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During spoken communication, the fine acoustic properties of human speech can reveal

vital sociolinguistic and linguistic information about speakers and thus, these properties

can function as reliable identification markers of speakers’ identity. One key piece of

information speech reveals is speakers’ dialect. The first aim of this study is to provide

a machine learning method that can distinguish the dialect from acoustic productions

of sonorant sounds. The second aim is to determine the classification accuracy of

dialects from the temporal and spectral information of a single sonorant sound and

the classification accuracy of dialects using additional co-articulatory information from

the adjacent vowel. To this end, this paper provides two classification approaches. The

first classification approach aims to distinguish two Greek dialects, namely Athenian

Greek, the prototypical form of Standard Modern Greek and Cypriot Greek using

measures of temporal and spectral information (i.e., spectral moments) from four

sonorant consonants /m n l r/. The second classification study aims to distinguish

the dialects using coarticulatory information (e.g., formants frequencies F1 − F5,

F0, etc.) from the adjacent vowel in addition to spectral and temporal information

from sonorants. In both classification approaches, we have employed Deep Neural

Networks, which we compared with Support Vector Machines, Random Forests, and

Decision Trees. The findings show that neural networks distinguish the two dialects

using a combination of spectral moments, temporal information, and formant frequency

information with 81% classification accuracy, which is a 14% accuracy gain over

employing temporal properties and spectral moments alone. In conclusion, Deep Neural

Networks can classify the dialect from single consonant productions, making them

capable of identifying sociophonetic shibboleths.

Keywords: sonorant consonants, deep neural networks, dialect classification, spectral moments,

machine learning

1. INTRODUCTION

Listeners associate different productions of sonorant consonants with information about speakers’
social identities. For example, in African American Vernacular English, nasals are often weakened
or deleted and the preceding vowel becomes more nasalized (Labov, 1977; Brown, 1991; Edwards,
2008); the lateral approximant /l/ can be deleted before labial consonants (e.g., help → hep)
(Rickford and Labov, 1999) and rhotics drop in rhotic pronunciations of vowels, as in bird →
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/bEd/, car → /kA/. So, sonorant consonants (e.g., nasals,
laterals, and rhotics) in English can provide acoustic information
that can distinguish African American Vernacular English from
Standard American English (Bleile and Wallach, 1992) (see also
Ladefoged and Maddieson, 1996, for other language varieties).
Unlike stop and fricative consonants, sonorant sounds provide
unique opportunities to study the effects of dialect on acoustic
frequencies and on sound spectra. The development of good
identification models of dialects from individual sounds/phones
is of key importance, as it can inform conversational systems
about the dialect; explain sociophonetic variation of individual
sounds; and enable practical applications, such as dialect
identification in language disorders’ diagnosis and therapy; yet, to
our knowledge no other studies attempt to classify dialects using
information from sonorants.

The main goal of this study is to provide a classification
model of dialects that can achieve high classification accuracy by
relying both on sonorant productions and on their coarticulatory
effects on adjacent vowels. We analyze sonorant consonants
from two modern Greek varieties: Athenian Greek, which is
the prototypical form of Standard Modern Greek and Cypriot
Greek, a local variety of Greek spoken in Cyprus. Sonorants are
perceptually and morpho-phonologically different in these two
dialects (Menardos, 1894; Newton, 1972a,b; Vagiakakos, 1973),
so, they can offer good examples for evaluating classification
models of dialects based on sonorants.

Two main trends of research aim to explain dialectal
differences from speech acoustics. On the one hand, research
from sociolinguistics, language variation and change, and
sociophonetics analyzes language productions to identify
variables that distinguish dialects using linguistic analysis (e.g.,
discourse and conversation analysis) and employs research tools,
such as questionnaires, language surveys, telephone interviews,
and dialectal maps (Purnell et al., 1999). Sociophonetic research
utilizes acoustic recordings and studies variation in sounds,
such as vowels and consonants and quantifies phenomena,
such as vowel shifts and mergers [e.g., the merger of the high
front lax and tense vowels in fill vs. feel in certain dialects of
American English (Foulkes and Docherty, 2006; Foulkes et al.,
2010; Thomas, 2013)]. One important finding from these studies
is that acoustic differences in speech from different varieties of
a language that are often imperceivable to the human ear, as
they intensify over time and from one generation of speakers
to another, have the potential to drive language change (Labov,
1994). Nevertheless, sociolinguistics and sociophonetics are
less interested in providing automatic classification models
of dialects but rather their main focus remains on identifying
the sociolinguistic effects of dialects on acoustic properties of
speech sounds.

