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A telehealth application for 
adequate hospital visit advice by 
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Introduction: The effectiveness of telehealth strategies toward support for 
adequate hospital visits is vital. We examined whether individuals who received 
advice from a physician via an online application subsequently visited hospitals. 
Further, we examined the background factors associated with their hospital visit 
behavior.

Methods: We used machine learning to examine whether chief complaint, 
medical advice, and user background characteristics could be used to predict 
their subsequent hospital visit.

Results: Among 7,152 participants, those in their 30s were the most frequent 
users. The proportion of each medical advice was significantly different between 
the group that did and the one that did not follow physicians’ advice. We 
further performed supervised machine learning using random forest modeling 
to categorize those who (1) followed physicians’ advice or (2) did not follow 
physicians’ advice. The area under the receiver operating characteristic curve 
was 0.677. Consequently, the aforementioned model soundly categorized 
whether users followed physicians’ advice. Chief complaint and medical advice 
were the most important variables to predict whether users followed the advice.

Discussion: The telehealth system to provide support for adequate hospital 
visits influenced patients’ subsequent hospital visit behavior. Patients’ chief 
complaint was the most important variable in discriminating whether users 
followed physicians’ advice.
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1 Introduction

Disparities in the healthcare system arise from various individual and social system 
factors. It is vital to discuss issues such as the distribution of limited healthcare resources to 
reduce these disparities (Solnica et al., 2020). In particular, providing patients with support 
for adequate hospital visiting is vital for both the ranking regarding prioritization and 
allocation of limited medical resources (Kucewicz-Czech and Damps, 2020). Therefore, 
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promoting adequate patient behavior toward hospital visits is a crucial 
public health issue to promote the appropriate use of limited 
medical resources.

Various strategies to promote appropriate patient hospital 
visit behavior have been undertaken. In particular, telehealth, 
which provides health services including consultative and 
diagnostic services via telecommunication, was widely used to 
improve workforce capacity and patient accessibility to healthcare 
during the COVID-19 pandemic. Telehealth provides support for 
adequate hospital visiting (Hollander and Carr, 2020; 
Sivarajasingam, 2021). In fact, several studies have reported that 
an online strategy provided effective support for adequate hospital 
visiting for emergency patients and patients with burns, heart 
failure, and cervical cancer (Arrossi et al., 2019; Carmichael et al., 
2020; Chai et al., 2021; Beyer et al., 2022; Morrill et al., 2022). A 
study that conducted telemedicine screening assessments on four 
diagnostic cohorts—patients with gastroenteritis, psychiatric 
conditions, burn, or fractures—reported that the median door-
to-provider times were reduced through telemedicine screening 
(Friedman et  al., 2021). Hence, telehealth has the potential 
to improve health communication dramatically. However, 
compared to their counterparts, these telehealth systems are 
favored by younger and higher-educated individuals, and their 
adoption might cause further disparities (Chambers et al., 2019). 
In fact, the telehealth infrastructure evolved during the 
COVID-19 era to prevent infections; yet, research surveying the 
effectiveness of telehealth strategies toward support for adequate 
hospital visits is lacking (Chambers et al., 2019) especially at the 
community level.

To promote appropriate patient hospital visit behavior 
and adequate health communication between patients and 
medical staff, we  examined whether individuals who received 
advice from a physician via a telehealth application subsequently 
visited hospitals. Further, we examined the background factors 
associated with the behavior after they received advice from the 
physicians. We  used machine learning to further examine (1) 
whether the chief complaints and basic characteristics could 
be predicted by physicians’ medical advice and (2) whether the 
chief complaint, medical advice given by the physicians, and users’ 
background characteristics predicted subsequent user behavior 
after they received physicians’ advice. The machine learning 
method was adopted to survey whether the application effectively 
utilized data to promote adequate patient hospital visit behavior 
toward saving human healthcare resources. We  investigated 
whether telehealth application strategies including communication 
between users and physicians could be utilized to provide support 
for adequate hospital visits by users and patients at the 
community level.

2 Materials and methods

This was an observational historical cohort study, which applied 
machine learning with the random forest approach. This study was 
approved by the Ethics Committee of LEBER Inc. (no. 21-01) and the 
Ethics Committee of Fukushima Medical University (no. 2021-190). 
An opt-out consent process was permitted; thus, we  waived 
individual consent.

