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Experiments are widely used in communication research to help establish cause and 
effect, however, studies published in communication journals rarely use discrete 
choice experiments (DCEs). DCEs have become a mainstay in fields such as behavioral 
economics, medicine, and public policy, and can be used to enhance research on 
the effects of message attributes across a wide range of domains and modalities. 
DCEs are powerful for disentangling the influence of many message attributes 
with modest sample sizes and participant burden. The benefits of DCEs result from 
multiple design elements including stimulus sets that elicit direct comparisons, 
blocked and/or fractional factorial structures, and a wide range of analytic options. 
Though sophisticated, the tools necessary to implement a DCE are freely available, 
and this article provides resources to communication scholars and practitioners 
seeking to add DCEs to their own methodological repertoire.

KEYWORDS

discrete choice experiments, balanced incomplete block designs, fractional factorial 
designs, message evaluation tasks, conjoint analysis (CA)

Introduction

Imagine a researcher named Lauren wants to know how a person’s appearance contributes 
to first impressions. In many cultures, the face receives the most visual attention during initial 
encounters and it shapes inferences about personal characteristics (Gullberg and Holmqvist, 
1999) in ways relevant for interpersonal relationships and social-influence campaigns alike 
(Moslehi et al., 2024), in terms of beauty, status, similarity, and so forth. As Lauren contemplates 
the topic, the abundance of influential factors becomes clear—face shape, facial expression, 
hair, eye color, etc. But with so many variables, she wonders how many experiments she needs 
to understand what really drives the process. As it turns out, the number may be smaller than 
most researchers realize. While the complexity of communication is increasingly studied 
(Ianovici et al., 2023; Sherry, 2015), conventional experimental designs in communication 
research limit the number of variables that can be manipulated within a single study either 
because of participant burden to respond to, or researcher burden to create large numbers of 
message conditions.

This article offers a primer on discrete choice experiments (DCEs; Carson and Louviere, 
2011; Friedel et  al., 2022), including tools and recommendations immediately usable by 
researchers. DCEs are an experimental paradigm underutilized in the field of communication 
(e.g., Cunningham et al., 2014; Iyengar and Hahn, 2009; Messing and Westwood, 2014), but 
prevalent in disciplines such as marketing (Carson et al., 1994; Louviere and Woodworth, 
1983), healthcare (de Bekker-Grob et al., 2012; Folkvord et al., 2022; Lack et al., 2020; Quaife 
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et  al., 2018; Soekhai et  al., 2019; Tünneßen et  al., 2020), tobacco 
control (Regmi et al., 2018; Reynolds et al., 2022; Salloum et al., 2018; 
Thrasher et al., 2018b; Ntansah et al., 2025), policy impact assessment 
(Lagarde and Blaauw, 2009), and political science (Poertner, 2020). In 
contrast to traditional message-effects or message evaluation research, 
DCEs leverage comparison sets of multiple stimuli (often called choice 
sets), as well as blocked and/or fractional-factorial designs, and 
flexible analysis options that amplify statistical power to detect effects 
of message attributes. DCEs enable simultaneous testing of large 
numbers of independent variables without extremely large sample 
sizes and can be used in conjunction with standard survey items or 
other experimental inductions (Hawkins et al., 2014). The efficiency 
to estimate effects with small numbers of participants may be the 
clearest benefit of DCEs, but their flexibility also enables wide-ranging 
applications in message-evaluation, message-effects, and media-
selection research. DCEs can quickly identify message features with 
the best chance to make an impact. Although DCEs are not applicable 
in every situation and are subject to several limitations, they merit 
additional attention by communication scholars.

Overview of DCEs

DCEs build upon on foundations of general experimental design 
but may be unfamiliar even to experienced researchers. Experiments 
are indispensable for establishing cause and effect; they involve at least 
one induction (a.k.a. intervention, manipulation, treatment) that 
exposes subjects to contrasting conditions, with the goal of estimating 
an induction’s effect by comparing observations across those 
conditions (Memon et al., 2019). To accomplish this, experiments 
should ensure that all subjects or trials have equal probability of 
assignment to each condition (i.e., factor-level combination). 
Randomization allows this by preventing (on average) subject 
characteristics from correlating with condition assignment, which 
could bias estimates of induction effects. Experiments should also 
employ, to the extent possible, strict minimization of differences 
between conditions except for the focal variable targeted by the 
induction. If experimental groups differ in ways other than the 
intended treatment, the precise cause of differences in outcomes 
cannot be  established because confounding factors might 
be responsible. Accordingly, experiments are most valuable when they 
can eliminate plausible alternative explanations for the observed effect.

An ideal experiment on communication effects would manipulate 
all relevant variables simultaneously using a full factorial design, 
however, large numbers of experimental factors are infeasible, and 
communication research typically includes only a small number of 
factors per experiment (e.g., Carpenter, 2013). This piecemeal 
approach is powerful if integrated into an ongoing research program, 
but can also be inefficient, requiring more subjects and more time 
overall. In addition, experimental conditions can be compared more 
meaningfully within a single study rather than across multiple studies 
because the benefits of randomization can be leveraged, giving each 
condition the same expected distribution for all individual differences. 
The family of DCE methods offers several benefits in this regard. To 
assist the presentation of terminology we provide a brief glossary of 
terms in Table 1.

Discrete choice experiments (DCE) refer to a collection of 
procedures, design characteristics, and analytic frameworks where 

participants compare and evaluate stimuli, usually presented in sets. 
Stimuli can take the form of messages or can depict profiles of entities 
or objects that each represent a unique combination of attributes 
(Lancsar and Louviere, 2008; Louviere et al., 2000). A DCE’s basic 
purpose is to infer the relative impact of each stimulus attribute on 
stimulus evaluation; in other words, to identify the message 
components responsible for perceptions of that message.1 In the 
context of communication research, stimuli may include most any 
kind of message and stimulus-features may include most any kind of 
message variable. Evaluations take the form of participant-provided 
comparisons or ratings of objects specified by the researcher. For 
example, our researcher, Lauren, may present sets of contrasting 
images of faces and ask subjects to select the one that appears most 
trustworthy. The task is simple, yet the design is distinct from 
conventional rating or selection tasks. Returning to our example, 
Lauren would have the ability to estimate the extent that perceptions 
of trustworthiness result from attributes of the eyes relative to the 
mouth expression, skin color, and so on. Although responses may 
occur at various levels of measurement, DCEs usually involve a 
ranking or choice task for each set, resulting in ordinal or dichotomous 
data (see Carson et al., 2022; Louviere et al., 2010). DCEs are related 
to the framework of conjoint analysis and stated preference designs 
(see Eggers et al., 2021; Louviere et al., 2010; Mühlbacher and Johnson, 
2016). Below, we discuss specific design implementations.

Case 1 designs: attribute evaluation
Because DCEs belong to a family of methods, we  consider 

variations that serve a similar purpose but with perhaps more 
limitations than full-fledged DCEs. One such method is often called 
a case 1 design which elicits explicit attribute evaluations. Returning 
to our example case, Lauren could address trustworthiness inferences 
in a rudimentary way by giving subjects a written list of personal 
attributes and asking how important each feature is (perceived to be) 
for determining trustworthiness. Figure 1 illustrates a sample attribute 
evaluation (case 1) task that Lauren might use. It contains seven facial 
features identified as potentially relevant to trustworthiness 
evaluations. This task could be constructed as a simple selection of 
attributes with the most or least importance, however, ratings may also 
be used. In case 1 and case 2 designs, ratings may reduce estimation 
problems associated with dominant attributes (Soekhai et al., 2021).

Case 1 attribute evaluation designs have the advantage of simple 
construction and efficient implementation; however, they have limited 
ability to determine the actual effect of message features. If Lauren 
relied on this method, her study would have involved no actual facial 
displays, nor systematic variation to create levels of each attribute. 
From a design perspective, therefore, case 1 designs have limited 
ability to show the effects of said features. In addition, subjects are 
explicitly asked to predict the influence of each item, but predictions 
of this kind are susceptible to biases, as people often fail to realize or 
wish to conceal the cognitive processes underlying their decisions 
(Nisbett and Wilson, 1977). For an example of a case 1 design, see 
Cheung et al. (2016).

