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Multimodality and disciplinary 
learning: the case of purposeful 
transformation in the sciences
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Introduction: In this paper we discuss disciplinary learning and the roles that 
different modalities can play in the process. We first describe the extant research 
in the field of social semiotics with an emphasis on the functions of affordance 
and transduction in university science, before presenting the comparatively 
sparse research on transformation. Our goal is to identify whether the process 
of transformation, besides its previously described procedural functions, can 
have important meaning making functions as well.

Methods: Taking the discipline of cosmology as our point of reference, our 
data consist of four different forms of the mathematical rearrangement of the 
Friedmann equation, as observed in university lectures. We analyzed these forms 
for their meaning making functions using abductive reasoning and the framework 
of symbolic forms.

Results: We identify an important, hitherto undescribed type of meaning-making 
—purposeful transformation. We describe its key characteristics (narrowing down 
meaning potential, foreground-background movement and purposeful direction) 
and we provide a first definition.

Discussion: First, we discuss the implications of our findings on social semiotics 
theory, focusing on the notions of disciplinary and pedagogical affordance and the 
possibility of identifying purposeful transformations in other semiotic systems. Finally, 
we demonstrate its importance in the teaching and learning of natural sciences.
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1 Introduction

This paper is framed within the field of social semiotics. We draw on Airey and Linder (2017: 
95) who define social semiotics as “… the study of the development and reproduction of 
specialized systems of meaning making in particular sections of society.”1 The particular section 
of society we are interested in are those involved in university science. Our aim is to better 

1  Note that the Airey and Linder (2017) definition of social semiotics is broader than some contemporary 

interpretations where, for many, the field has come to be viewed as synonymous with the analysis of 

socially constructed power relations. This issue is discussed in Volkwyn et al. (2020), where the authors 

point out the limiting nature of such a narrow interpretation of social semiotics—particularly for those 

interested in developing more effective teaching methods through multimodal analysis of disciplinary 

meaning-making. For such researchers, the issue is less about unveiling and challenging hegemonic 

discourse patterns, but much more about understanding how a discipline multimodally constructs its 

knowledge claims. Following Butler (1997), the authors note that for science students, the paradox of 

achieving agency lies in submitting to a discourse they themselves had no part in creating.
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understand the roles of the specialized meaning-making systems 
developed by scientists in order to generate recommendations for 
teaching and learning science disciplines. Following the US National 
Research Council’s description of discipline-based education research, 
our ultimate goal is to “…understand the nature of expertise in a 
discipline” (2012: 9).

The transition from novice to expert has been variously framed in 
terms of the development of: disciplinary literacy (e.g., Moje, 2007; 
Shanahan and Shanahan, 2012; Airey and Larsson, 2018), representational 
competence (e.g., Kozma and Russell, 2005; De Cock, 2012; Volkwyn et al., 
2020), professional vision (e.g., Goodwin, 1994), or disciplinary 
discernment (e.g., Eriksson et al. 2014). A common denominator in each 
of these descriptions of acquiring disciplinary expertise is learning to 
interpret and use the specialized meaning-making resources of the 
discipline in order to either: see new things, or see old things in new ways. 
Thus, one important way of fostering disciplinary expertise is to help 
students to first experience new ideas/phenomena and then to encourage 
them to describe these using the paradigmatic resources of the discipline. 
It is here that variation theory can be gainfully leveraged.

The variation theory of learning claims that the human mind is hard-
wired to notice change (Marton and Booth, 1997). In this respect, it has 
been shown that carefully changing aspects of an object of learning can 
help students notice pertinent features of that object (Ling Lo, 2012; 
Fredlund et al., 2015). Semiotically, it has been pointed out that there are 
two types of change that are possible: transformation and transduction 
(Bezemer and Kress, 2008). Transformation involves changes to the object 
of learning within the same semiotic system (mode), while transduction 
entails moving the object of learning to a new semiotic system. Of the two, 
transduction has been seen as the most useful for learning, due to the 
particular demands placed on an object of learning when moving between 
semiotic systems (Volkwyn et al., 2019). Consequently, there is much less 
research with transformation as its focus.

