 
on Euclidean distances (d) [dx⋅y = √Σ(xi − yi)2; i = 1, 2, …, n].  
The variables x and y indicate animals, and the variable i 
represents a feature. Ward or centroid algorithms were used to 
calculate a cluster distance [CLda⋅b = na × nb/(na + nb) × dCa⋅Cb; 
CLda⋅b = a distance between clusters A and B; na = the number 
of animals in cluster A; nb = the number of animals in cluster B; 
dCa⋅Cb = a distance between centroids of clusters A and B]. These 
analyses were conducted with the Matlab codes of “linkage” 
with the parameters of “ward” and “Euclidean” for a cluster-
ing method and “dendrogram” for visualization of a clustering 
structure.

Concerning the validity of a feature-based categorization in a 
hierarchical clustering manner, however, we should refer to cat-
egory classification based on direct similarity judgment between 
objects. Previous studies based on the multi-dimensional scaling 
(MDS) method with direct similarity judgment data attempted to 
reconstruct a categorical structure into a low-dimensional space 
(Rumelhart and Abrahamson, 1973; Caramazz et  al., 1976). In 
these previous studies, the MDS could work well to obtain a holis-
tic view of relationships between objects, but was dependent on 
the direct similarity rating between objects. However, the MDS 
is not limited to direct similarity data, and the direct similarity 
approach may be inadequate because of no information regarding 
the relation between objects and features (Popper and Heymann, 
1996). In relatively recent times, a pioneering modification of 
the reconstruction method has been proposed (De Deyne et al., 
2008; Dry and Storms, 2009): Similarity data between objects are 
indirectly derived from outputs in a feature-by-object applicabil-
ity judgment test, as used in our study. These studies did not use 
priori-collected feature sets, but used empirically derived feature 
sets; further, they indicated that feature-based similarity data 
more precisely reconstructed a categorical structure (Dry and 
Storms, 2009). Another feature-based study also reveals that a 
feature-based hierarchical model is effective for representing a 
conceptual structure (Ceulemans and Storms, 2010). Ceulemans 
and Storms (2010) introduce the concept of a “bundle” or an 
overlapping cluster and represent a conceptual structure by 
correspondence between an exemplar and a feature bundle: 
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for instance, an animal exemplar bundle includes a “whale” 
and a “zebra” and is related to the feature bundle that includes 
overlapping features, such as “has nipples” and “breastfeeds.” 
Based on these recent methodological developments, therefore, 
we conducted a feature-based clustering analysis to obtain the 
categorical classification of animals.

Procedure 4: specification of 
classification abilities of Features
Second, we used a supervised machine learning, SVM, for pattern 
recognition in order to examine binary classification abilities for 
each feature at each clustering level (Procedure 4 in Figure 1). 
SVM reveals training samples (support vectors) in each group 
that best distinguishes the two groups and specifies a classifier 
(Cristianini and Shawe-Taylor, 2000). Response data were 
not scaled, since distributional differences among verification 
responses may represent the saliency of D-features. A radial basis 
function was used for training. We specified an SVM model for 
each hierarchical classification (Lajnef et al., 2015), using a single 
feature, and performed leave-one-out cross-validation (LOOCV) 
tests to calculate CA (0–1) as the distinguishing ability index. The 
LOOCV test is the validation procedure of a classification model: 
all samples (e.g., animals in the present study), except for one, are 
used to build a classification model and the model estimates a 
class or label of the excluded sample. We subsequently performed 
permutation LOOCV tests (1,000 re-labels of the animals) and 
specified statistical thresholds of significant LOOCV scores for 
each classification level (scores over 95% boundaries; p < 0.05). 
The classification and LOOCV analyses were conducted using 
original and customized SVM-RFE codes (Guyon et  al., 2002) 
for R ver. 3.0.2 (The R Foundation for Statistical Computing).

Procedure 5: specification of Features 
with a Binary classification Function (BcF)
Third, using significant features from permutation tests and an 
ICA with the FastICA algorithm (http://research.ics.aalto.fi/
ica/software.shtml) (Hyvarinen and Oja, 2000), we estimated a 
major response pattern with a salient distinguishing property for 
each clustering level (Procedure 5 in Figure 1). ICA is a blind 
source separation method in which mixed signals are separated 
into statistically independent components, with an upper limit 
amount of collected data. The present study extracted a unique 
component with the highest eigenvalue (EV) for each clustering 
level.