1 The method does not rule out simultaneously estimating effects of 

participant characteristics or other factors. In other words, DCEs can synergize 

with conventional survey and experimental paradigms.
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Case 2 designs: stimulus-attribute evaluation
Another method in the DCE family is the case 2, or stimulus-

attribute evaluation design. As in the case 1 method described above, the 
researchers develop a list of features expected to influence evaluations of 
an object or message. In addition, researchers articulate levels of each 
feature category. In our example, the feature category “emotional 
expression” could be instantiated by the two levels, happy and angry. 
Levels can be constructed for every feature category of interest (e.g., 
eyebrow shape, skin tone), permitting a full or fractional factorial design. 
The method proceeds as a repeated measures design where articulated 
feature-level combinations are presented one-by-one. Most commonly, 
case 2 designs use stimuli formed by concrete descriptions of feature-
level combination (e.g., Cheung et al., 2016), however, it is possible to use 
graphical representation as stimuli as well. The outcomes are participant 
evaluations of the importance or impact of specific features. As in case 1 
designs, the researcher specifies the evaluative criterion, such as 

trustworthiness, attractiveness, competence, etc. Figure 2 illustrates a 
case 2 stimulus that Lauren might use in her study.

Case 2 designs have several advantages over case 1. Each attribute 
is tied to the particular level displayed, leaving less ambiguity about 
how participants interpret their meaning. Researchers also control the 
levels included or excluded from the study, based on relevance to the 
given research question. By using a factorial design that includes 
different combinations of attribute levels, researchers can also analyze 
nonlinear effects of each attribute type. For example, the description 
of the intensity of a smile could be manipulated by varying degrees, 
and the data could reveal that the apparent intensity of a smile has a 
curvilinear relationship with evaluations. The factorial design can also 
test interaction effects between attribute types; for example, in Lauren’s 
study on facial features, the data may reveal that individuals from 
out-groups are perceived as particularly untrustworthy when they are 
not smiling.

TABLE 1 Brief glossary of DCE terms.

Term Definition

Attribute/feature A discernable characteristic of a stimulus, either subject to experimental variation or content coding within DCEs. For 

example, the attribute of message source can be varied to reflect different media organizations.

Balanced incomplete block design (BIBD) A design where stimuli are systematically assigned to blocks such that blocks have an equivalent number of stimuli, each 

attribute level appears an equivalent number of times within each block, and each pair of attributes appears an equal 

number of times in each block. Respondents are then assigned to receive the stimuli associated with particular block(s).

Best-worst scaling An evaluation task where respondents identify the stimulus that best exemplifies the evaluative criterion (e.g., 

attractiveness, trustworthiness, etc.), and the stimulus that least exemplifies the evaluative criterion

Block A design element containing a subset of stimuli to which participants can be assigned to evaluate that particular subset

Comparison set A group of stimuli presented simultaneously to a respondent along with an evaluation task

DCE (discrete choice experiment) A method where participants evaluate or select stimuli with experimentally varied attributes, presented in comparison 

sets, with the purpose of (a) estimating effects of stimulus attributes on participant evaluations, (b) differentiating 

between stimulus tendencies to elicit particular evaluations, and/or (c) differentiating between participant sensitivities to 

particular stimulus attributes

Efficiency (of designs) The amount of resources in respondents, stimuli, and/or observations required by a design to estimate an effect with a 

given level of precision

Evaluation Respondent-provided classifications, comparisons, or ratings of stimuli according to a criterion

Factor A variable that represents systematic differences across experimental conditions

Factor (between-subjects) An experimental factor for which a single condition is assigned per respondent, varying across (between) respondents 

but remaining constant within respondents

Factor (within-subjects) An experimental factor for which multiple conditions are assigned per respondent

Fractional factorial design A multiple-factor experiment where observations are obtained for only some factor-level combinations, usually selected 

systematically

Full factorial design A multiple-factor experiment where observations are obtained for each factor-level combination

Induction/manipulation A protocol that systematically exposes subjects to contrasting conditions defined by the researchers

Odds ratio The change in odds of an outcome associated with per-unit changes or category comparisons in the predictor variable

Profile A type of stimulus that represents an object or entity

Relative impact weight An effect size normalized by variable scale and expressed as a proportion relative to one or more other model predictors

Resolution The degree to which experimental effects (main or interaction) are confounded within a given fractional factorial design. 

Higher values indicate less confounding

Stimulus A perceptible object or representation of an object or entity. Stimuli may take the form of messages, profiles, or other 

audio-visual presentations

Stimulus presentation Each unique instance that a given stimulus is presented to a particular person within a study
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Although case 2 designs are more robust, they have several 
limitations. First, they rely on bias-prone introspection, like case 1 
designs. Specifically, as shown in Figure 2, participants are asked to 
evaluate the impact of each attribute on their overall judgment of the 
stimulus. In other words, participants do not evaluate stimuli directly, 
rather, participants rate the impact of each attribute in shaping their 
evaluation. As a consequence, responses may be vulnerable to bias 
and a lack of ability to introspect about the causes of behavior and 
cognitive processes (Nisbett and Wilson, 1977). People may 
be influenced by perceived skin color, for instance, but fail to realize 
or admit the influence of that factor and therefore provide inaccurate 
responses. For examples of case 2 designs, see Cheung et al. (2016), 
Coast et al. (2006), and Soekhai et al. (2021).

Figure 2 shows another potential limitation of common case 2 
designs. There, each attribute is instantiated as a specific level described 
in textual form. This is not inherently problematic, as messages often 
include textual elements. However, in this case the phenomenon of 
interest is a person’s visual appearance, and verbal descriptions (a) are 
subject to varied interpretations, and (b) place higher cognitive burden 
on participants to imagine the described attributes. This illustrates the 
importance of modality in conveying profile information and the 
benefits of stimuli that resemble the objects they represent.

Case 0 designs: stimulus evaluation
Although not generally considered a DCE, stimulus evaluation (SE) 

designs are an important point of comparison. These are the conventional 

designs commonly used in communication research (e.g., Bente et al., 
2020; Reynolds et al., 2019), especially for message-effect studies. SE 
designs elicit evaluations of stimuli directly rather than evaluations of 
stimulus attributes. Just as case 2 DCEs, stimulus evaluation designs 
articulate all combinations of attribute-levels, but do elicit inferences 
about specific stimulus attributes. Typically, participants give separate 
evaluations of each stimulus, and researchers then estimate the effect of 
each attribute on subject evaluations, enabled by the factorial design 
(Judd et al., 2012). Figure 3 displays an example of a stimulus evaluation 
task for the trustworthiness study. Despite the merits of SE designs, 
DCEs are a more efficient alternative in many cases.

Case 3 designs: multi-stimulus discrete choice 
experiments

Below we present the commonly used and more sophisticated DCE 
designs that use some features of the designs previously discussed. 
DCEs use stimuli depicting attribute-level combinations to instantiate 
the range of relevant attributes. In addition, DCEs presenting multi-
stimuli simultaneously, using sets to elicit comparative evaluations 
(Carson and Louviere, 2011). In DCEs, participants do not evaluate 
attributes or attribute levels,2 but directly evaluate the stimuli in each 
set, often by providing relative rankings of the options presented. For 

2 Although multiple methods may be used in a single experiment.

FIGURE 1

Example attribute evaluation task. Here, the evaluations are collected using semantic differential scales rather than dichotomous selection.
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illustration, we have presented the work of Thrasher et al. (2018a) who 
developed sets of messages designed to motivate smokers to quit (see 
Figure 4). Messages varied along five attributes including message topic, 
information type (i.e., testimonial vs. factual), image (i.e., present vs. 
absent), call to action (i.e., present vs. absent), and contact information 
(i.e., present vs. absent). Although DCEs may be constructed with 
multiple evaluation tasks, here, participants selected the most and least 
helpful message out of each comparison set, applicable to the best-worst 
scaling analytic framework (discussed below). The design used by 
Thrasher et al. (2018a) had 64 possible message conditions, however, 
fractional factorial designs permit fewer messages and a manageable 
number of comparison sets (see below). DCEs go beyond traditional 
self-report techniques in several ways. They can more efficiently 
quantify the effect of stimuli, provide information about the relative 
importance of stimulus attributes to general audiences, and estimate 
each individuals’ sensitivity to a given attribute (Cleland et al., 2018; 
Turk et al., 2020). Comparison sets in DCE designs can include real or 
hypothetical stimuli (Cleland et al., 2018) and are applicable to virtually 
any context (Lancsar and Louviere, 2008).