More recently, automatic dialect identification and automatic
language identification have offered methodological approaches,
such as i-vector models that provide currently the state-of-the-
art on automatic language and dialect identification (Dehak
et al., 2010, 2011; Song et al., 2013; Matejka et al., 2014;
Richardson et al., 2015). I-vector models commonly employ
Gaussian mixture models (GMMs) and factor analysis to reduce
the dimensionality of the input into simpler representations, i.e.,

i-vectors. A probabilistic linear discriminant analysis (pLDA) is
then employed to classify dialects and speakers. More recently,
Snyder et al. (2018) proposed a system that replaces i-vectors
with embeddings, which they term x-vectors, that are extracted
from a deep neural network. Automatic dialect identification
models have the advantage that they can be implemented to
evaluate speech signals fast, without identification of vowels and
consonants, and offer high classification accuracy of dialects
(e.g., Dehak et al., 2010, 2011; Song et al., 2013; Matejka
et al., 2014; Ali et al., 2015; Richardson et al., 2015; Najafian
et al., 2016; Ionescu and Butnaru, 2017; Shon et al., 2018).
However, for the purposes of this study, this approach cannot be
employed to explain the crossdialectal differences of sonorants,
for several reasons: first, because the input features commonly
employed [e.g., Mel-Frequency Cepstral Coefficients (MFCCs),
log Mel-scale Filter Bank energies (FBANK) features] are
not elicited from specific phonemes or phones but rather
from larger parts of speech that may not correspond to
linguistic categories; second, it is very hard to find cognitive
and articulatory correspondence for these features; and third,
input features undergo dimensionality reduction, which further
makes difficult an interpretation of features that contribute to
the classification.

In Themistocleous (2017a), we wanted to show how well
vowels can distinguish Athenian Greek and Cypriot Greek
and to show how vowel spectral encode information about
the dialect. To this end, we provided a classification model
of Athenian Greek, as it is spoken in Athens and Cypriot
Greek, using information from vowels. That is, we measured
formant dynamics from F1 . . . F4 formant frequencies and vowel
duration (Themistocleous, 2017a). To model formant dynamics,
we employed second degree polynomials and modeled the
contour of vowel formant frequencies measured at multiple time
points from the onset to the offset of vowels. Using a decision
tree model, known as C5.0 Quinlan (1993); Salzberg (1994), we
showed that vowel formants and vowel dynamics enable the
identification of Athenian Greek and Cypriot Greek (Accuracy
= 74, 95% CI [71, 77%]).

To classify the two language varieties in this study, we are
employing a feed-forward artificial neural network, which is a
form of a deep neural network architecture (DNN) (see also Gelly
et al., 2016; Gelly and Gauvain, 2017). This model can learn
non-linear function approximators that enable the classification
of the two dialects. To evaluate the DNN model, we compare
its performance to three different machine learning models:
Decision Trees (DTs), Random Forests (RFs), and Support
Vector Machines (SVMs). DTs and RFs split the data in a
binary manner based on the attribute that best explains the
data; the result is a series of branching nodes that form the
classification tree. However, unlike DTs, RFs, instead of one tree,
provide ensemble results from multiple decision tree models.
Finally, SVMs employ hyperplanes to best separate the data
into groups. Moreover, we evaluated the performance of the
models using 3-fold crossvalidation and validation split and
provided the following evaluation measures: the precision, recall,
and f1 scores. The details of the methods are discussed in the
following section.
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We are analyzing sonorant consonants in Athenian Greek
and Cypriot Greek, as sonorants in these two dialects differ
perceptually and morpho-phonologically, so we expect them to
provide good markers for the classification of these two dialects.
Sonorants are consonants produced with a wide stricture formed
by the approximation of the active and passive articulator.
Nasals, rhotics, and laterals differ from fricatives and stops
in that their degree of stricture is wider, approaching that of
vowels (Boyce and Espy-Wilson, 1997; Espy-Wilson et al., 2000;
Harrington, 2010) (for a crosslinguistic study of sonorants and
exceptions, see Ladefoged and Maddieson, 1996). To produce
nasals, speakers block the airflow somewhere in the oral cavity,
e.g., at the lips for the bilabial nasal /m/ or the alveoli for the
production of the alveolar nasal /n/, allowing the airflow to
escape through the nasal cavity after passing from an opening
that results from the lowering of the velum; this creates distinct
formants and anti-formants. Lateral and rhotic consonants are
characterized by complex articulatory gestures that enable the
lateralization and rapid interruption of the airflow, in laterals
and rhotics, respectively. Laterals are produced with distinct
formants and anti-formants created in the oral cavity. To model
differences of sonorant spectra, we have calculated from the
acoustic signals of sonorants the spectral moments: the center of
gravity, which is the mean of the spectral energy distribution, the
spectral standard deviation, which is a measure of the variance,
the spectral skewness, which is a measure of the symmetry of
the spectral distribution, and the spectral kurtosis, which is a
measure of the degree of thickness of the tails of the distribution
(Davidson and Loughlin, 2000). Spectral moments can enable
the comparison of the spectral properties of sonorants in the
two dialects (e.g., Forrest et al., 1988; Gottsmann and Harwardt,
2011; Schindler and Draxler, 2013; Themistocleous, 2016a,b,
2017b,c).