Each ICA component was fitted by a sigmoid function to obtain 
a BCF. Sigmoid fitting was performed with the Matlab code of 
“nlinfit,” which was implemented in the “sigm_fit” package: https://
jp.mathworks.com/matlabcentral/fileexchange/42641-sigm-fit. 
This function fitted an observed data (x) to a sigmoid function (y) 
with the four initial parameters [y = parameter1 + (parameter2 
− parameter1)/(1 + 10((parameter3 − x) × parameter4))]. A response pattern 
(x) for each feature was linearly regressed through an obtained 
binary classification or sigmoid function (y), and features with 
significant regression coefficients (βs) were specified based on the 
criterion of α levels corrected by numbers of features.

Procedure 6: Validation of specified 
Distinguishing Features for animal 
classifications at super-Ordinate and 
sub-Ordinate category levels
Fourth, to examine the validity of specified features for animal classi-
fication, we conducted SVM at each classification level (Procedure 6  
in Figure 1). First, we separated the training data set for producing 
an SVM model and the testing data set for examining the validity 
of the classification model following the leave-one-participant-out 
method: that is, 15 participants’ data were used to produce an SVM 
model, and the remaining one participant’s data were used for a 
model validation test. Second, training data were averaged across 
the 15 participants and a mean feature-animal data matrix was 
obtained. Third, numbers of classified animals and specified fea-
tures were extracted at each level and were trained for producing an 
SVM model for animal classification. Training and testing data were 
not scaled, and a radial basis function was used for training. Finally, 
an obtained SVM model was applied to the remaining participant’s 
testing data to examine the model validity. Because judgment 
data from the 16 participants were collected, validation tests were 
repeated 16 times at each classification level. Classification errors 
were calculated by checking estimated class labels against actual 
labels, which were obtained by clustering analyses in Procedure 3.

Procedure 7: Distribution of Distinguishing 
Feature Types at super-Ordinate and 
sub-Ordinate category levels
Finally, statistical tests were performed to examine distributional 
differences of feature types among the four classifications, 
including super-ordinate (between three animal classes) and sub-
ordinate (within each class) categories (Procedure 7 in Figure 1). 
The numbers of features at observed clustering levels for each 
category were summed for the analyses.

We first calculated the number of significant features surviv-
ing both the classification and fitting analyses for each category 
(super-ordinate, mammal, bird, and fish). A χ2 test was conducted 
to examine differences in the number of significant features. 
Second, to examine distributional differences of biological (STR, 
ECO, DIS, and EVO) and cultural/affective features between the 
super-ordinate and sub-ordinate levels, a χ2 test was conducted 
using two factors (classification level ×  feature type). Statistical 
tests were conducted by R ver. 3.0.2.

resUlTs

animal classification Properties by 
Distinguishing Features
The 75 animals from the mammal, bird, and fish categories, and 
195 features were used in the memory-based feature-animal 
matching verification test. The features included the four biologi-
cal feature types of living organisms (STR, ECO, DIS, and EVO), 
and the two non- or less biological feature types (CUL and AFF). 
Participants, based on their knowledge, judged whether animals 
possessed the given feature via a ternary responses (“Yes,” “No,” 
or “neither Yes nor No”). The responses of all 16 participants were 
summarized in Table S2 in Supplementary Material. The animals 
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FigUre 2 | Super-ordinate animal classification (n = 75) in the three super-ordinate classes and related features ranked within the top 10. The 75 animals were 
clustered into the two clusters related to aquatic (C1) and terrestrial (C2) categories at the first clustering level (CL1). The terrestrial cluster was separated into two 
clusters belonging to the mammal (C3) and bird (C4) classes at the second clustering level (CL2). Distinguishing features ranked within the top 10 are listed for CL1 
and CL2 (STR, structural; ECO, ecological; DIS, distributional; EVO, evolutional; CUL, cultural; AFF, affective) from significant features represented by colored brick 
charts. These features possessed high-classification accuracies during the leave-one-out cross-validation (LOOCV) tests and good fitting properties (β) to sigmoid 
shape functions for CL1 (a) and CL2 (B), respectively. Higher scores on the LOOCVs indicate higher classification accuracy, and more positive and larger β 
coefficients represent better fitting properties.
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were hierarchically clustered using similarities (Euclidean dis-
tances) of these summarized response data.