Particularly within mathematics and physics education, 
mathematical transformation (i.e., mathematical manipulation) has 
often been framed as a rule-based, mechanical process employed to 
reach a particular result, with little, if any meaning-making function 
(Duval, 2006; Tuminaro and Redish, 2007). In this paper we set out to 
demonstrate the value of transformation in science education, not 

simply as a method for numerical problem solving, but rather as a 
central aspect of the day-to-day reasoning of science professionals. 
We introduce the term purposeful transformation to describe a type of 
transformation that we have identified that is regularly used in meaning-
making situations in the natural sciences. Using Sherin’s (2001) notion 
of symbolic forms, we analyze a chain of mathematical transformations, 
revealing the underlying mechanism of this reasoning process.

Finally, in the last sections of our paper, we explore what the 
notion of purposeful transformation might suggest for social semiotic 
theory and how it reframes several ideas around multimodal and 
monomodal approaches in physics education.

2 Multimodality and social semiotics

Science disciplines utilize a wide range of semiotic resources 
(graphs, language, diagrams, mathematics, etc.) when creating and 
communicating scientific knowledge (Kress et al., 2001b). Building 
on this central observation, Airey and Linder (2009) posited that 
there is always a critical constellation of semiotic resources or modes 
that is necessary for holistic representation of any given science 
concept (Figure 1). Their idea is that from an educational perspective 
it is necessary to orchestrate a specific set of resources belonging to 
different semiotic systems (modes) in a very specific way, in order to 
provide access to the various aspects of disciplinary knowledge that 
make up a given disciplinary concept. It follows then, that for 
someone to gain such holistic access to a particular disciplinary 
concept, it is crucial that they acquire some measure of “fluency” 
(Airey and Linder, 2017: 102) in each of the meaning-making systems 
that together constitute the critical constellation for that concept. By 
the same token, this also suggests that it is often impossible to 
holistically experience disciplinary knowledge by becoming fluent in 
one semiotic system alone (Airey and Linder, 2009).

Different disciplines place different emphases on semiotic systems. 
Thus, while a student of history could potentially gain a great deal of 
disciplinary knowledge by developing fluency in written language, it is 
impossible for a physicist to become an expert in their field through 
written language alone. Typically, a physics student needs to be fluent 

FIGURE 1

A critical constellation of semiotic resources: a specific set of semiotic resources, coordinated in a particular manner is needed to gain holistic access 
to disciplinary knowledge [adapted from Airey and Linder (2009)]. The question mark illustrates the fact that we usually do not know what the full set of 
resources needed are.
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in disciplinary language, mathematics, graphs, diagrams and hands-on 
work with apparatus at the very least (Airey, 2009).

Within a scientific discipline, a variety of semiotic resources are used 
for different purposes. These could be for conducting scientific work and 
communication among disciplinary experts or for teaching relevant 
disciplinary concepts to students. It is important to note here, that the 
semiotic resources needed for students to learn often differ from the ones 
that are used by experts within the discipline. For example, for pragmatic 
reasons, experts tend to use resources that omit certain information. For 
educational purposes however, much of the omitted information needs 
to be present for a student to access disciplinary knowledge for the first 
time. Two main concepts have been used to describe this phenomenon: 
disciplinary and pedagogical affordance (Airey, 2015). Disciplinary 
affordance is used to indicate “the agreed meaning-making functions 
that a semiotic resource fulfils for a particular disciplinary community,” 
whereas pedagogical affordance is defined as “the aptness of a semiotic 
resource for the teaching and learning of some particular educational 
content” (Airey, 2015).

Evidently, from what we have described so far, the educational 
task of getting students to be  able to “read” disciplinary 
representations in an expert manner becomes important. Disciplinary 
representations need to be unpacked so that students can access the 

full meaning that they entail (see for example, Airey and Eriksson, 
2019; Patron et al., 2021). Unpacking can be also seen as increasing 
the pedagogical affordance of a semiotic resource, and that will 
almost certainly result in decreasing the disciplinary affordance 
(Airey and Linder, 2017) (see Figure  2). Along with unpacking, 
repacking semiotic resources is important for the teaching and 
learning of a discipline (Patron, 2022). Repacking in this sense does 
not just mean to once again present the students with the disciplinary 
semiotic resource after it has been unpacked. More so, it means that 
students need to be  guided to “translate between unpacked 
representations and disciplinary representations that they need to 
[…] understand and communicate in an […] appropriate disciplinary 
way” (Patron, 2022, p. 89). Note that the repacked resource regains 
its disciplinary affordance, but of necessity loses the pedagogical 
affordance that the unpacked resource had.