The multi-stimulus design of DCEs has several advantages. First, 
the evaluation task can approximate real-life decision scenarios where 
individuals weigh trade-offs between competing options, consistent 
with Random Utility Theory (e.g., Gerasimou, 2010; Hess et al., 2018; 
Lancaster, 1966; Mas-Colell et al., 1995; McFadden, 1974; Thurstone, 
1927). This can help maximize the ability to discern between even 
similar stimuli. In addition, multi-stimulus DCEs require no inference 

about which features are responsible for a given evaluation, allowing 
evaluations that generalize to real contexts (Cleland et al., 2018).

A number of DCE design elements require further consideration, 
including the selection and number of attributes, the number and size 
of comparison sets, blocked designs, fractional factorial designs, 
response measures, and analysis options. Below, we  discuss these 
topics in detail and provide recommendations about the trade-offs 
implied by design choices. To summarize, Table 2 presents a concise 
overview of characteristics of each design.

DCE design elements

Attributes and levels
DCEs begin like any experiment, with a clear research question 

and conceptualization of key variables. Although DCEs are flexible 
and efficient, judicious selection of factors and levels still helps satisfy 
limitations of sample size and participant attention. Once researchers 
have identified key attributes, they will determine the levels to include. 
Attribute levels should constitute meaningful categories that likely 
occur within the context under study. For Lauren’s study, she was 
aware of several cultural artifacts and stereotypes that influence 
rapport-building (Bente et  al., 2020), leading to her decision to 
manipulate features that might be associated with stereotypes, such as 
ancestry or ethnicity, emotional expression, tattoos, etc. Ideally, 
chosen levels should span a wide range to capture the extremities of 

FIGURE 2

Example stimulus-attribute evaluation task. Here, the evaluations are collected using semantic differential scales rather than dichotomous selection.

https://doi.org/10.3389/fcomm.2025.1385422
https://www.frontiersin.org/journals/Communication
https://www.frontiersin.org


Reynolds et al. 10.3389/fcomm.2025.1385422

Frontiers in Communication 06 frontiersin.org

the attribute while maintaining realism. Intermediate levels may 
be important as well, especially where non-linear effects are suspected, 
but a weak induction (one with small differences between levels) can 
result in a failure to find an effect.

So-called “control” conditions may also be considered for each 
attribute, and researchers should consider what kind of reference 
category allows the most meaningful comparison. Critically, the goal 
is to eliminate confounding variables as plausible explanations for 
observed effects. Constructing control levels can be  complex. For 
example, at times withholding content can serve as a control, whereas 
at other times filler content is more suitable to preserve realism and 
similarity in message length and task characteristics. When in doubt, 
a researcher can include multiple control conditions per attribute. In 
the context of facial-feature research, a control stimulus could depict 
a face with a neutral, or calm expression, rather than omitting features. 
Researchers should also consider their ability to produce the content 
required for each stimulus. Although constructing high-quality 
stimuli can be difficult and costly, researchers can also adapt content 
found in existing popular media or research literature.

When stimuli cannot be perfectly controlled, some attributes may 
vary in addition to the ones intended by the experimental induction. 

Although this could result in confounding, the problem can 
be  addressed, to an extent, content coding stimuli. This means 
assigning additional attributes to stimuli and statistically accounting 
for their effect. This is critical when additional attributes are associated 
with experimental inductions and may be associated with the outcome 
of interest. For example, style of dress may be associated with the 
presence of tattoos, biasing estimates of tattoo effect. Appropriate 
coding and statistical adjustment may help prevent confounding, 
assuming the confounding variable is not perfectly correlated with the 
attribute of interest.

Experimental design, stimulus construction, and 
comparison sets

DCE’s often use fractional factorial and balanced incomplete 
block designs (BIBDs) to accommodate the large number of 
possible attribute-level combinations represented by stimuli. 
Suppose that in Lauren’s study on facial feature effects, she decided 
to include seven factors. For the sake of simplicity, suppose she 
decided to have only two levels per factor (see Table 3). Multiplying 
the number of levels from each factor shows the design has 128 
attribute-level combinations. This may be too many conditions to 

FIGURE 3

Example task from a stimulus evaluation design. Image generated with artificial intelligence software (Midjourney, 2024).
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present to people during an experiment because of time, cost, 
participant willingness, or fatigue effects (Caussade et al., 2005). 
Large numbers of stimuli may also strain the researcher’s ability to 
generate the needed stimuli.

DCEs ultimately elicit evaluations within sets of contrasting 
stimuli, displaying two or more simultaneously, to estimate the 
influence of focal attributes. As indicated above, by stimulus we mean 
a concrete instantiation of a particular combination of message-
attribute levels. Returning to the personal appearance context, Lauren 
could use cartoon illustrations, AI-generated images, or real 
photographs. The choice should consider the availability of existing 
content, the researcher’s own resources and skill at generating content 
representing the focal attributes, and the need to control for 
non-focal attributes.

Figure 5 shows an example of four contrasting stimuli within a 
hypothetical comparison set. The first stimulus, for example, depicts a 
male of African ancestry with a happy expression, higher BMI, 25 years 
old, tattoos, and long hair. To estimate all main and interaction effects 
in this study, a full-factorial design with 128 stimuli would be needed. 
Following the recommendations of Reeves et al. (2016), researchers can 
also construct multiple stimuli per condition to reduce confounding of 
stimulus idiosyncrasies with attribute levels. This could be done, for 
example, by randomly sampling from pools of profiles or messages 
with multiple long hair styles and multiple short hair styles. This would 
help determine whether the long vs. short distinction is meaningful 
and potentially increase confidence about the generalizability of results.

Balanced incomplete block designs
As the number of experimental conditions grows, due to more 

factors and/or more levels within factors, it may be  impossible to 
expose each participant to all stimuli, even using comparison sets. In 
such cases, DCEs often adopt a balanced incomplete block design 

(BIBD) so that each stimulus is presented to a random subset of 
participants. The blocking procedure may help maintain efficient and 
unbiased estimation of attribute effects.

In a BIBD, stimuli are systematically assigned to blocks, or arrays, 
and participants are randomly assigned to receive the stimuli associated 
with a particular block. Within each block, stimuli are further assigned 
to comparison sets that facilitate the simultaneous display of multiple 
stimuli to a participant (discussed below under Comparison Set 
Construction). In some cases, stimuli may be repeated across blocks for 
the purpose of establishing common reference stimuli for all participants, 
potentially allowing greater statistical control of inter-rater differences.

Constructing blocks demands care. For example, if Lauren 
distributed stimuli so that only a single block contained happy 
expressions, the within-subject variance for that factor would 
be  minimal, and it might then correlate with participant-level 
differences, given that randomization works imperfectly. To avoid 
this problem and estimate attribute effects more precisely, blocks are 
more effective when ‘balanced’, meaning they satisfy three conditions. 
First, blocks have equivalent size so that all participants receive the 
same number of stimuli (representations of attribute combinations). 
Second, stimuli are assigned such that each attribute level appears an 
equivalent number of times within each block. For example, Lauren 
would ensure that the number of stimuli with long hair is equivalent 
to the number with short hair within each block, and so on for each 
attribute. Third, each pair of attributes (i.e., each unique two-attribute 
combinations within a stimuli) appears an equal number of times in 
each block (Rink, 1987). Implementing BIBDs is complex but 
software can generate such designs for experiments with different 
numbers of factors and levels (e.g., the free R package DoE.base; 
Grömping, 2018).

To illustrate BIBDs, Table 4 presents an example block used by 
Lauren in her study. Notice that only 16 stimuli are included, requiring 

FIGURE 4

Example stimulus-comparison set (adapted from Thrasher et al., 2018a).
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TABLE 2 Summary table of design characteristics.