As in previous studies (Garrard et al., 2001; Rogers et al., 2004), 
terrestrial and aquatic categories were separated first (the first clus-
tering level: CL1), and mammal and bird classes were subsequently 
distinguished (the second clustering level: CL2), as observed from 
the dendrogram in Figure 2. Classification analyses (SVM with 
LOOCV tests) revealed that 117 and 149 features significantly 
contributed to CL1 and CL2, respectively [permutation LOOCV 
tests: CL1, CA > 0.667, p ≈ 0.0 (<0.05/2, corrected); CL2: CA > 0.5, 
p ≈ 0.0 (<0.05/2, corrected)]. ICAs estimated dominant response 
patterns for the features from CL1 [EV = 20.29; contribution ratio 
(CR) = 48.2%] and CL2 (EV = 15.61; CR = 39.1%). As observed 
in Figures  2A,B, both patterns were significantly fitted by sig-
moid BCFs [CL1: y = −0.467 + 1.31/(1 + 10((50.6 − x) × 1.9)); β = 0.983, 

p  <  0.0001 (<0.05/2, corrected); CL2: y  =  −0.693  +  1.336/
(1 + 10((25.9 − x) × 6.3)); β = 0.952, p < 0.0001 (<0.05/2, corrected)]. 
Finally, 96 and 54 features were significantly regressed through 
BCFs for CL1 (|β|  >  0.401, p  <  0.05/117, corrected) and CL2 
(|β| > 0.490, p < 0.05/149, corrected), respectively (Tables S3 and 
S4 in Supplementary Material for CL1 and CL2, respectively). 
That is, features with higher positive regression coefficients (β) 
tend to possess stronger sigmoid BCFs obtained by the ICAs.

The mammal class possessed two clustering levels, as observed 
from the dendrogram in Figure 3. Classification analyses dem-
onstrated that 65 and 114 features contributed to CL1 and CL2, 
respectively [CL1: CA > 0.68, p ≈ 0.0 (<0.05/2, corrected); CL2: 
CA > 0.529, p ≈ 0.0 (<0.05/2, corrected)]. Dominant response 
patterns of these features were fitted by sigmoid BCFs (CL1: 
EV =  6.83, CR =  37.6%; CL2: EV =  9.41, CR =  39.8%) [CL1: 
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FigUre 3 | Sub-ordinate animal classification (n = 25) for the mammal class and related features ranked within the top 10. Animals were separated into two 
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ranked within the top 10 are listed for CL1 (a) and CL2 (B) (STR, structural; ECO, ecological; DIS, distributional; EVO, evolutional; CUL, cultural; AFF, affective) from 
significant features represented by colored brick charts. These features possessed high classification accuracies in leave-one-out cross-validation (LOOCV) tests 
and good fitting properties (β) to sigmoid shape functions for CL1 (c) and CL2 (D), respectively. Higher scores on the LOOCVs indicate higher classification 
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(Yokohama, Japan), which permitted us to reproduce all illustrations in the manuscript.

7

Soshi et al. Distinguishing Features for Animal Categories

Frontiers in Communication | www.frontiersin.org September 2017 | Volume 2 | Article 12

y = −0.784 + 1.206/(1 + 10((17.1 − x) × −7.3)); β = 0.915, p < 0.0001 
(<0.05/2, corrected); CL2: y = −0.786 + 1.197/(1 + 10((9.9 − x) × 7.2)); 
β = 0.952, p < 0.0001 (<0.05/2, corrected)] (Figures 3A,B). 18 
and 17 features were significantly regressed through BCFs for 
CL1 (|β| > 0.651, p < 0.05/65, corrected) and CL2 (|β| > 0.763, 
p  <  0.05/114, corrected), respectively (Tables S5 and S6 in 
Supplementary Material for CL1 and CL2, respectively).