We are also analyzing the coarticulatory effects of sonorants
on the adjacent vowel frequencies (for an early study, see Mann,
1980), as these also carry information about sonorants and about
speakers’ dialect. In fact, in Swedish and in other languages, the
lowering of the third formant frequency (F3) of the following
vowel is a major cue for the perception of rhotics (Van DeWeijer,
1995; Recasens and Espinosa, 2007; Heinrich et al., 2010) (for
the role of F3 in Greek, see Themistocleous, 2017c). Since
each sonorant exercises different coarticulatory effects on vowel
formant frequencies, these effects can be employed to identify
the sonorant sound. Moreover, as the production of sonorants
can differ from one dialect to another, both the acoustics
of sonorants and their coarticulatory effects can distinguish
speakers as belonging to different sociolinguistic groups; in our
case, sonorants can index a speaker as a member of Athenian
Greek and Cypriot Greek.

To explain the differences of Athenian Greek and Cypriot
Greek on sonorants, let us now provide an overview of sonorants
in Greek dialects. The Greek dialectal space is traditionally
distinguished into two main groups of language varieties or
“idioms”: the northern idioms whose unstressed vowels can be
raised and/or reduced and the southern idioms, where vowel
raising and reduction does not apply. Standard Modern Greek
is spoken in the main urban centers of Greece, especially

TABLE 1 | Athenian Greek Consonants.

Labial Labiodental Alveolar Palatal Velar

−v +v −v +v −v +v −v +v −v +v

Tap R

Nasal m M n ñ N

Later. l L

Symbols to the right in a cell are voiced (+v) and those to the left are voiceless (−v).

TABLE 2 | Cypriot Greek Consonants.

Labial Labiodental Alveolar Postalveolar Palatal Velar

−v +v −v +v −v +v −v +v −v +v −v +v

Tap (R
˚
) R

Trill r

Nasal S. m M n ñ N

Nasal G. m: n: ñ: N:

Later. S. l L

Later. G. l: L:

Symbols to the right in a cell are voiced (+v) and those to the left are voiceless (−v).

in Athens and Thessaloniki. Cypriot Greek is a local variety
of Greek spoken in Cyprus; other local varieties of Greek,
including Cretan Greek, Pontic Greek, and Tsakonian Greek.
Athenian Greek and Cypriot Greek are not characterized by
vowel raising and reduction, so they are classified as southern
varieties, yet acoustically Athenian vowels are more raised than
Cypriot Greek vowels (Themistocleous, 2017c). Cypriot Greek
and Athenian Greek differ in their pronunciation due to phonetic
and phonemic differences (Botinis et al., 2004; Eftychiou, 2010;
Themistocleous, 2014, 2017a,b,c; Themistocleous et al., 2016),
and although Cypriot Greek speakers understand and usually
code-switch to Athenian Greek in official settings and in the
presence of speakers that are not familiar to the dialect, Athenian
Greek speakers, especially if they are unfamiliar to Cypriot Greek,
often report difficulties understanding Cypriot Greek speakers.

Athenian Greek sonorants are shown in Table 1 and Cypriot
Greek sonorants are shown in Table 2. A close comparison
of these phonemic systems reveals some notable crossdialectal
similarities and differences. In both varieties, [M] is allophone of
/m/ before other labiodental sounds; [ñ] and [N] are allophones
of /n/ that occur before front and back vowels, respectively;
also, [L] is an allophone of /l/ before a front vowel. There are
also differences between these two varieties (Menardos, 1894;
Newton, 1972a,b; Vagiakakos, 1973). Cypriot Greek distinguishes
long /n: m: l: r:/ and short /n m l R/ sonorant sounds. The
duration is the main perceptual difference between long and
short sonorants; in the case of /r/, the long phoneme is realized
with a trill /r:/, whereas the short is flap /R/. Also in Cypriot
Greek there is a devoiced rhotic sound, which occurs usually
in environments before stops as in ["poR