Design type Initial steps Benefits Limitations Common analysis options Example studies

Case1: Attribute Evaluation  • Identify most important message 

attribute-types for research question

 • Define evaluative criterion and rating/

comparison task

 • No need to articulate concrete levels 

for each attribute-type

 • Simple to construct

 • Requires little participant time 

to complete

 • Ideal for initial data collection

 • Participants may interpret attribute 

descriptions differently

 • Possibly subject to biased introspection 

(i.e., discrepancy between perceived 

effect and true effect)

 • Poorly equipped to assess interaction 

effects or non-linear associations

 • Mean comparisons (e.g., average differences 

between attribute ratings/choices)

 • Associations between attribute ratings/

choices (e.g., correlation, factor analysis)

 • Participant-level predictors of attribute 

ratings or choices (e.g., regression)

 • Cheung et al. (2016)

 • Webb et al. (2021)

 • Louviere et al. (2015)

Case 2: Stimulus-Attribute 

Evaluation

 • Identify most important message 

attribute-types for research question

 • Articulate each level of each 

attribute-type

 • Define evaluative criterion and rating/

comparison task

 • Generate fractional factorial design 

(although full factorial is optional)

 • Generate profiles describing unique 

combinations of features

 • Moderately simple to construct

 • Less ambiguity about attribute 

levels (than case 1 designs)

 • May only require textual 

descriptions of stimulus attributes 

(rather than full 

stimulus construction)

 • Can test interaction effects and 

non-linear associations

 • Possibly subject to biased introspection  • Mean comparisons (e.g., differences between 

attribute ratings/choices)

 • Linear models to estimate attribute-by-

attribute main and interaction effects

 • Estimate non-linear attribute effects

 • Estimate espondent-level predictors of 

attribute ratings/choices

 • Cheung et al. (2016)

 • Coast et al. (2006)

 • Louviere et al. (2015)

 • Soekhai et al. (2019)

Stimulus Evaluation Design  • Identify most important message 

attribute-types for research question

 • Articulate each level of each 

attribute-type

 • Define evaluative criterion and rating/

comparison task

 • Generate stimuli representing unique 

combinations of features

 • Requires no introspection about 

effects of particular features

 • Evaluation tasks are simple, with 

low testing burden

 • Requires large investment in 

stimulus construction

 • Participation may be lengthy with 

numerous stimuli

 • Attribute-level predictors of stimulus ratings/

choices, including attribute-by-attribute 

interaction effects (e.g., regression, mixed-

effect models)

 • Participant-level moderators of attribute-

level effects on ratings/choices (e.g., mixed-

effect models, multi-level models)

 • Bente et al. (2020)

 • Reynolds et al. (2019)

 • Visch et al. (2014)

Case 3:

Multi-Stimulus DCE

 • Identify most important message 

attribute-types for research question

 • Articulate each level of each 

attribute-type

 • Define evaluative criterion and rating/

comparison task

 • Generate fractional factorial design 

(although full factorial is optional)

 • Generate stimuli representing unique 

combinations of features

 • Generate stimulus sets for 

comparative evaluation

 • High efficiency for eliciting 

message evaluations

 • Does not require introspection 

about the effects of each attribute

 • Can test interaction effects

 • Does not require construction of 

all stimuli

 • Many analysis options

 • Requires careful consideration 

of design

 • Requires pretesting evaluation or 

rating task

 • Participants may need a training set

 • Attribute-level predictors of stimulus ratings/

choices, including attribute-by-attribute 

interaction effects (e.g., conditional logit 

regression, mixed-effect models)

 • Participant-level moderators of attribute-

level effects on ratings/choices (e.g., mixed-

effect models, multi-level models)

 • Bansback et al. (2012)

 • Kim and Park (2017)

 • Rubin et al. (2006)

 • Shang et al. (2018)

 • Thrasher et al. (2018a,b)
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1/8 of the possible 128. The specific stimuli included meet the 
requirements for a BIBD. The levels of each factor are displayed, to 
be represented numerically for the purpose of analysis (e.g., short 
hair = 0, long hair = 1). In this block, each attribute level occurs eight 
times and each pair of attribute-levels occurs four times. For example, 
stimuli 13–16 depict 55-year-old males, and no other stimuli have that 
combination. Analyzing the block also reveals that all factors are 
perfectly uncorrelated (r = 0), enhancing the efficiency of estimating 
independent effects. In a full factorial BIBD DCE, this block would 
be constructed alongside seven other 16-stimulus blocks to evenly 
distribute the other 112 stimuli. Appendix A illustrates sample code 
and output from the R package DoE.base that can help select a desired 
block design given a specified design.

Fractional factorial designs
DCEs also commonly use fractional factorial designs (FFDs) to 

further reduce the number of stimuli required. Constructing fractional 
factorial designs uses the same criteria as BIBDs, however, some 
stimuli will be omitted from the design (not be included in any block). 
As with BIBDs, software tools exist to assist in generating these 
designs (e.g., DoE.base; Grömping, 2018). Choosing the attribute 
combinations to be omitted requires considering several assumptions 
and research objectives. Perhaps most important is the potential for 
non-additive effects among the factors; from our example study, this 
could occur if happy expressions influence trustworthiness differently 
on account of another facial feature. Fractional factorial designs can 
be  specified to allow estimation of some or none of the possible 
interaction effects. In the DCE literature, the concept resolution 
captures the extent to which experimental effects are confounded 
within a given FFD design. Put simply, higher resolution designs 
involve less confounding between and among main and interaction 
effects. Box and Hunter (1961) discuss the concept in detail and define 
three of the most common categories of fractional factorial designs. 
As they state, a resolution 3 design confounds main effects with 
two-factor interactions. A resolution 4 design does not confound main 
effects with two-factor interactions, but two-factor interactions are 
confounded with one another. In resolution 5 designs, “no main effect 
or two-factor interaction is confounded with any other main effect or 
two-factor interaction, but two factor interactions are confounded 
with three factor interactions” (Box and Hunter, 1961, p. 319).

Higher resolution designs involve less confounding but generally 
require more stimuli. Designs of resolution less-than 3 are not useful 
because they confound main effects with other main effects. 
Importantly, only a full factorial design can estimate all main and 
interaction effects; thus, fractional factorial designs will fail to 
observe interaction effects and they will produce biased estimates of 
main effects if particular interactions do exist. Therefore, 
we recommend that fractional factorial designs be used with caution 
and in a way that main effects are unconfounded with at least all 

two-way interactions (i.e., resolution IV design or higher). Even 
without a priori expectations of interaction effects, prudence should 
require evidence of no interaction before proceeding with an 
FFD. The risk of bias is real because interaction effects are 
commonplace in communication research (e.g., Keller and Lehmann, 
2008; Lang and Yegiyan, 2008; Reynolds, 2020). Moreover, the ability 
to test for interactions is a strength of multi-factor experiments that 
may be  missed when omitting conditions. Appendix B displays 
example R code and output to help select a suitable fractional factorial 
balanced incomplete block design.

Random stimulus sampling
As an alternative to blocked designs, perhaps the simplest way to 

accommodate excessively large numbers of attribute combinations is 
through random sampling of stimuli. In Lauren’s study, a unique 
random subset of the 128 stimuli could be selected for each participant. 
Randomization requires no complex blocking procedure and does not 
omit any portion of the factorial space. In this way it is less likely to 
produce biased estimates of main effects that result from confounding 
with interactions. Randomization is also easy to implement at the point 
of survey construction if the set of all stimuli can be generated. Recent 
research has also shown that random stimulus-sampling designs do 
not lose much efficiency as compared with blocked designs, especially 
when population parameters are uncertain (Walker et  al., 2018).3 
Despite the advantages of random stimulus sampling, like the full 
factorial design, they may not be feasible if the entire set of possible 
stimuli cannot be constructed, for example, if it is too expensive to do 
so. As another limitation, simple random stimulus sampling does not 
ensure that each participant is exposed to equal (or any) instances of 
each attribute level. In aggregate this is not problematic because general 
attribute effects can still be estimated, however, if one is interested in 
modelling individuals (e.g., Louviere, 2013) then a blocked design may 
be  preferable to ensure that sufficient attribute combinations are 
presented to every participant (e.g., see Das et al., 2018).

Comparison set construction
In many non-DCE designs, stimuli are presented one-by-one (i.e., 

the size of each set is 1). In contrast, DCEs typically present multiple 
stimuli simultaneously. In this way, evaluation occurs with direct 
comparisons between stimuli within the set. By using a comparison 

3 As Walker et al. (2018) show, the most substantial way to increase design 

efficiency is by excluding “dominant” or “dominated” stimuli. In economic 

contexts these can be clearly identified as some attribute levels are universally 

preferred over others (e.g., lower prices). There is less universality in 

communication contexts, however, and so pruning stimuli from the design 

space a priori may be inadvisable.

TABLE 3 Example stimulus factors and levels for DCE.