For the bird class, two CLs were mainly observed (Figure 4). 
Classification analyses showed that 88 and 71 features contrib-
uted to CL1 and CL2, respectively [CL1: CA  >  0.56, p  ≈  0.0 

(<0.05/2, corrected); CL2: CA  >  0.571, p  ≈  0.0 (<0.05/2, cor-
rected)]. Dominant response patterns were significantly fitted by 
sigmoid BCFs (CL1: EV = 5.82, CR = 32.0%; CL2: EV = 6.95, 
CR  =  52.8%) [CL1: y  =  −0.58  +  0.91/(1  +  10((11.96  −  x)  ×  6.89)); 
β = 0.852, p < 0.0001 (<0.05/2, corrected); CL2: y = 0.64−1.28/
(1 + 10((7.0 − x) × −8.5)); β = 0.934, p < 0.0001 (<0.05/2, corrected)] 
(Figures 4A,B). The 17 and 27 features possessed significant βs 
for BCFs in CL1 (|β| > 0.543, p < 0.05/88, corrected) and CL2 
(|β| > 0.697, p < 0.05/71, corrected), respectively (Tables S7 and 
S8 in Supplementary Material for CL1 and CL2, respectively).
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FigUre 4 | Sub-ordinate animal classification (n = 25) for the bird class and related features ranked within the top 10. Animals were separated into two major 
clusters (C1, C2) at the first clustering level (CL1). The first cluster (C1) was separated into two clusters (C3, C4) at the second clustering level (CL2). Features 
ranked within the top 10 are listed for CL1 (a) and CL2 (B) (STR, structural; ECO, ecological; DIS, distributional; EVO, evolutional; CUL, cultural; AFF, affective) from 
significant features plotted by brick charts. These features possessed high classification accuracies in leave-one-out cross-validation (LOOCV) tests and good fitting 
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Concerning the fish class, two major CLs were also observed and 
were then introduced into the analyses (Figure 5). Classification 
analyses demonstrated that 49 and 21 features significantly 
contributed to CL1 and CL2, respectively [CL1: CA  >  0.72, 
p ≈ 0.0 (<0.05/2, corrected); CL2: CA > 0.833, p ≈ 0.0 (<0.05/2, 
corrected)]. Dominant response patterns were fitted by sigmoid 
BCFs (CL1: EV = 3.42, CR = 36.3%; CL2: EV = 2.45, CR = 69.3%) 
[CL1: y = 0.18−0.98/(1 + 10((7.4 − x) × −36)); β = 0.866, p < 0.0001 
(<0.05/2, corrected); CL2: y  =  0.348−1.10/(1  +  10((3.6  −  x)  ×  44.6)); 
β  =  0.889, p  <  0.0001 (<0.05/2, corrected)] (Figures  5A,B).  

The 16 and 9 features with significant βs from BCFs were obtained 
for CL1 (|β| > 0.636, p < 0.05/49, corrected) and CL2 (|β| > 0.745, 
p  <  0.05/21, corrected), respectively (Tables S9 and S10 in 
Supplementary Material for CL1 and CL2, respectively).

To examine the validity of specified features for animal 
classifications at each classification level, we conducted SVM 
16 times following the leave-one-participant-out method, in 
which 15 participants’ data were averaged and the remaining 
participant’s data were used for training and testing the data 
set, respectively. Table  1 summarizes mean classification 
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major clusters (C1, C2) at the first clustering level (CL1). The first cluster (C1) was separated into two clusters (C3, C4) at the second clustering level (CL2). Features 
ranked within the top 10 are listed for CL1 (a) and CL2 (B) (STR, structural; ECO, ecological; DIS, distributional; EVO, evolutional; CUL, cultural; AFF, affective) from 
significant features represented by brick charts. These features possessed high classification accuracies in leave-one-out cross-validation (LOOCV) tests and good 
fitting properties (β) to sigmoid-shaped binary response functions for CL1 (c) and CL2 (D), respectively. Higher scores on the LOOCVs indicate higher classification 
accuracy, and more positive and larger β coefficients represent better fitting properties. All the illustrations of animals are copyrighted by M/Y/D/S Graphics 
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TaBle 1 | Leave-one-participant-out cross-validation test results of specified 
features for animal classifications.

classification level category class classification error (%)

Mean sD

Super-ordinate Super-ordinate 1 2.3 7.4
Super-ordinate 2 4.6 16.4

Sub-ordinate Mammal 1 7.5 9.6
Mammal 2 3.3 11.4
Bird 1 20.8 9.7
Bird 2 17.9 13.4
Fish 1 7.3 13.0
Fish 2 12.5 18.8
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accuracies across the 16 validation tests. Each level yields 
high classification accuracies over 80%, which indicates that 
specified features effectively function to classify animals at each 
classification level.

comparing the number of Distinguishing 
Features between super-Ordinate and 
sub-Ordinate category levels
To examine distributional differences among the four category 
classes (super-ordinate, mammal, bird, and fish), two statisti-
cal tests, which were described in the methodological section, 
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TaBle 2 | Number of significant features and ratios of the six feature types for super-ordinate and sub-ordinate category classes.