2.1 Transduction as the key to multimodal 
learning

Based on these observations, the concept of transduction—the 
movement of the object of learning across different semiotic 

FIGURE 2

Disciplinary vs. pedagogical affordance (Airey and Eriksson, 2019): unpacking a semiotic resource means to raise its pedagogical but lower its 
disciplinary affordance. Repacking a semiotic resource leads to gaining back its disciplinary affordance, but simultaneously losing its pedagogical 
affordance.
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systems—has been claimed to be of the utmost importance for 
teaching and learning (Bezemer and Kress, 2008). This is because 
the differences in the affordances of the original and new semiotic 
systems necessitate that some aspects of the object of learning 
become “hidden” after transduction, whilst other aspects become 
foregrounded. Kress et al. (2001a,b) have further explored the idea 
that different semiotic systems have different affordances, or 
different ways of representing disciplinary knowledge. According 
to them, each semiotic system has its own potentials and 
limitations for representation. For example, language might 
be best at providing definitions or categorical distinctions. Images 
are better at contrasting and highlighting elements and identifying 
regions—something that language could prove to be  limited 
in achieving.

Hence, a lot of attention has been focused on the act of moving 
meaning across semiotic systems (transduction). This comes with 
inevitable changes to the meaning being made, due to the different 
affordances of the semiotic systems used. A good illustration of this 
can be seen by considering a simple everyday phrase such as “The man 
moved out of the way” (Volkwyn et al., 2019). Using language as a 
semiotic system, this phrase allows ambiguity regarding the direction 
of the movement. However, if we  transduce the meaning of this 
sentence to a sketch, then we would have to inevitably illustrate the 
direction of this movement, depicting whether the man moved 
forwards, backwards, left, right, etc.

Thus, it has been shown that carefully planned transduction 
can lead to students noticing new aspects of an object of learning 
(Volkwyn et al., 2020; Airey and Linder, 2017). Consequently, 
several researchers have highlighted the importance of 
transduction from a meaning-making perspective in teaching and 
learning contexts (Pantaleo, 2024; Svensson et al., 2022; Svensson 
and Eriksson, 2020; Tytler and Prain, 2022; Volkwyn et  al., 
2019, 2020).

In mathematics, for example, Duval (2006: 7) claims that 
“passing from one register to another [makes] explicit other 
properties or aspects of the same object.” For Duval, this means that 
when moving the object of learning across the different modes of 
representation (word problems, graphs, equations, etc.), different 
aspects of (mathematical) knowledge are made explicit, or, in 
meaning-making terms, different meaning potential becomes 
unlocked (Airey and Linder, 2017). Similarly, Volkwyn et al. (2019) 
highlighted the important role of transduction across semiotic 
systems in science teaching and learning. The authors showed how 
different meaning-making possibilities become available when 
students transduce disciplinary knowledge across different semiotic 
systems in a science classroom. A fundamental observation here 
was an end point, where students began performing spontaneous 
transductions of their own volition—this was seen as a sign of 
learning taking place (Volkwyn et al., 2019). In an even broader 
sense, the ability to transduce knowledge across semiotic systems is 
considered to be  key for the goal of achieving representational 
competence (Volkwyn et  al., 2020). This means that within a 
scientific discipline, representational competence is achieved in a 
twofold way. It can be seen as made up of the ability to fluently use 
and interpret resources that belong in different systems (i.e., graphs, 
diagrams, mathematics) accompanied by the ability to move 
meaning across different resources that highlight the same concepts 
(Volkwyn et al., 2020).

2.2 Transformation the poor relation of 
transduction?

In comparison to transduction, the process of transformation—
manipulating a resource within the same semiotic system—has 
generally been viewed as having lesser importance for teaching and 
learning. For example, in work done in physics and mathematics, 
mathematical transformation has often been framed as a second 
order, rule-based system that should only be employed after one has 
reasoned conceptually about a problem, as a means to arrive at a 
numerical result (Duval, 2006; Tuminaro and Redish, 2007). This is 
because of the inherent differences between transduction and 
transformation (for a summary, see Table  1 below). While 
transduction of necessity always entails changes in an object of 
learning, similar changes through transformation are far from 
guaranteed. Educationally, this means that any change in an object of 
learning through transformation will probably need to be specifically 
engineered by the teacher in order to be effective.