Factor (1) (2) (3) (4) (5) (6) (7)

Level Sex Age Ancestry Expression BMI Tattoos Hair

0 Female 25 African Happy 20 No Short

1 Male 55 European Angry 30 Yes Long
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task, a single set can generate information about multiple stimuli. 
Comparison sets will contain at least two stimuli but most often 
contain four to efficiently generate evaluations for subsequent analysis 
(Caussade et  al., 2005). As the number of stimuli within each 
comparison set grows, the difficulty of comparing stimuli tends to 
increase, particularly when stimuli reflect many complex attributes 
(DeShazo and Fermo, 2002). Developing comparison sets involves 
deciding how many stimuli will appear within each set, and then 
deciding how many times stimuli will reappear across sets. The total 
number of comparison sets must accommodate these parameters. 
Repeating stimuli across comparison sets generates more comparisons, 
allowing more precise estimates of attribute effects. Importantly, 
pretesting may be necessary to assess task difficulty and participant 
fatigue. Table 5 displays an example collection of comparison sets for 
Lauren’s 16-stimulus FFD.

Assigning stimuli to comparison sets generally applies the same 
criteria used for BIBDs. First, any particular comparison set should 
not contain multiple instances of the same stimulus, as that would 
involve comparing a stimulus to itself. Second, the property of balance 
can enhance parameter estimate precision. Specifically, all stimuli can 
appear an equal number of times across comparison sets. For example, 
each stimulus in Table 5 appears five times. The headings Stimulus 
A-D indicate the unique stimuli to be displayed for each comparison 
set. During implementation, stimuli can be displayed in various spatial 
orientations (e.g., horizontally or vertically), and the position of 
stimuli within comparison sets can be randomized and recorded if 
order effects are a concern. A third criterion for balanced sets involves 
each pair of stimuli (i.e., each unique 2-stimulus combination) 
occurring an equal number of times across comparison sets. Table 5 
illustrates this, as each stimulus co-occurs with every other stimulus 
exactly once. When these design criteria are met, stimuli should 
receive the same number of evaluations and estimates of stimulus-
attribute effects should be  more precise. Note that balanced 
comparison sets are only possible for some combinations of design 
parameters. Designs will be more efficient if they approximate balance, 
even if perfect balance cannot be achieved. Alternately, researchers 
may use random sampling of stimuli (without replacement) to create 
comparison sets. Random sampling may be less efficient but remains 

unbiased (Walker et al., 2018). It is less efficient because it does not 
guarantee maximum contrast between attributes within comparison 
sets, but it is unbiased because randomization removes, on average, 
any association between profile evaluation and other variables 
of interest.

Length considerations for DCEs
Researchers should consider the acceptable testing burden when 

setting design parameters such as the number of attributes, attribute 
levels, factorial structure, number of blocks, size of choice sets, 
number of choice sets, and type of evaluation tasks. Although the 
issue of maximum length remains controversial (Hess et al., 2012), 
there is some evidence that error variance and participant attrition 
increase as the number of comparison sets approaches 20 or more, 
perhaps due to fatigue (Bech et al., 2011); however, this reduction of 
power does not imply that parameter estimates will be  biased 
(Louviere, 2004). Error variance may also be inflated in initial DCE 
tasks within an experiment (Louviere, 2013), suggesting that a 
training set may be helpful. The influence of DCE length, including 
the set number and set size, depends on factors including participant 
motivation, processing ability, and testing modality (Savage and 
Waldman, 2008). A researcher can empirically assess the effect of 
fatigue by estimating differences (e.g., in means, variances, or 
covariances) associated with presentation order. According to a 
recent meta-analysis on DCEs in the domain of tobacco control, the 
number of comparison sets ranged from 4 to 24 (M = 10.4, SD = 5.9; 
Regmi et al., 2018). For more on BIB designs, see Louviere et al. 
(2015) and Van der Linden et al. (2004).

Measurement scales and DCE tasks
DCEs are designed to elicit evaluations of stimuli or the effect 

stimuli are perceived to have. Conceptually, by evaluation we mean a 
person’s ascription of a quality to the object being evaluated. Decisions 
about the task and instrumentation can influence results enormously 
(Reynolds, 2020). Researchers should decide which message quality or 
perceived message effect they would like to address with their DCE, 
and this becomes the evaluative criterion given to participants. Lauren’s 
example study focuses on evaluations of trustworthiness—how much 

FIGURE 5

Example comparison set with stimuli representing combinations of features. Image generated with artificial intelligence software (Midjourney, 2024).
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a person would trust another based on facial appearance. Lauren could 
as easily implement another evaluative criterion, such as attractiveness, 
friendliness, or similarity. In fact, DCE protocols can include multiple 
evaluations of the same comparison sets (e.g., trustworthiness and 
attractiveness). Pretesting is advisable to ensure that the evaluation task 
is clear, distinct, and within participants’ ability to perform.

One of the most prevalent DCE evaluation tasks relies on 
comparative judgments within each comparison set. Known as “best-
worst” scaling, this method asks subjects to identify (a) the stimulus 
that best exemplifies the evaluative criterion, and (b) the one that 
worst exemplifies the evaluative criterion (Marley and Louviere, 2005). 
A best-worst task is less cognitively demanding than ranking every 
stimulus within a set, although it implies a full ranking when 
comparison sets contain only 3 stimuli. To collapse best-worst choices 
into a single indicator, Louviere et al. (2015) describe a method of 
recoding the data as 1 (best), −1 (worst), or 0 [not selected; for 
examples of best-worst scaling, see Najafzadeh et  al. (2012) and 
Wright et  al. (2017)]. Figure  5 displays an example of best-worst 
scaling applied to Lauren’s facial-feature study. Best-worst scaling is 
most often used with comparison sets of size 3 or 4. Best-worst scaling 
does have important limitations. For example, as an ordinal scale, it 
does not indicate the cardinal value of the evaluations provided; it will 
be unclear whether the option selected as “best” is considered good or 
bad. In addition, best-worst scaling may not capture the magnitude of 
differences between stimuli. For example, in a forced choice, similar 
stimuli will be given a rank that may reflect only a small difference.

Researchers have developed several ways to address these 
limitations of best-worst evaluations. For example, evaluation tasks 
can include a “no difference” option alongside stimuli, or researchers 
may add the question as a follow-up to every evaluation task. This 
inclusion informs researchers about whether participants truly 
differentiated the stimuli within a given comparison set. Comparison 
sets where “no difference” is indicated can be excluded from analysis, 

or models can be compared with and without these data. If excluding 
data, a researcher may want to determine whether any variables of 
interest are associated with the “no difference” selection. Empirical 
evidence shows that DCEs and best-worst scaling in DCEs can 
provide accurate estimates of the relative impact of stimulus attributes 
on individual evaluations, such as consumer preferences (Louviere 
et  al., 2015; Salampessy et  al., 2015). DCE’s can include multiple 
evaluative tasks simultaneously to achieve the most robust findings. 
For example, Lauren might ask which profiles seem more or less 
trustworthy than the average person, or simply elicit quantitative 
evaluations (e.g., ratings) from which rankings can be inferred.

DCE data and analysis

DCEs can estimate the relative effect of each stimulus attribute on 
stimulus evaluations. They can also account for other variables such 
as individual participant-level differences, other between- or within-
subject experimental conditions, or other stimulus characteristics 
(including additional evaluations elicited concurrently). Raw data may 
resemble those displayed in Table 6, that were simulated to resemble 
Lauren’s facial feature experiment. The data represent the responses of 
one participant across all comparison sets. Numbers in the two right-
most columns indicate which of the 16 stimuli was selected as 
appearing most and least trustworthy for each comparison set.

For analysis, this raw data can be  combined with those from 
Tables 3, 4 and restructured to enable the appropriate regression 
model. In particular, the attribute-level indicators should be included. 
A long-format data structure can be  created with stimulus-
presentations as the unit of analysis, expanding the number of 
observations. A stimulus presentation is the unique instance that each 
stimulus was presented to a particular person. In Lauren’s study (per 
Table 4), each stimulus is presented five times per subject. Therefore, 

TABLE 4 Example balanced incomplete block for 2x2x2x2x2x2x2 design.