classification level category class cluster level number of significant features Proportions (%) of feature types

Biological cultural and affective

sTr ecO Dis eVO cUl aFF

Super-ordinate Total 150 35.9 37.1 9.0 0.6 10.8 6.6
CL1 96 29.6 36.1 13.0 0.9 14.8 5.6
CL2 54 47.5 39.0 1.7 0.0 3.4 8.5

Sub-ordinate All Total 105 31.1 36.3 5.9 2.2 5.2 19.3
Mammal Total 35 31.1 37.8 4.4 4.4 4.4 17.8

CL1 18 23.1 30.8 3.8 7.7 7.7 26.9
CL2 17 42.1 47.4 5.3 0.0 0.0 5.3

Bird Total 45 19.7 41.0 8.2 1.6 4.9 24.6
CL1 17 12.0 40.0 8.0 4.0 8.0 28.0
CL2 28 25.0 41.7 8.3 0.0 2.8 22.2

Fish Total 25 55.2 24.1 3.4 0.0 6.9 10.3
CL1 16 82.4 11.8 0.0 0.0 5.9 0.0
CL2 9 16.7 41.7 8.3 0.0 8.3 25.0

STR, structural features; ECO, ecological features; DIS, distributional features; EVO, evolutional features; CUL, cultural features; AFF, affective features; CL1, cluster level 1; CL2, 
cluster level 2.

FigUre 6 | Quantitative and qualitative examinations of features that fit significantly to sigmoid-shaped binary response functions for the super-ordinate and 
sub-ordinate classifications. Number of features in the super-ordinate and three sub-ordinate categories were compared with a χ2 test (a). The super-ordinate 
category was related to a larger number of features than the sub-ordinate (mammal, bird, and fish) classes. Ratios of biological (STR, structural; ECO, ecological; 
DIS, distributional; EVO, evolutional), cultural, and affective (AFF) features in the super-ordinate (clustering level 1 + 2) and overall sub-ordinate categories were 
compared. Follow-up χ2 tests using the biological and AFF features demonstrated that the sub-ordinate classes had a higher ratio of the AFF feature than the 
super-ordinate classes, as represented by the dark gray area (B).
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were conducted using the total number of significant features 
(CL1  +  CL2). The numbers of features were first compared 
among the four classes using a χ2 test. The total numbers of 
features were significantly different [χ( )3

2
 = 158.726, p < 0.0001] 

(Table 2; Figure 6A). Since the super-ordinate class was obvi-
ously different from the three sub-ordinate classes, only the 
sub-ordinate classes were included in a follow-up test. The 
three sub-ordinate classes did not yield significant differences 
[χ( )2

2
  =  5.714, p  =  0.057]. These results demonstrate that the 

super-ordinate class included more D-features than the sub-
ordinate classes.

comparing the ratios of Biological and 
cultural/affective Features between 
super-Ordinate and sub-Ordinate 
category levels
The second test first examined distributional properties of the 
biological (a total of STR, ECO, DIS, and EVO features) and the 
cultural/affective (CUL and AFF) feature types for the super-
ordinate and three sub-ordinate classes, using the number of total 
features (CL1  +  CL2) (Table  2). The super-ordinate class pos-
sessed 138 biological (82.6%) and 29 cultural/affective (17.4%) 
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features. The overall sub-ordinate class included 102 biological 
(75.5%) and 33 CUL and AFF (24.5%) features. An overall χ2 test 
using the two factors of feature type (biological, CUL, and AFF) 
and classification level (super-ordinate and sub-ordinate) yielded 
a significant effect [χ( )2

2
  =  13.077, p  =  0.001]. Descriptively, 

AFF features more frequently occurred in the sub-ordinate 
classes (19.3%) than the super-ordinate classes (6.6%), while the 
biological features similarly occurred in both the classification 
levels (Table 2). These observations were confirmed by odd ratio 
(OR) results: AFF features more frequently occurred in the sub-
ordinate levels than in the super-ordinate levels [OR  =  3.198, 
95% confidence interval (95% CI): 1.511–6.771] (Figure  6B). 
However, CUL features non-significantly differently occurred 
between the sub-ordinate and super-ordinate levels, because the 
95% CI crossed the OR of 1 (OR = 0.526, 95% CI: 0.212–1.307). 
These results demonstrate that super-ordinate classification was 
supported by higher ratios of biological features and, in turn, 
lower ratios of the AFF features than the sub-ordinate classes.