˚
ta] “door.” Cypriot

Greek is characterized by stronger nasal pronunciation than
Athenian Greek and preserves nasals in nasal + voiced stop
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clusters (e.g., /"lampa/ → ["lamba], “lamp/light bulb”; /"pente/

→ /"pende/ “five”) whereas Athenian Greek usually elides them
(i.e., /"lampa/ → ["laba], “lamp/light bulb”; pente /"pente/ →

/"pede/ “five”) (see Householder et al., 1964, who discusses
denasalized clusters in Athenian Greek). Also, Cypriot Greek
unlike Athenian Greek retains the nasal /n/ in the accusative
in determiners (articles), adjectives, and nouns; this results
in several assimilation phenomena with respect to place of
articulation; for example, some of these morpho-phonological
effects are the following:

• /tin "mam:an mu/, the-ACC.SG mother-ACC.SG my →

[ti"m:am:am:u], “my mother”; assimilation of nasals in an /n/
+ /m/ environment affecting the place of articulation of the
first sound and results in a long/geminate [m:], cf. Athenian
Greek [tima"mamu].

• /tin "nikin/, the-ACC.SG victory-ACC.SG, “the victory”
→ ti"n:icin; assimilation of the two nasals resulting in a
geminate/long nasal production, cf. Athenian Greek [ti"nici]].

• /tin "polin/, the-ACC.SG city-ACC.SG, “the city” →

[ti"mbolin] assimilation results in a change of the nasal
consonant’s place of articulation; the following voiceless stop
consonant assimilates with the nasal with respect to voice,
so that a pre-nasalized voiced stop occurs (i.e., [mb]), cf.
Athenian Greek ti"boli].

• /ton "likon/, the-ACC.SG wolf-ACC.SG, “the wolf” →

[to"l:ikon], the nasal assimilates with the following lateral
aproximant in place of articulation, the duration is retained
which corresponds to a long/geminate /l:/ sound, cf. Athenian
Greek, to"liko.

Overall, this is the first large scale study that employs spectral
and frequency information from Athenian Greek and Cypriot
Greek sonorants (but for the duration of sonorant consonants,
see Arvaniti and Tserdanelis, 2000; Tserdanelis and Arvaniti,
2001; Armostis, 2009; Themistocleous, 2014, 2016b).

2. METHODOLOGY

2.1. Participants
Forty speakers participated in this study: 20 female speakers
born and raised in Athens, Greece and 20 female speakers
born and raised in Nicosia, Cyprus. The recordings were
conducted between 2011 and 2012 as part of a bigger study
of Athenian Greek and Cypriot Greek vowels and consonants
(see Themistocleous, 2017a,b,c). Speakers formed homogeneous
groups with respect to gender (e.g., only female speakers), age
(most differ 2–3 years only), educational background (all were
university students), and socioeconomic condition (all were from
middle-class urban families). All subjects were native speakers
in their dialects. Overall, all Athenian and Nicosian speakers
employed in their everyday speech that which corresponds to
their age and urban lifestyle, namely urban Athenian and urban
Nicosian speech style. The degree of inter-dialectal familiarity
depends on the language variety: overall, Athenian speakers had
very little previous knowledge of Cypriot Greek whereas Cypriot
Greek speakers were exposed to Athenian Greek pronunciation
very early in their lives through education and the media.

TABLE 3 | Experimental material.

Stress [m] [n] [l] [R]

S "misa sa"mi "nisa sa"ni "lisa sa"li "Risa sa"Ri

U mi"sa "sami ni"sa "sani li"sa "sali Ri"sa "saRi

S "masa "sama "nasa sa"na "lasa sa"la " Rasa sa"Ra

U ma"sa sa"ma na"sa "sana la"sa "sala R a"sa "saRa

2.2. Procedure
We recorded the speakers in their hometowns, that is, the
Athenian Greek speakers were recorded in a recording studio
in Athens and the Cypriot Greek speakers were recorded in
a sound proof room at the University of Cyprus in Nicosia,
which ensures that speakers are primed to speak their native
language variety. To avoid influences from the experimenter—
for example, it is known that Cypriot Greek speakers tend
to code-switch to Athenian Greek when an Athenian Greek
speaker interacts with them—the instructions to Athenian Greek
speakers were provided by an Athenian Greek speaker and
the instructions to Cypriot Greek speakers were provided by a
speaker of Cypriot Greek. Only instructions that were relevant to
the recording procedure were provided, e.g., to keep a designated
distance from the microphone, to avoid focusing their attention
on keywords. The materials were recorded using a Zoom H4n
audio recorder, and the voice was sampled at 44.1 kHz and
analyzed using Praat (see Boersma andWeenink, 2017). After the
recordings, speech productions were segmented into vowels and
consonants manually.