Attribute

Stimulus Sex Age Ancestry Expression BMI Tattoos Hair

1 Female 25 African Happy 20 No Short

2 Female 25 African Angry 30 Yes Short

3 Female 25 European Happy 30 No Long

4 Female 25 European Angry 20 Yes Long

5 Female 55 African Happy 30 Yes Long

6 Female 55 African Angry 20 No Long

7 Female 55 European Happy 20 Yes Short

8 Female 55 European Angry 30 No Short

9 Male 25 African Happy 20 No Short

10 Male 25 African Angry 30 Yes Short

11 Male 25 European Happy 30 No Long

12 Male 25 European Angry 20 Yes Long

13 Male 55 African Happy 30 Yes Long

14 Male 55 African Angry 20 No Long

15 Male 55 European Happy 20 Yes Short

16 Male 55 European Angry 30 No Short
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the long-form data should have a number of cases equal to the number 
of stimuli times the number of presentations for each stimulus times 
the number of raters. Table 7 displays example data for Lauren’s facial 
feature study, showing rows from the first five comparison sets for the 
first participant. The BWS column is a best-worst-score described by 
Louviere et  al. (2015) that (in this case) combines the most-
trustworthy and least-trustworthy items into a single variable. The 
most and least choices can be analyzed in separate models, which 
allows estimation of asymmetry between choosing vs. rejecting 
(Krucien et al., 2019; Shafir, 1993). Some attributes may have a bigger 
impact on being rated worst (least) relative to being rated best (most). 
There may be  cases where best-choice and worst-choice models 
indicate effects of opposite direction for the same attribute. For 
example, attributes that generate ambivalent responses from 
individuals, or polarizing evaluations across subpopulations may 
be more likely to be rated best and worst.

With the data structured this way, several analytic techniques are 
available, depending on the research questions and viability of model 
assumptions. A simple approach could use one of the dichotomous 
outcome variables (Most or Least) and estimate a variety of logistic 
regression models (Long and Freese, 2006; Sadique et al., 2013). This 
approach overcomes some limitations of the linear probability model 
applied to a dichotomous outcome, such as out-of-bounds predictions 
and heteroscedasticity (but see Hellevik, 2009).

As usual with DCEs, the data here are clustered in several respects; 
this means that rows do not represent independent observations. For 
example, within a choice set presentation, the likelihood of selecting 
a stimulus depends on the likelihood of selecting the alternatives. 

Also, evaluations made by the same participant are likely to have 
similar characteristics, relative to evaluations from others. In addition, 
design elements may cause clustering due to effects of blocks, 
presentation order, etc. (Louviere et  al., 2008). Clustering causes 
additional variance in evaluations that may be  of interest or may 
be considered a nuisance (Cameron and Miller, 2015; Galbraith et al., 
2010; McNeish and Kelley, 2019). Analysis of DCE data should 
account for clustered data where applicable, as failing to do so may 
bias parameter estimates and produce inaccurate standard errors. 
Several approaches are available, each with advantages and 
disadvantages (Galbraith et al., 2010). Specifically, researchers may 
aggregate observations within clusters to generate non-clustered data. 
Researchers may also estimate fixed-effect models to statistically 
adjust for variables responsible for the clustering (Huang, 2016). 
Another approach is to estimate a mixed-effect models. A mixed-
effect model includes random-effect components that allow parameter 
estimates—such as means or regression coefficients—to vary across 
clusters (Hole and Kolstad, 2012; Hossain et al., 2018; Sándor and 
Wedel, 2002). Mixed-effect models can quantify how much variability 
exists between and within clusters, for example, how much message 
features influence people in different ways.

Multiple tools are available to analyze clustered DCE data. For 
example, Stata’s CM module and its cmmixlogit command can 
perform the analysis to include both fixed and random effects. 
Selecting the appropriate model also can be empirically guided. For 
example, using likelihood-ratio tests, one can compare the fit of 
competing models (e.g., Lewis et al., 2011; Norris et al., 2006), such as 
fixed vs. random effects models. Here, overfitting is a concern (Lever 

TABLE 5 Example block of comparison sets for a multi-profile DCE.

Comparison set Stimulus A Stimulus B Stimulus C Stimulus D

1 2 5 8 14

2 1 5 6 7

3 5 9 12 16

4 4 11 5 15

5 3 5 10 13

6 1 3 2 4

7 2 6 9 11

8 7 16 13 2

9 10 2 15 12

10 1 8 9 10

11 6 8 13 15

12 4 7 8 12

13 3 8 11 16

14 14 1 15 16

15 3 14 12 6

16 7 10 11 14

17 14 9 13 4

18 13 11 12 1

19 10 16 4 6

20 9 7 3 15

This design is configured with 16 stimuli in total, and 4 stimuli per comparison set. Stimuli labels A-D represent the display position within each set. Stimulus numbers represent those shown 
in Table 3.
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et al., 2016), and in general simpler models are preferable unless their 
fit is substantially worse, or they are theoretically infeasible.

Regardless of the specific model used, researchers should 
be mindful of the multiple factors that influence evaluations. These 
commonly include variance associated with differences between 
comparison sets (and the different alternatives) and differences 
between participants (for discussion of additional sources of variance, 
see Hess and Rose, 2012). Accounting for these factors enables more 
accurate estimates of the general effect of each attribute. Both wide 
and long-form data permit several types of co-predictors. For example, 
the researchers can model the effect of participant-level characteristics 
such as age, sex, extraversion, and so forth, including interactions 
between such characteristics and stimulus attributes (e.g., Kim and 
Park, 2017; King et  al., 2007). The models can include additional 
evaluations, for example, ratings of the profile’s attractiveness as a 
correlate of trustworthiness. Models can also include other 
experimental factors such as distractor conditions.

As with typical regression models, interaction terms can be added 
to estimate non-additive effects; however, as discussed earlier, 
fractional factorial designs compromise the ability to test all possible 
interactions between attribute categories. Attribute-by-attribute 
interactions must be pre-specified and be reflected in the design if a 
FFD is used. In Lauren’s study, she might test what stimulus attributes 
promote or diminish perceptions of trustworthiness, what groups of 
participants are more sensitive to a given cue, and what situations are 
more or less likely to bias trustworthiness attributions (e.g., after 
priming or persuasive messages). Recent scholarship has also 
developed frameworks for modelling single individuals from 
repeated-measures DCEs, including person-specific cue-sensitivity, 
variability, as well as latent cluster analysis (Louviere, 2013; 
Frischknecht et al., 2014). Data can also be expanded into a so-called 
“exploded” form (Chapman and Staelin, 1982; Lancsar et al., 2017), 
generated by inferring new observations from the choices actually 
observed, relying on the Independence of Irrelevant Alternatives (IIA) 
assumption (see Buckell et al., 2018; Herne, 1997).

While the long-form data give the researcher flexibility, the data 
can be aggregated for more basic analysis. For example, Louviere et al. 
(2015) discusses one method of averaging across raters. After this 
transformation the data have a number of rows equal to the number 
of total stimulus-presentations across all stimuli. In this formulation, 
a conditional logit model can be  used to estimate the impact of 
attributes on the aggregated choices. One limitation of this approach 
is the inability to estimate effects resulting from participant-level 
variables. Ultimately, researchers should decide what assumptions are 
reasonable for their design, and what techniques are most applicable 
to their research goals. Many assumptions can be empirically tested 
with model diagnostics.

Effect sizes for DCEs
Effect sizes convey the magnitude of association among variables 

and can be  estimated in numerous ways (Ferguson, 2016). As 
presented below in our simulated data analysis, some DCE effects can 
be  represented as differences in means or proportions, bivariate 
association, or regression coefficients. A researcher should consider 
their research objectives when choosing effect size statistics. Some 
effect size metrics lead to substantively different interpretations 
(McGrath and Meyer, 2006), while others are simply linear 
transformations that are more or less familiar to different audiences. 

Importantly, effect sizes will depend on each variable’s designated 
levels and observed variance, as well as model specification. For our 
simulated DCE, the effect of hair length is a contrast between long and 
short within the context of the study, and not a universal effect of 
hair length.

Regression coeffects are most common in DCE analysis, but 
can be easily mis-interpreted. They estimate independent effects, 
adjusting for other stimulus-level and participant-level variables. 
Odds ratios (ORs) have been among the most commonly reported 
effect sizes in DCEs (de Bekker-Grob et al., 2012) because of the 
limitations of OLS for categorical or ordinal outcomes (but see 
Hellevik, 2009). ORs are a standard output of statistical software 
and represent the change in odds of an outcome associated with 
per-unit changes or category comparisons in the predictor variable 
(for formulas, see Schechtman, 2002). Odds ratios can be difficult 
to compare, however, because their values neither linearly nor 
monotonically convey strength of association. In addition, as a 
type of unstandardized, unnormalized coefficient, odds ratios are 
influenced by the scale of variable increments as well as variance. 
Several normalization procedures are available for DCE 
coefficients that can help gauge and compare effect sizes 
(Gonzalez, 2019; Lancsar et al., 2007). One approach represents 
effect sizes as the impact relative to other model predictors, for 
example, as a pairwise ratio, or as a proportion of the model’s 
overall predictive power. Regardless of the approach, scale-
normalization or standardization are critical for comparing 
coefficients within a study.