Unsurprisingly, then, there is little work in the literature specifically 
dedicated to transformation and its functions. In mathematics, Duval 
(2006) has suggested that transformation (or treatment, as he calls it) 
fills an important disciplinary function when solving equations to arrive 
at numerical answers, although he suggests the process is not involved 
in meaning-making per-se. Duval claims that meaning is made during 
the two processes of transduction necessary for mathematical problem 
solving: firstly, when a mathematical word problem is transduced into 
the system of mathematics, and finally when a numerical answer has 
been found and its meaning is reinterpreted in the terms of the original 
word-based system. For Duval, then, the process of transformation—i.e. 
the mathematical manipulation necessary to achieve the final answer—
is seen as a rule-based process that occurs quite separately from 
meaning-making. Similar ideas can be found in the physics education 
literature, in work that explores student use of mathematics in physics. 
For example, Tuminaro and Redish (2007) argued that physics students 
often resort to “plug and chug” when dealing with equations. The term 
“plug” refers to inserting numerical values into equations and “chug” 
refers to performing algorithmic transformations in order to get a 
numerical result. According to Tuminaro and Redish (2007), when 
students resort to “plug and chug,” they do not attempt to conceptually 
understand a physics concept or an equation—instead, they simply 
identify its symbol and the equation that relates that symbol to other 
known quantities, substitute in values and produce a numerical answer, 

TABLE 1  Comparison between the processes of transduction and 
transformation.

Transduction Transformation

What it is Movement of the object of 

learning across semiotic 

systems.

Manipulating the object of 

learning within the same 

semiotic system.

What it does Always entails changes to the 

object of learning.

Alters some features of a 

semiotic resource.

No guaranteed change in the 

object of learning.

Example Verbally describing the 

relationship between two 

variables by looking at a graph.

Algebraically manipulating 

an equation to obtain a 

numerical result.
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often without an understanding of what that answer means. Airey and 
Linder (2017) also report instances where students suggest that although 
they can perform mathematical operations to calculate a specific 
concept (the curl of the electric field), they do not know what it actually 
means. Writing for physics teachers, de Winter suggests that it is 
important to stress for students that a number without units is 
meaningless. It is the process of adding units to a numerical answer that 
gives meaning to a number generated by the mathematics (de Winter 
and Airey, 2022).

To summarize, we believe that these authors all point towards the 
same idea: transformation is viewed as important when it comes to 
its technical disciplinary function (numerical computations, in this 
case), but it is not seen as particularly important when it comes to 
meaning-making functions for physics teaching and learning. 
Following this idea, we could argue that, since (as mentioned above) 
it is regarded as impossible to fully experience disciplinary knowledge 
in one semiotic system alone (Airey and Linder, 2009), then 
transformation should logically be seen as inherently less important 
than transduction in mathematics and physics education. This is also 
supported by the fact that while transduction has been quite well 
explored in a number of studies that analyze physics education with 
a social semiotics framework (Svensson et al., 2022; Svensson and 
Eriksson, 2020; Volkwyn et  al., 2019, 2020), the concept of 
transformation remains underexplored.

2.3 Using mathematics in physics: the role 
of transformation

We believe that viewing transformation as less useful than 
transduction semiotically overlooks a number of specific functions 
that transformation plays in the creation and communication of 
disciplinary knowledge. Drawing from the same field of study (the 
use of mathematics in physics), we  identify several works that 
highlight that the use of mathematics in physics fills other functions 
than simply calculating values—mathematics also plays a role in 
building physics intuition and engaging in meaning making 
(Redish, 2006, 2021). Redish (2006) points out that while we often 
consider mathematics to be  the language of physics, there is a 
fundamental difference when using mathematics in mathematics 
and mathematics in physics; in physics, we  want to not only 
calculate, but also to describe and understand physical systems. In 
other words, mathematics in physics is loaded with physical 
meaning, and that distinguishes the ways in which physicists engage 
with equations for the purposes of their scientific work. Building on 
this aspect, a number of researchers have explored the ways in 
which these two aspects of mathematics (computation and meaning 
making) coexist in physics, proposing models to describe how 
mathematics is used in physics to fulfill both of these functions 
(Redish, 2006; Uhden et al., 2012; Van Den Eynde et al., 2020). In 
this area, the seminal contribution comes from Sherin and his 
framework of symbolic forms (Sherin, 2001). According to Sherin, 
symbolic forms consist of a conceptual schema (idea or conceptual 
meaning) that is assigned to a mathematical symbol template, an 
arrangement of mathematical symbols that students identify when 
engaging with an equation and assign meaning to. Sherin proposed 
a semi-exhaustive list of symbolic forms that give insight into how 
students understand physics equations. In his own words, this is like 