2.3. Data
We have analyzed the acoustic spectra of sonorant consonants,
namely we have analyzed nasal (e.g., /m/ and /n/), lateral
approximant (e.g., /l/), and rhotic (e.g., /r/) sonorant sounds
produced by Cypriot Greek and Athenian Greek speakers. To
elicit sonorant productions, we designed a controlled reading
experiment where we manipulated the sonorant sound, its
position in a keyword, and the vowel environment. Sonorants
were embedded in CVCV keywords (see Table 3). The controlled
CVCV environment facilitates the elicitation of acoustic effects
that are of interest for the study only, namely the effect
of the dialect on sonorant by controlling for the segmental
environment, stress, and sonorant position in the utterance. This
approach has the advantage that it enables the collection of less
data, whereas selecting sonorants from conversational speech can
induce greater variability in the input and to address this issue
will require more data for training. The bilabial nasal [m], the
alveolar nasal [n], alveolar lateral approximant [l], and alveolar
flap [R] were embedded in the speech material at the beginning
and the middle of a word preceding two vowel environments,
the vowel /a/ and the vowel /i/. To facilitate the crossdialectal
comparison in this study, we compare Athenian Greek sonorants
to the corresponding Cypriot Greek singleton sonorants, which
are the unmarked case in the short–long consonant pair (see the
discussion on Greek sonorants in the Introduction).
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FIGURE 1 | Process diagram showing the steps required to select the best model for the classification of Standard Modern Greek (SMG) and Cypriot Greek (CG) for

each one of the two classification approaches.

The Athenian Greek keywords were embedded in the
carrier phrase written in standard Greek orthography:
/"ipes keyword "pali/ (You told keyword again) and the

Cypriot Greek keywords were embedded in the carrier phrase:
/"ipes keyword "pale/ You told keyword again, where only the
last word differs in one sound (e.g., /i/ vs. /e/) to make the
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carrier phrase more natural to Athenian Greek and Cypriot
Greek speakers, respectively; this difference in the carrier
phrase does not affect the production of the sonorant. To add
variation in the materials and distract speakers from the targeted
sounds, we added other words as distractors (which were the
keywords of another experiment). All stimuli were presented in
random order.

A total sum of 5,120 sonorant productions were produced;
namely, 40 speakers × 4 consonants × 4 repetitions ×

2 word positions × 2 stress conditions × 2 vowels. From the
sonorant spectra, we elicited the following properties:

1. Sonorant duration
2. Intensity
3. Center of gravity
4. Standard deviation
5. Skewness
6. Kurtosis.

We also measured the first five formant frequencies
(i.e., F1 . . . F5) of the following vowel that were
measured at the 25, 50, 75% of the vowel’s duration:
F1 25, F1 50, F1 75 . . . F5 25, F5 50, F5 75%. The acoustic
measurements were conducted in Praat (see Boersma and
Weenink, 2017).

2.4. Deep Neural Networks
An overview of the process followed for the classification is
shown in Figure 1.

Classification Tasks: To estimate the contribution of the
acoustic properties of sonorants and the contribution of
sonorant-vowel sequences to the classification accuracy, we
have conducted two classification tasks. Classification 1 aims
to distinguish the two dialects, using information from the
spectral moments and duration of sonorants. Classification
2 aims to distinguish dialects by combining spectral
moments, sonorant duration, and frequency information
from sonorant + vowel sequences, i.e., spectral moments,
F1 . . . F5 and mean F0, maximum and minimum F0.
Model comparison: In both classification tasks, we have
trained four machine learning models: DNN, SVMs, RFs,
and DTs. All models have been employed in speech-
related classification tasks in the past (Graves et al., 2013;
Themistocleous, 2017c).
Model evaluation: Models were designed and evaluated
using two evaluation methods: validation split and group
crossvalidation. Validation split was motivated by the fact
that it can enable us to present further measures, namely,
the precision, recall, AUC, and f1 score. F1 score and AUC
provide standardized scores of the accuracy for unbalanced
designs. The receiver operating characteristic curve (ROC
curve) is a curve that is created by plotting the true positive rate
against the false positive rate. The area under ROC provides
an estimate of the model performance. An optimal model has
an AUC curve closer to one (1) whereas a model with 0.5
AUC means that its predictions are closer to chance. For the
group cross-validation, each classifier has been evaluated three

TABLE 4 | DNN design for the crossvalidation and validation split using input

features from sonorants (classification 1).