TABLE 6 Example raw data for DCE with best-worst evaluative task.

Participant Comparison 
set

Most 
trustworthy

Least 
trustworthy

1 1 8 2

1 2 6 1

1 3 12 16

1 4 5 4

1 5 5 10

1 6 2 3

1 7 9 6

1 8 16 2

1 9 15 2

1 10 10 8

1 11 13 6

1 12 12 7

1 13 11 8

1 14 16 14

1 15 12 6

1 16 10 14

1 17 13 14

1 18 12 1

1 19 10 6

1 20 15 3

“Most trustworthy” and “Least trustworthy” indicate which stimulus was selected for the 
respective task.
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Power analysis for DCEs
Power analysis can estimate the likelihood that a design will 

detect an effect of a given size, or determine what design is 
necessary to achieve a particular power. Failing to consider the 
power of a DCE may lead to uninformative results. Recently, de 
Bekker-Grob et al. (2012) conducted a review of power analysis 
practices for DCEs. As they discuss, when determining sample size 
for DCEs, key inputs are (1) desired significance level, (2) desired 
power, (3) intended statistical model to be used (e.g., multinomial 
logit, rank-order logit), (4) anticipated effect sizes, and (5) design 
characteristics including the number of parameters to be estimated, 
the number of stimuli per comparison set, and the number of 
comparison sets to be used. de Bekker-Grob et al. (2012) include R 
code that calculates the sample size needed from the parameters 
listed above. In addition, they provide simplified but commonly-
used formula to roughly estimate a minimum number of subjects 
needed for DCEs. They provide the formula as N > 500c / (t · a), 
where t is the number of comparison sets assigned to each 
participant, a is the number of alternative within each set, and c is 
the product of the number of levels for the two largest factors (de 
Bekker-Grob et al., 2012).

Example DCE analysis
Data were simulated to illustrate results that might be obtained 

from Lauren’s DCE on personal attributes and perceived 
trustworthiness. In this case, long-form non-exploded data were used 
due to their analytic flexibility and to reduce sensitivity to violations 
of the IIA assumption. Initially, descriptive statistics were calculated 

to show the proportion of selections rated most and least trustworthy 
for each level of the seven factors (see Table 8). Expected proportions 
(chance-level) are 0.25 because participants selected one stimulus out 
of four for each task. Results show some factors deviate from chance-
level proportions. Regression analysis will examine these associations 
in more detail.

Using the simulated data, mixed-effect logistic regression was 
conducted with the best (most) and worst (least) as dependent 
variables in separate models. This tests the symmetry between 
coefficients of best and worst models, an assumption of combining 
best and worst choices into a single scale. As displayed in Table 9, each 
attribute (F1-F7) was entered as a fixed-effect predictor, along with 
indicators for the fixed-effect of each comparison set and the left-to-
right position of each stimulus within each comparison set. Although 
fixed-effect models can account for clustered data structures (Huang, 
2016), this becomes less feasible with larger numbers of clusters. Here, 
for example, choices are clustered within participants, but including a 
fixed effect would require 600 participant-indicator variables, a 
computationally demanding process that also reduces the ratio of 
observations per parameter estimate to unacceptable levels (see 
Vittinghoff and McCulloch, 2007). For illustration, participants were 
specified as a random factor with random intercepts. In addition, 
cluster-robust standard errors were calculated to adjust for clustering 
within participants and because the participant is presumed to be the 
basic sampling unit in this example.

Results of the simulated data in Table 9 show the overall model is 
significant. Coefficients are reported two ways. First, odds ratios (OR) 
represent the model-adjusted independent effect of each predictor on 

TABLE 7 Example long-form data for DCE with best-worst evaluative task.

Participant Set Stimulus Most Least BWS Sex Age Ancestry Expression BMI Tattoos Hair

1 1 8 1 0 1 0 1 1 1 1 0 1

1 1 14 0 0 0 1 1 0 1 0 0 0

1 1 2 0 1 −1 0 0 0 1 1 1 1

1 1 5 0 0 0 0 1 0 0 1 1 0

1 2 5 0 0 0 0 1 0 0 1 1 0

1 2 1 0 1 −1 0 0 0 0 0 0 1

1 2 7 0 0 0 0 1 1 0 0 1 1

1 2 6 1 0 1 0 1 0 1 0 0 0

1 3 12 1 0 1 1 0 1 1 0 1 0

1 3 9 0 0 0 1 0 0 0 0 0 1

1 3 16 0 1 −1 1 1 1 1 1 0 1

1 3 5 0 0 0 0 1 0 0 1 1 0

1 4 15 0 0 0 1 1 1 0 0 1 1

1 4 5 1 0 1 0 1 0 0 1 1 0

1 4 11 0 0 0 1 0 1 0 1 0 0

1 4 4 0 1 -1 0 0 1 1 0 1 0

1 5 5 1 0 1 0 1 0 0 1 1 0

1 5 3 0 0 0 0 0 1 0 1 0 0

1 5 10 0 1 -1 1 0 0 1 1 1 1

1 5 13 0 0 0 1 1 0 0 1 1 0

BWS refers to best-worst scaling.
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the odds of a stimulus being selected relative to not being selected (see 
Schechtman, 2002). For ORs, coefficients from 1 to ∞ indicate greater 
likelihood, and coefficients from 1 to 0 indicate reduced likelihood. 
Second, relative impact weights (RIW) quantify the magnitude of 
effect, normalizing the scaling factor of each variable, expressed as a 
percentage of the other predictors displayed (Gonzalez, 2019).

Results of the simulated data show that several stimulus attributes 
were associated with stimulus evaluations. In addition, results indicate 
asymmetry between most and least models. Specifically, in the most-
trustworthy model, European ancestry (versus African) was associated 
with a 1.41 times increased likelihood of being evaluated as most 
trustworthy (relative to not being selected), p < 0.001. This result 
would be  consistent with the presence of racial stereotypes that 
influence interpersonal perception. If results were symmetrical 
between most and least models, European ancestry would 
be  associated with a reduced likelihood of being selected least 
trustworthy, however, there was no effect in the least-trustworthy 
model. A Brant test (Liu, 2009) formally tested the hypothesis of 
symmetry between all coefficients, indicating significant asymmetry, 
χ2(7) = 44.7, p < 0.001. If desired, variables can be  omitted to test 
asymmetry for specific coefficients. As a result, in this case most and 
least choices should not be combined (see Krucien et al., 2019). The 
moderating effect of DCE tasks (e.g., most vs. least choices) may be of 

interest, potentially indicating framing effects, ambivalence, or 
heterogenous effects across sub-populations. Here, we have focused 
on the most-trustworthy model; in general, positively valenced 
choices generally show less error variance (Krucien et al., 2019).

Model 1 also shows a significant effect of emotional expression 
and tattoos; angry expressions were associated with a 0.81 reduction 
in odds of being evaluated as most trustworthy, relative to happy 
expressions, adjusting for other stimulus attributes, p < 0.001. 
Similarly, tattoos were associated with 0.54 times decreased odds of 
being evaluated as most trustworthy, p > 0.001.

Model 3 shows a significant interaction between participant sex 
and emotion within the stimulus, OR = 1.59, p < 0.001. That pattern 
of results indicates that, compared to male participants, female 
participants were significantly less likely to evaluate a profile as most 
trustworthy when they expressed anger, controlling for other stimulus 
attributes. Participant sex also moderated the effect of stimulus 
ancestry on trustworthiness, OR = 0.58, such that women were 
significantly more likely than men to rate people as most trustworthy 
if they are European. These kinds of results could indicate differences 
in stereotypes across different populations.4 In all models, the effect of 
tattoos was the strongest, indicated by its relatively high RIW.

Note that the coefficient for participant sex is not displayed. In 
strictly comparative discrete choice models, participant-level direct 
effects are not meaningful without respect to the attributes of the 
stimuli being evaluated. In addition, Table 9 shows zero variance in 
intercepts between participants for the random effect. This is ensured 
by the design, as the comparative task involved the same number of 
sets and selections for all individuals. An alternative level of 
measurement, such as quantitative rating scales would allow variance 
in intercepts between participants; it would also enable direct effects 
of participant characteristics to be  estimated, rather than only 
interactions between stimulus attributes and participant characteristics.