2.1 Application

A telehealth application named “LEBER” was used to provide 
support for adequate hospital visiting (LEBER Inc., 2022). Users 
obtained medical advice, such as go to a hospital, stay home, call an 
ambulance, or others, from a physician through the chat application. 
The application was launched in January 2018, and was used 
commercially by over one million people by October 2022 (LEBER 
Inc., 2022).

The application process differed between “user flow” and 
“physician flow.” Users were required to complete the subsequent 
process: (1) download the application, (2) consult with a chat bot 
system, (3) receive medical advice, and (4) receive the web 
questionnaire a few days later asking whether they went to the 
hospital. Contrastingly, physicians completed the following process: 
(1) download the application, (2) get alarm-matched with a patient by 
the application, and (3) enter medical advice.

Users could add their chief complaint and symptom(s). Physicians 
then provided medical advice: stay home, go to the hospital if your 
condition worthens, go to the hospital emergency ward, or others. 
Users then made their decision. This application had an advantage as 
it was used by many people throughout Japan and provided medical 
advice rapidly by physicians.

2.2 Eligibility criteria

A total of 9,552 candidates used the LEBER at least once and 
answered the online survey about whether they visited the hospital 
between January 2018 and October 2020. Of these, we included 7,152 
participants who had a specific chief complaint and provided all the 
appropriate data: age, sex, consultation date and time, chief complaint, 
medical advice, and hospital visit.

2.3 Data collection

Data were retrieved from the data source of the application by the 
staff of LEBER Co., Ltd. We integrated patients’ chief complaints into 
27 major chief complaints (Table 1) and medical advice into three 
main categories: stay home, go to the hospital if something happens, 
and go to the hospital emergency ward. Time was classified into four 
categories: (1) 6 a.m. to 12 p.m., (2) 12 p.m. to 6 p.m., (3) 6 p.m. to 
12 a.m., and (4) 12 a.m. to 6 a.m. Authors had access to information 
that could identify individual participants during or after 
data collection.

2.4 Outcome

The primary outcome was whether the user followed medical 
advice. This included two categories: (1) went to the hospital after 
being told “go to the hospital if something happens” or “go to the 
hospital emergency ward” and (2) did not go to the hospital after the 
advice “stay home.” Those who did not follow physicians’ advice also 
included two categories: (1) stayed home after advised “go to the 
hospital if something happens” or “go to the hospital emergency ward” 
and (2) went to the hospital after the advice “stay home.”
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2.5 Statistical analysis

We examined user background characteristics, which were 
associated with following physicians’ advice or not, to create a strategy 
using telehealth to promote appropriate patient consultation behavior. 
Categorical and continuous variables were analyzed using chi-squared 
and Mann–Whitney U tests, respectively. Descriptive analysis was 
performed using STATA IC version 15 (Lightstone, Texas, 
United  States). Random forest approach of machine learning was 
performed to investigate whether physicians’ advice could be predicted 
based on the chief complaint, age, sex, and consultation time. Data 
were divided into 70% of training data and 30% of test data. The 
model’s sensitivity and specificity generated from the training data 
were calculated, and the area under the receiver operating 
characteristic curve (ROC-AUC) was calculated to show that the test 
data could be  predicted by the model. We  also examined the 
importance of each variable. The same machine learning method was 
used to obtain ROC-AUCs. Machine learning was performed using R 
studio version 4.1.2.

3 Results

Among the 7,152 participants, 64.2% were women, and those in 
their 30s were the most frequent users. The proportion of “go to the 
hospital” and those who followed physicians’ advice were 34.5 and 
40.7%, respectively. A total of 17.5% participants consulted regarding 
their chief complaint associated with COVID-19, and these were 
widely diverse. Age, medical advice, and consultation time differed 
between those who followed and did not follow the advice. A total of 
70.6% were advised “go to the hospital (if something happens)” among 
those who did not follow physicians’ advice. Contrastingly, 49.3% were 
advised “go to the hospital (if something happens)” among participants 
who followed physicians’ advice (Table 1).

The proportion of each medical advice was significantly different 
between the groups (p < 0.001; chi-squared test). The majority of those 
advised to “go to the hospital (if something happens)” tended to not 
follow physicians’ advice. Contrastingly, those advised to “stay home” 
who followed this advice were classified as users who followed 
physicians’ advice (Figure 1).