Crossvalidation Validation split

Input layer 70 neurons,

Activation: ReLU

70 neurons,

Activation: ReLU

Hidden layers 4 × HL; 70 neurons

each, Activation: ReLU

6 × HL;70 neurons

each, Activation: ReLU

Output layer 1 neuron, Activation:

Sigmoid

1 neuron, Activation:

Sigmoid

times using different speakers in the training and test sets.
Using different speakers for the training phase and evaluation
phase ensures that the evaluation makes use of completely
new independent samples. For the validation split, the data
were split into 80% training and 20% evaluation sets and
randomized within each set. Speakers in the training and test
sets were different.
Model optimization: A. Hyperpameters for the optimization
algorithm, training epochs of neural nets, number of layers,
and batch size were selected during model optimization.
Specifically, all DNN models were optimized as follows: i. A
min-max scaler was fitted on the training set and transformed
the training and evaluation sets separately. This approach
ensures that there is no information about the speaker in
the training set. ii. A ReLU activation function was employed
in the input and hidden layers, only the output layer had
a sigmoid activation to perform the binary classification of
dialect (that is Athenian Greek vs. Cypriot Greek) (Maas et al.,
2013; He et al., 2015). iii. The optimization algorithm was
“stochastic gradient descent” (SGD) with 0.1 learning rate,
0.9 momentum, and decay which was learning rate/epochs.
iv. DNN models were trained for 500 epochs for each fold
in the crossvalidation task and for 800 epochs in the 80–20%
validation split task. v. The batch size was set to 15.
B. The SVMs, RFs, and DTs were optimized separately for each
classification. Namely, we ran several SVMs, with different
number of kernels and RFs with different number of trees. DTs
were employed without optimizations.

Next, we present the architecture with the best performance, for
each classification.

2.4.1. Classification 1

i. DNN: The design for the DNN in both the crossvalidation
and in the validation split is shown in Table 4. The predictors
employed in Classification 1 include information from sonorants
only, namely there were seven input features: sonorant duration,
intensity, spectral center of gravity, spectral standard deviation,
spectral skewness, spectral kurtosis, and the type of sonorant.

The DNN had four dense hidden layers with 70 neurons in
the crossvalidation task and six dense hidden layers with 70 dense
layers in the validation split. The output layer had one unit.

ii. SVM, RF, DT: We ran SVMs and RFs with different
numbers of kernels and trees correspondingly; themodel that had
the best performance was for SVMs, the model with three linear
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TABLE 5 | DNN design for the crossvalidation and validation split using 24 input

features from sonorant + vowel sequences (classification 2).

Crossvalidation Validation split

Input layer 110 neurons,

Activation: ReLU

110 neurons,

Activation: ReLU

Hidden layers 4 × HL; 110 neurons

each, Activation: ReLU

6 × HL;110 neurons

each, Activation: ReLU

Output layer 1 neuron, Activation:

Sigmoid

1 neuron, Activation:

Sigmoid

kernels for the RF, the model with 60 trees; we did not modify
DT’s hyper-parameters.

2.4.2. Classification 2

i. DNN: The design for the DNN in both the crossvalidation
and in the validation split is shown in Table 5. Classification 2
contained 25 predictors measured from the sonorant + vowel:
Duration, Mean F0, Minimum F0, Maximum F0, F1 . . . F5
measured at the 25, 50, 75% of vowel duration, intensity, center
of gravity, standard deviation, skewness, kurtosis, and the type of
sonorant. In addition to the input and output layers, the DNN
had 5 hidden layers. All layers were dense with 110 neurons each;
only the output layer had a single unit for the classification. The
DNN was run for 800 epochs.

ii. SVM, RF, DT: As in Classification 1, we ran SVMs and RFs
with different numbers of kernels and trees correspondingly; the
best performing SVM model had 3 linear kernels and the best
performing RF model had 512 trees; there was no optimization
for DTs.

All machine learning models were implemented in Python
3.7.3 using the libraries NUMPY, MATPLOTLIB, PANDAS, and
SCIKIT-LEARN (Jones et al., 2001); for the deep neural networks
we employed the KERAS (Chollet, 2015), a high-level application
programming interface that runs on top of TENSORFLOW

an “end-to-end open source platform for machine learning”
developed by Google (Abadi et al., 2016).

3. RESULTS

In this section, we report the results from the validation split
and the results from the 3-fold grouped cross-validation for
Classification 1 and Classification 2. Table 6 and Figure 2 shows
correspondingly the output of the models from the validation
split and crossvalidation; Figures 3, 4 shows the ROC/AUC for
the validation split and crossvalidation correspondingly.