As a reminder, the design in this example has a resolution 3 
fractional factorial structure meaning it cannot estimate interactions 
between stimulus attributes. It may be, for example, that attributes like 
tattoos and expression have non-additive effects. As discussed 
previously, estimating these would require a higher resolution design 
(resolution 4 or higher, or a full factorial design).

Distributions of individual-level coefficients can also be estimated. 
Here, the correlation between each two-level factor and each selection 
(most—not most) was estimated for each participant (Rodgers and 
Nicewander, 1988). As a participant-level variable, the correlation 
magnitude can then be correlated with other variable or treated as an 
outcome. Table 10 shows such output, including confidence intervals, 
and differences in correlations between men and women. Importantly, 
when treating the participant as the unit of analysis, using one 
observation per participant is generally appropriate, or adjusting 
standard errors to avoid inflating Type 1 error. In total, the simulated 
results illustrate how DCEs can reveal factors contributing to 
interpersonal perceptions of trustworthiness. This approach can 
be  leveraged for other kinds of message effects or message 
selection studies.

4 But note that these data were simulated using random parameters and 

variable labels for illustration.

TABLE 8 Proportion of selections by condition.

Proportions

Factor Selected 
most 

trustworthy

Selected 
least 

trustworthy

Chance-
level 

occurrence

Sex

  Female 0.249 0.251 0.250

  Male 0.252 0.249 0.250

Age

  25 0.254 0.251 0.250

  55 0.246 0.249 0.250

Ancestry

  African 0.224 0.247 0.250

  European 0.277 0.253 0.250

Expression

  Happy 0.266 0.232 0.250

  Angry 0.234 0.269 0.250

BMI

  20 0.244 0.249 0.250

  30 0.256 0.251 0.250

Tattoos

  No 0.297 0.218 0.250

  Yes 0.203 0.282 0.250

Hair

  Short 0.249 0.246 0.250

  Long 0.252 0.254 0.250

n(choices) = 48,000. all factors intercorrelate at r = 0.
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Limitations of DCEs

The limitations of DCEs inform their suitability for a given 
research context. First, because they can accommodate designs with 
many experimental conditions, DCEs may be  time consuming or 

expensive to implement. DCE designs also entail more complexity than 
conventional designs, although this obstacle can be minimized with 
freely available software and experience. In addition, DCEs are not 
equally suitable for all types of stimuli. For example, DCEs may induce 
high cognitive burden when messages are difficult, complex, or require 

TABLE 9 Predictors of perceived trustworthiness.

Attribute effect estimates [99% CI]

Model 1 most trustworthy Model 2 least trustworthy Model 3 most trustworthy

Predictor OR RIW OR RIW OR RIW

Stimulus sex 1.02 [0.95, 1.09] 1.32 0.99 [0.92, 1.06] 1.34 0.99 [0.91, 1.08] 0.94

  0 = female; 

1 = male

Stimulus age 0.96 [0.90, 1.03] 3.27 1.00 [0.93, 1.07] 0.06 1.00 [0.91, 1.09] 2.16

  0 = 25; 1 = 55

Stimulus ancestry 1.41 [1.30, 1.52]* 26.39 1.04 [0.97, 1.12] 5.42 1.84 [1.68, 2.01]* 17.26

  0 = African; 

1 = European

Stimulus expression 0.81 [0.75, 0.87]* 16.51 1.28 [1.19, 1.37]* 31.01 0.64 [0.58, 0.71]* 10.70

  0 = happy; 

1 = angry

Stimulus BMI 1.04 [0.97, 1.12] 3.32 1.01 [0.94, 1.09] 1.51 1.00 [0.91, 1.09] 2.20

0 = 20; 1 = 30

Stimulus tattoos 0.54 [0.50, 0.57]* 47.91 1.53 [1.42, 1.65]* 53.75 0.53 [0.48, 0.57]* 32.53

  0 = no; 1 = yes

Stimulus hair 1.02 [0.94, 1.10] 1.29 1.06 [0.99, 1.13] 6.91 0.99 [0.90, 1.08] 0.53

  0 = short; 1 = long

Interactions

  P. sex by S. sex 1.06 [0.95, 1.19] 1.61

  P. sex by S. age 0.92 [0.82, 1.02] 2.20

  P. sex by S. 

ancestry

0.58 [0.52, 0.65]* 13.95

  P. sex by S. 

expression

1.59 [1.42, 1.79]* 11.98

  P. sex by S. BMI 1.10 [0.98, 1.23] 2.41

  P. sex by S. tattoos 1.02 [0.91, 1.14] 0.49

  P. sex by S. hair 1.04 [0.92, 1.17] 1.02

Random intercept 

(participant)

σ2 0.00 0.00 0.00

ICC (participant) 0.00 0.00 0.00

Model p-value (wald 

χ2)

<0.001 <0.001 <0.001

Sample Size

  Participants 600 600 600

  Comparison sets 12,000 12,000 12,000

  Choices 48,000 48,000 48,000

Model 1 = most-trustworthy choice was dependent variable, Model 2 = least-trustworthy choice was dependent variable, Model 3 is identical with Model 1 except interaction terms have been 
added. OR = Odds ratio. RIW = relative impact weight. Mixed-effect logistic regression was used with random intercepts for Participants. *p < 0.01. P. sex = participant sex (0 = female, 
1 = male). Fixed effects for choice-set and profile position are not displayed.
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a long processing times (Bryan and Dolan, 2004). In such cases, 
participants may have less ability to successfully compare stimuli 
within sets, or may fatigue quickly after a few sets (but see the above 
discussion on fatigue effects). DCE researchers can compensate by 
selecting designs with fewer stimuli within sets and fewer sets overall.

Because they emphasize comparisons between groups of stimuli, 
DCEs are not suitable for assessing all types of message effects. This is 
likely true where the intended effect requires a single message 
exposure without contrasting content, or highly immersive long-form 
audio-visual material. Additional research is needed to test the 
boundaries of DCE’s applicability to various kinds of message-effects 
research. As discussed above, the comparative tasks of typical DCEs 
provide estimates of the relative impact of message attributes rather 
than the absolute evaluation of messages. The relative impact of 
attributes may be most helpful to target factors for use in subsequent 
research or content generation. This limitation can be removed by 
including other measures within or alongside a DCE design.

Conclusion

DCEs have become a mainstay in several fields and have been 
used to predict critical real-world outcomes as well as to test theory. 
However, communication scholars have yet to take full advantage of 
their potential. As we have demonstrated in this article, DCE’s are 
highly applicable to studies on the effects of message attributes across 
a wide range of domains and modalities. Efficiency is perhaps their 
main benefit, as DCEs can disentangle the influence of many attributes 
with modest sample sizes and reasonably short experimental sessions. 
The benefits of DCEs accrue as a result of multiple design elements, 
including the use of stimulus sets to elicit direct comparisons, blocked 
or fractional factorial structures, and the breadth of analytic 
frameworks available. Though sophisticated, the tools necessary to 
implement a DCE are freely available, and this article provides 
resources to communication researchers who examine large numbers 
of factors at once and who seek to implement DCEs themselves.
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TABLE 10 Correlations between stimulus attributes and most-trustworthy selections by participant sex.

Mean correlation [99% confidence interval]

Stimulus attribute All participants (n = 600) Female participants (n = 314) Male participants (n = 286)

Sex 0.00 [−0.01, 0.02] −0.00 [−0.02, 0.01] 0.01 [−0.01, 0.03]

Age −0.01 [−0.02, 0.00] −0.01 [−0.02, 0.01] −0.01 [−0.03, 0.03]

Ancestry 0.06 [0.13, 0.07] 0.11 [0.10, 0.13] 0.00 [−0.01, 0.02]

Expression −0.04 [−0.05, −0.02] −0.08 [−0.10, −0.06] 0.01 [−0.00, 0.03]

BMI 0.01 [0.00, 0.03] 0.02 [−0.00, 0.03] 0.02 [0.00, 0.03]

Tattoos −0.11 [−0.12, −0.10] −0.11 [−0.12, −0.09] −0.11 [−0.12, −0.09]

Hair length 0.00 [−0.01, 0.02] 0.00 [−0.02, 0.02] 0.01 [−0.01, 0.03]
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