DiscUssiOn

The present study recruited healthy adults with an ordinary 
knowledge of animals, conducted a feature-animal matching 
verification test, and examined feature-based classifications of  
75 animals belonging to three classes (mammal, bird, and fish). 
We obtained 195 features from a previous feature-listing study, 
which were categorized into two feature types: biological features 
(e.g., “has wings” and “swims”) and cultural/affective features 
(e.g., “is edible” and “is strong”). We hypothesized that objective 
biological features with an all-or-none response pattern domi-
nantly function to distinguish at a super-ordinate classification 
level (e.g., aquatic and terrestrial classes). This hypothesis was 
based on developmental and neurological findings that such 
distinguishing features tend to be acquired during early devel-
opmental stages, and patients with SD can retain super-ordinate 
classifications that are supported by such distinguishing features. 
However, we also predicted that specific features might function 
more dominantly within sub-ordinate when compared with 
super-ordinate classification levels; this is because a sub-ordinate 
classification requires specific object information, which is 
obtained through accumulated experiences.

To examine these hypotheses, we used a supervised machine 
learning method (i.e., SVM), and we trained sample feature data 
for each classification level obtained by a hierarchical cluster-
ing analysis. Consistent with our intuition, animals were first 
clustered into aquatic and terrestrial super-ordinate classes, 
which were further separated into mammal and bird classes. The 
super-ordinate classes were more dominantly related to biological 
features (82.6%) than cultural/affective features (17.4%). At sub-
ordinate classification levels within each super-ordinate category, 
two major clustering levels were also observed. Although the 
sub-ordinate classes were also dominantly related to biological 
features (75.5%), the proportion of the AFF features in the sub-
ordinate classes was larger than that in the super-ordinate classes.

The number of significant features for the super-ordinate 
classifications (150 features) was larger than for the sub-ordinate 
classifications (mammal: 35 features; bird: 45 features; fish:  

25 features). In other words, the super-ordinate classification 
was rigidly supported by features with high-classification abili-
ties, reflecting a sigmoid-shape response. These findings may be 
related to developmental and neurological observations regarding 
category representation. D-features with an all-or-none response 
pattern emerge during early developmental stages (Mandler and 
McDonough, 1993, 1998) and are effective for patients with SD 
in order to establish super-ordinate classifications (Warrington, 
1975; Warrington and Shallice, 1984; Hodges et  al., 1995). 
A D-feature for categorical classification has a deterministic 
property, which defines and separates categories; even 6-year 
old children can attend to D-features, similar to adults (Deng 
and Sloutsky, 2015). This may come from the epistemological 
property of a D-feature, whereby the object possesses prominent, 
sensori-perceptual properties, especially within super-ordinate 
classification levels (Behl-Chadha, 1996).

On the other hand, we should be careful with interpreting 
smaller quantitative properties among significant features for the 
sub-ordinate levels. As elucidated in our hierarchical clustering 
analysis, sub-ordinate classifications were established based on 
the super-ordinate classification. In fact, when all 75 animals were 
classified solely based on, for instance, 18 features for the first 
mammal clustering level (Table S5 in Supplementary Material), 
mammal and bird categories were not clearly separated (as 
observed in Figure S1 in Supplementary Material), while the fish 
class was clearly distinguished from the other categories. Hence, 
fewer significant features for sub-ordinate levels demonstrate a 
supplementary property whereby additional features are required 
for more specific classifications inside the sub-ordinate catego-
ries. From here, there is no absolute decrease in the number of 
features within the sub-ordinate categories, independent of the 
super-ordinate levels.

The super-ordinate classification was more strongly supported 
by structural and ecological features than was the sub-ordinate 
classification. Conversely, the sub-ordinate classification was 
also dominantly supported by structural and ecological features 
(67.4%) but was more strongly related to affective features (19.3%) 
than was the super-ordinate classification (6.6%). The present 
findings may provide useful information regarding the con-
structive properties of category representations. Structural and 
ecological features are those that represent sensori-perceptual or 
behavioral characteristics observed objectively, and likely possess 
a core component of a D-feature for animal classification. This 
component can be effectively attended to for category defini-
tion (Deng and Sloutsky, 2015). The epistemological saliency of 
structural and ecological features is likely related to a basic cogni-
tive and neural foundation for category representation. Natural 
or artificial objects within an external world are not uniformly 
correlated with each other at a similar probability; we extract 
non-uniform correlation patterns among objects elementarily 
based on objective distinguishing features, and establish a cor-
responding mental representation of objects (Sloutsky, 2003).