3.1 Prediction model for physicians’ advice

We performed supervised learning using random forest modeling 
to categorize the medical advice by physicians. The dataset was 
randomly divided into the training dataset (70%) and test dataset 
(30%). A random forest classifier was trained on the training dataset 
and its performance was assessed using the test dataset. The 
discriminate model was highly performant with AUC over 0.65. The 
ROC-AUC was 0.792%. Hence, the aforementioned model soundly 
categorized the medical advice by physicians (Figure  2). The 
importance of each variable, which contributed to the model, is shown 
in Figure  2. Chief complaint was the most important variable to 
predict medical advice. Details of the chief complaints and 
consultation time by medical advice are shown in 
Supplementary Table S1. The variable importance in projection is 
shown in Supplementary Figure S1A.

TABLE 1 Participants’ characteristics by whether users followed 
physicians’ advice or not (N  =  7,152).

User did not 
follow advice

User followed 
advice

n (%) n (%)

Age in years [median 

(IQR)] *
34 (23–44) 34 (18–44)

Sex: female 2,755 (65.0) 1840 (63.1)

Medical advice **

Stay home 368 (8.7) 818 (28.1)

Go to the hospital (if 

something happens)
2,990 (70.6) 1,436 (49.3)

Go to the hospital 

(emergency ward)
880 (20.8) 660 (22.7)

Consultation time **

6 a.m. to 12 p.m. 1,041 (24.6) 808 (27.7)

12 p.m. to 6 p.m. 1,093 (25.8) 775 (26.6)

6 p.m. to 12 a.m. 1,703 (40.2) 1,081 (37.1)

12 a.m. to 6 a.m. 401 (9.5) 250 (8.6)

Chief complaint

Associated with COVID-19 543 (12.8) 711 (24.4)

Fever 360 (8.5) 454 (15.6)

Skin problem 479 (11.3) 280 (9.6)

Mental problem 342 (8.1) 82 (2.8)

Stomach ache 204 (4.8) 122 (4.2)

Arm and leg pain 199 (4.7) 114 (3.9)

Itch 208 (4.9) 91 (3.1)

Headache 194 (4.6) 58 (2.0)

Cough 123 (2.9) 94 (3.2)

Sore throat 126 (3.0) 83 (2.9)

Back pain 130 (3.1) 77 (2.6)

Constipation 126 (3.0) 79 (2.7)

Nausea 113 (2.7) 89 (3.1)

Dizziness 116 (2.7) 61 (2.1)

Gynecological problem 114 (2.7) 60 (2.1)

Eye problem 109 (2.6) 65 (2.2)

Joint pain 113 (2.7) 52 (1.8)

Chest pain 108 (2.6) 51 (1.8)

Ear disease 88 (2.1) 42 (1.4)

Stiff shoulder 84 (2.0) 43 (1.5)

Mouth problem 60 (1.4) 43 (1.5)

Nasal congestion 65 (1.5) 34 (1.2)

Urology problem 51 (1.2) 37 (1.3)

Respiratory discomfort 55 (1.3) 28 (1.0)

Fatigue 51 (1.2) 27 (0.9)

Life disease 39 (0.9) 20 (0.7)

Palpitations 38 (0.9) 17 (0.6)

Categorical and continuous variables were analyzed using a chi-squared test and Mann–
Whitney U test, respectively. *p < 0.05, **p < 0.001.
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3.2 Prediction model for whether users 
followed physicians’ advice or not

We performed supervised learning using random forest 
modeling to categorize (1) followed physicians’ advice and (2) did 
not follow physicians’ advice. The dataset was randomly divided 
into the training dataset (70%) and test dataset (30%). A random 
forest classifier was trained on the training dataset and its 
performance was assessed using the test dataset. The ROC-AUC was 
0.677. Hence, the aforementioned model soundly categorized (1) 
followed physicians’ advice and (2) did not follow physicians’ advice 
(Figure 3). The importance of each variable, which contributed to 
the model, is shown in Figure  3. Chief complaint and medical 
advice were the most important variables to predict whether the 
user followed the medical advice. Details of the chief complaints 

and consultation time by followed or did not follow physicians’ 
advice are shown in Supplementary Table S1. The variable 
importance in projection is shown in Supplementary Figure S1B.

Most physicians advised users with COVID-19 symptoms to stay 
home. Mental problems, headaches, and skin problems may have 
contributed to a failure to make users follow physicians’ advice in the 
projection model. The night time (6 p.m. to 12 a.m.) was associated 
with users not following physicians’ advice in the projection model.