3.1. Validation Split
Table 6 shows models’ accuracy, precision, recall, and f1 scores in
Classification 1 and Classification 2, respectively. Figure 3 shows
the ROC and the AUC of Classification 1 and 2 machine learning
models. In Classification 1 the best AUC is provided by RF
(69%), followed by DNN (68%) whereas in Classification 2, the
best AUC is provided by SVMs (74%). ROC/AUC measures and
f1 scores are in agreement with accuracy measures. In validation
split, most Classification 2 models had higher accuracy than in

Classification 1, except from the DT, which had a slightly higher
accuracy in Classification 1. Overall, the best accuracy in the
validation split is provided by SVMs in Classification 2, i.e., 74%.

3.2. Cross-Validation
The results from the crossvalidation are presented in Figure 2.
The RF model provided the highest accuracy, i.e., 67% in
Classification 1. In contrast, DNNs provided the highest
classification accuracy, namely 81% accuracy in Classification
2 that resulted in a 14% accuracy gain over the best model
of Classification 1. In fact, a Wilcoxon rank sum test showed
that Classification 1 accuracy and Classification 2 accuracy were
significantly different (W = 9, p < 0.05). Figure 4 shows the
mean ROC/AUC; the shading indicates the SD from the AUC
mean. The AUC results correspond to that of the accuracy, which
suggests that the design is balanced.

4. DISCUSSION

When speakers produce speech, they reveal compelling
information about themselves through the fine acoustic
properties of their voice, in a subtle, highly personal, and
hard to fake manner. For example, they reveal information
about their emotional state (happy, sad, etc.), physiological
condition (body size, health, age etc.), and social characteristics
(education, occupation etc.), along with the linguistic message
they communicate. Listeners can elicit this information by
decoding the acoustic signals (Zatorre et al., 2002; Boemio
et al., 2005; Giraud et al., 2007; Hickok and Poeppel, 2007,
2016; Abrams et al., 2008; Wright et al., 2018). However, it is
a challenge to explain how listeners distinguish sociolinguistic
information in the acoustic signals. In the case of dialects, this
can be demanding as dialects often share many similarities in
their sound structures.

The aim of this study was to provide a classification model
that can distinguish dialects from sonorant productions. The
study offered two machine learning classification approaches.
In each classification approach, four different machine learning
models were trained: DNNs, SVMs, RFs, and DTs. Then, the
performance of the models was evaluated on new data. During
this phase, the prediction of the model, i.e., whether the sonorant
was produced by an Athenian Greek speaker or a Cypriot Greek
speaker was compared to the actual label of the dialect. (Note
that during the evaluation, the dialect is not known by the
model). We showed that two Greek dialects, Athenian Greek
and Cypriot Greek, can be distinguished eight (8) times out
ten (10) correctly from a sequence of a sonorant /m, n, r, l/
consonant and a vowel. Overall, this result demonstrates that
information from vowel frequencies in combination with spectral
and temporal information from sonorants distinguishes the
two dialects and increases the classification accuracy of the
dialect. Both the crossvalidation and the validation split provide
support for this finding. Machine learning models, especially
DNNs, provide superb opportunities to distinguish patterns in
the acoustic structure of sounds by considering both individual
measurements of acoustic properties and the patterns they form
with other predictors.
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TABLE 6 | DNN, SVM, RF, and DT model accuracy, precision, recall, and f1 score from validation split in classification 1 and classification 2.

Model Classification 1 Classification 2

Accuracy Precision Recall f1 score AUC Accuracy Precision Recall f1 score AUC

DNN 68 71 68 66 68 73 73 73 73 73

SVM 63 63 63 63 63 74 75 74 74 74

RF 69 69 69 69 69 73 73 73 73 73

DT 64 64 64 64 64 63 63 63 63 63

FIGURE 2 | Mean accuracy for classification 1 and classification 2 from the 3-fold crossvalidation of random forests (RF), support vector machines (SVM), decision

trees (DT), and deep neural networks (NN) classification models; error bars show the SD.

Earlier research showed that information from vowels can
distinguish Athenian Greek and Cypriot Greek (Themistocleous,
2017a). In this study, we designed two classification approaches
to explain whether i. sonorants alone can distinguish Athenian
Greek and Cypriot Greek and/or ii. sonorants and vowels are
required to distinguish the two dialects. In Classification 1,
we had employed spectral moments and temporal information
as predictors, whereas in Classification 2, we employed a
combination of spectral moments and frequency information
from vowels. The best performing model in Classification 1 was
provided by RFs, which resulted in 69% classification accuracy.
This outcome shows that speakers of the two dialects produce

sonorants differently and suggests that spectral moments provide
significant information that can distinguish the two dialects. To
put it differently, RFs can distinguish the dialect from a single
sonorant sound correctly as Athenian Greek and Cypriot Greek,
almost seven times out of ten.