Affective features more contributed to forming sub-structural 
details within category representations. Affective features are 
related to psychological responses or attitudes, which may yield 
behavioral consequences. Examining significant features for 
sub-classifications within each mammal, bird, and fish class, 
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emotional or “life-threatening” features (such as “is aggressive-
ness,” “is strong,” and “is dangerous”) similarly contribute to the 
sub-classifications (Figures  3–5). Life-support is fundamental 
for any living being; hence, this characteristic may significantly 
function for categorical classifications among humans.

Concerning features used in the present study, we should first 
refer to relative feature properties that were used and significantly 
contributed to our animal classification. It has been sometimes 
claimed that empirically collected feature sets tend not to cover 
features that have low distinguishing ability (such as general fea-
tures: “is alive” for living categories) (McRae et al., 2005). Hence, 
empirically derived feature sets may be too biased to instantiate 
an actual mental object representation (Medin, 1989; McRae 
et al., 2005). However, the 195 features for the present study, even 
if collected with bias, could be efficient enough to classify our 75 
animals. Therefore, the present feature set may comprise a core 
portion of the verbal features needed to classify our 75 animals.

Second, the present category levels were relatively high 
or included basic levels. Although a polar bear (Table S1A in 
Supplementary Material) may be below the basic category level 
(a bear), it is a popular animal in our culture, because it “lives in 
the zoo” (No.158 in Table S2 in Supplementary Material), and 
may actually function as a basic level category (Rosch et al., 1976). 
Therefore, the 195 features may be most related to animal clas-
sifications at a basic category level. On the other hand, fronting on 
the requirement to classify exemplars below a basic level category, 
we would need additional D-features with specific information, 
as assumed from a classification of, for example, “Chihuahua,” 
“Maltese,” and “Poodle” for the basic level category of “dog.” Since 
object mental representations have a dynamic nature whereby 
sets of feature changes help discriminate objects within different 
cognitive contexts (Caramazza and Shelton, 1998), D-features 
may not be fixed but flexibly change with certain classification 
levels.

Finally, we should refer to feature types. Rogers et al. (2004) 
argue that category representations possess three layers. The ver-
bal layer consists of four domains: perceptual (structural features 
in the present study), functional (ecological features), encyclope-
dic (distributional, evolutional, and cultural features), and name 
information are verbally represented, respectively. The visual 
layer represents visual features, related to sensori-perceptual 
properties. The third layer is an abstract, semantic layer, which is 
connected to the verbal and visual layers but is dissociated from 
environments (e.g., the “hub” in a distributed-plus-hub model) 
(Patterson et  al., 2007). This model argues that the verbal and 
visual layers possess domain-specificity, do not directly interact 
with each other, but do interact in terms of a domain-general 
semantic layer. Pearson and Kosslyn (2015) have recently argued 
that mental representations have at least two format types: 
propositional and depictive representations. Visual images pos-
sess a depictive and pictorial format, which can be represented 
by neural activation patterns in the primary visual area and be 
decoded. Such visual depictive representations are related to 
verbal object representations in order to establish higher cogni-
tive functions. Based on these empirical observations, features 
represented inside the brain likely possess a format related to 
verbal and visual features through a medium of, for example, 

a neural hub (Patterson et  al., 2007). Hence, verbally recalled 
features in the present study may not be an elementary unit of 
mental representations but rather a product of an interaction 
between a set of single or multiple mental object representation 
formats, which should be empirically elucidated.

cOnclUsiOn

The present study conducted a feature-animal matching verifica-
tion test and specified significant features for classifying animal 
categories. We specified biological and cultural/affective features 
and elucidated that biological features dominantly function at 
both super-ordinate and sub-ordinate category levels, while affec-
tive features more strongly function at sub-ordinate rather than 
super-ordinate classifications. Future studies should examine at 
least two further questions: (i) how conceptualized biological 
and cultural/affective features are represented in the brain and 
(ii) how verbal features are recalled through an interaction with 
visual depictive features.
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