4 Discussion

We examined the subsequent hospital visit behavior among those 
who received physicians’ advice on the need to visit a hospital via a 
telehealth application to promote appropriate patient visit behavior. 

FIGURE 1

The proportion of participants on hospital visit behavior by the groups given medical advice. (A) Hospital visiting on medical advice from physicians 
using the telehealth application. (B) Followed physicians’ advice or did not follow medical advice from physicians using the online platform.

FIGURE 2

Machine-learning based on physicians’ advice (go to the hospital or 
stay home) discrimination model. (A) A receiver operating curve 
(ROC) displaying the performance of a representative discrimination 
model. Area under the curve is 0.7918. (B) A variable importance of 
the discrimination model.

FIGURE 3

Machine-learning based on “followed physicians’ advice” or “did not 
follow” discrimination model. (A) ROC displaying the performance of 
a representative discrimination model. AUC is 0.6766. (B) A variable 
importance of the discrimination model.
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The association between physicians’ advice via the application and 
whether users followed said advice was investigated.

Physicians’ advice influenced users’ subsequent hospital visit 
behavior. The proportion of users who visited the hospital subsequent 
to physicians’ advice increased according to the urgency of the advice: 
stay home, go to the hospital if something happens, and go to the 
hospital emergency ward. Previous studies showed that telehealth 
supported adequate hospital visits significantly improved door-to-care 
times compared to controls (Friedman et al., 2021). However, this was 
an observational study. Hence, further research with a control group 
is required to confirm the effectiveness of the advice.

There might be some diseases for which the applications were not 
suitable. A total of 56.7% users consulted about COVID-19 followed 
physicians’ advice. Contrastingly, most physicians advised hospital 
visits for users with mental problems, but only 19.3% users followed 
the physicians’ advice. Studies that focus more on each specific disease 
are required to clarify these differences. Further, additional online 
support or phone call medical interviews to obtain further health 
information may prove beneficial. This could help physicians avoid 
excessive recommendations for hospital visiting for chief complaints, 
which could lead to serious outcomes.

Chief complaint, physicians’ advice, and patient background 
characteristics predicted whether users would follow physicians’ 
advice. Previous studies showed that online prehospital triage systems 
improved outcomes regarding consult-to-provider time and length of 
stay in the emergency department (Friedman et al., 2021). This study’s 
findings could be  used to improve the outcomes associated with 
patients’ hospital visit behavior in the real world. Yet, there were some 
issues, such as older people experiencing difficulties in using such 
applications (Arcury et al., 2020; Pirhonen et al., 2020). Our previous 
study, which examined the participant characteristics of LEBER users, 
showed that older adults used the application at a much lesser 
frequency than those in their 30s (Kobashi et al., 2023). It is necessary 
to develop a user-friendly interface for all ages and populations and 
comprehensively introduce the system by the government and 
local authorities.

Physicians’ advice could be predicted from the chief complaint 
and users’ baseline characteristics. The chief complaint was the most 
important variable to understand whether the user would or would 
not follow physicians’ advice with machine learning. In the current 
Japanese healthcare system, patients can freely choose their hospital, 
and the chief complaint might not be able to be used to optimize the 
allocation of medical resources. The chief complaint is not well utilized 
for adequate hospital visit behavior. Therefore, this prediction might 
be of help in recommending appropriate patient consultations.

This study had several limitations. First, this study used data from 
an application that is broadly used only in Japan (LEBER Inc., 2022). 
Yet, it was a suitable application to access the telehealth system to 
provide support for adequate hospital visiting at the community level 
in Japan. Second, we  only collected sex, age, chief complaint, 
consultation time. Other variables, such as household finance and 
educational background, may have been associated with outcomes. 
Nevertheless, we identified “chief complaint” as the most important 
variable. Third, we did not have control group to compare the effect of 
the intervention. Future studies should employ an experimental 
design. Finally, we defined the medical advice of “go to the hospital if 
something happens” as that the physicians recommended patients go 
to the hospital. However, the advice could have been deemed more 

“neutral.” We decided on this classification after careful discussion 
between the researchers, physicians, and the system engineering team.

5 Conclusion

Physicians’ advice influenced users’ subsequent hospital visit 
behavior. Furthermore, chief complaint, physicians’ advice, and 
patient background characteristics predicted whether users would 
follow physicians’ advice. These findings should be effectively utilized 
for promoting adequate patient hospital visit behavior toward saving 
human healthcare resources.
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