Nevertheless, Classification 2 models resulted in a greater
accuracy than Classification 1 models. In Classification 2, DNNs
outperformed all other models, by providing 81% classification
accuracy in the crossvalidation task, which is a 14% increase
of the classification accuracy with respect to Classification 1.
Also, the DNN model had the smallest standard deviation,
which suggests that this model provided more consistent results
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FIGURE 3 | ROC/AUC for random forests (RF), support vector machines (SVM), decision trees (DT), and deep neural networks (DNN) for classification 1 (A) and

classification 2 (B). The y-axis represents the true positive rate (i.e., the precision) against the false positive rate (i.e., 1-recall). The best model has an ROC that is

closer to 1 whereas a bad model has an ROC closer to 0.

FIGURE 4 | ROC(AUC) curves of random forests (RF), support vector machines (SVM), decision trees (DT), and deep neural networks (DNN) for classification 1 (A)

and classification 2 (B). The y-axis represents the true positive rate against the false positive rate. The best model has an ROC that is closer to 1 whereas a bad model

has an ROC closer to 0. The shaded area indicates the SD from the cross-validation mean.
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than the other models. However, Classification 2 models also
outperformed the results from Themistocleous (2017a) that
employed information from vowels only. That study resulted in
74% classification accuracy. So overall, Classification 2 provided
the best results compared to Classification 1 (Themistocleous,
2017a). This finding suggests that combining information from
sonorants and vowels increases the prediction accuracy.

It is possible to draw analogies to this finding with the
way humans distinguish dialects. Humans acquire sociolinguistic
competence very early in their lives, and specifically their dialect
(Grohmann et al., 2017), then using this information they elicit
information about their social environments and become more
socially aware (Labov et al., 1964; Jones et al., 2017). During
human speech perception, speech information is analyzed and
combined in the cortex, so that subphonemic and phonemic
features may arise in a compositional manner (Mesgarani et al.,
2014; Binder, 2016). Humans can identify the dialect of the
speaker often with a single sound. Similarly, themachine learning
models provided in this study can learn and become more aware
of the social distinctions of Athenian Greek and Cypriot Greek
speakers by identifying phonetic properties that characterize the
particular groups of speakers from their sonorants. Second, we
becomemore confident that thesemodels will distinguish the two
dialects when more information is provided to the models as it
was evidenced from the comparison of Classification 2 models
with those from Classification 1.

So how does the model provided here fare with respect
to dialect classification models? First, it should be noted that
when comparing different approaches that employ different
methodological tools, many different parameters should be taken
into account. For example, how different are the dialects or
language varieties they try distinguish; if two dialects are very
similar then it may be harder for listeners and machine learning
models to identify patterns that discriminate the two dialects.
Also, there are may be differences in the aims and designs of
two dialect identification systems. For example, a broad system
that classifies dialects from longer parts of speech may be able
to identify patterns that distinguish dialects, but it may have
to deal with more variation in the input signal (e.g., Ali et al.,
2015; Najafian et al., 2016; Ionescu and Butnaru, 2017) whereas
a narrow system that distinguishes dialects from a few sounds
produced in controlled settings may fare better to explain how
well the dialects differ given these sounds but not others. For
example (e.g., Shon et al., 2018), compared two systems that
employ FBANK features and MFCCs and showed that a single
feature set achieves 73% accuracy, while the best system that
combined multiple features achieved 78% on a dialect test set
consisting of 5 dialects. In this regard, the system presented in

this study is a narrow dialect classification system and in many

respects it provides accuracy close to that of other state-of-the-
art systems.

To conclude, this study showed that a tiny segment of
a sonorant sound can convey multi-dimensional information,
both linguistic and sociolinguistic information. By employing
machine learning, this study demonstrated that two dialects of
Greek, Athenian Greek and Cypriot Greek, can be distinguished
better by spectral and temporal information from sonorants,
yet a combination of spectral and temporal information
from sonorants and acoustic information from adjacent vowel
frequencies provides more robust classification outcomes. We
have employed specific features to classify speech sounds. In
our future research, we will provide classification models that
can classify types of phonemic, physiological, sociolinguistic, and
pathological, etc., information from speech productions.
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