“adding semantics to an equation” (Sherin, 2001, p. 504). Some 
examples from Sherin’s semi-exhaustive list of symbolic forms can 
be found in Table 2 above.

In our opinion, the above raises a particular question: if physics 
assigns meaning to mathematics, then is it possible that 
mathematical transformations can have important meaning making 
functions even though they do not change the semiotic system of 
representation? Performing transformations in the semiotic system 
of mathematics involves rearranging equations. Even though, as 
mentioned above, the process of rearranging has been regarded as 
almost exclusively serving computational functions in physics, 
there are some traces in the literature that suggest that rearranging 
an equation can also have meaning making aspects. One convincing 
example can be found in Eichenlaub and Redish (2019), where the 
authors describe how a student taking part in their study performed 
a rearrangement of a “formal” equation not in standardized and 
procedural terms, but in a way that blended physical meaning and 
mathematical reasoning to arrive at a logical solution. However, this 
topic remains underexplored.

3 Aim and research questions

For our part, our aim with this paper is to describe a certain type 
of transformation of a semiotic resource, which we term purposeful 
transformation, that we  believe showcases important meaning-
making functions with clear teaching and learning implications. 
Drawing from the ideas described in the introduction, we turned our 
interest to the semiotic system of mathematics in physics education, 
focusing on one specific equation and its rearrangement as a case 
study—the Friedmann equation in Cosmology. This equation gives 
physicists insight into both the geometry and evolution of the 
universe. The transformation of the Friedmann equation is popular 
in the physics community, as it serves a number of disciplinary 
functions, and is seen as a fundamental part of a novice cosmologist’s 
and astronomer’s education.

Our research questions are as follows:

	•	 What are the characteristics of purposeful transformation, that 
make it important from a meaning making perspective?

TABLE 2  Sherin’s semi-exhaustive list of symbolic forms (Sherin, 2001).

Cluster Symbolic form Symbol pattern

Competing terms Competing terms □ ± □ ± …

Opposition □−□

Terms are amounts Parts-of-a-whole [□ + □ + □…]

Base ± change [□ ± △]

Dependence Dependence […x…]

Coefficient Coefficient [x□]

Scaling [n□]

Proportionality Prop+ … … 
 … 

x

Ratio  
 
 

x
y

Other Identity x = …
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	•	 What are the theoretical implications of purposeful transformation 
in the context of social semiotics and multimodality?

In addition, in the discussion of our results, we aim to demonstrate 
how the concept of purposeful transformation can affect the teaching 
and learning of physics and astronomy.

4 Data and methodology

4.1 Data collection

Our data are collated from lecture notes for three separate 
university courses in Cosmology at two large research-based 
universities in Sweden:

	 i)	 Nuclear and particle physics, astrophysics and cosmology 
(undergraduate level).

	 ii)	 Cosmology (open to both undergraduate and graduate students).
	iii)	 Cosmology and Multi-messenger Astrophysics (graduate level).

Data from these courses were collected as part of a larger semiotic 
audit, documenting and categorizing the various semiotic systems and 
individual semiotic resources used in undergraduate astronomy 
education (Kapodistrias and Airey, in review). For this article we focus 
on the semiotic system of Mathematics. Specifically, our data consist of 
different forms of a fundamental cosmological equation—the 
Friedmann Equation. This equation affords cosmologists insights 
regarding the dynamics and the geometry of the Universe. In all three 
courses, lecturers performed a specific rearrangement of this equation 
and subsequently gave it to their students to perform as a problem-
solving activity. Despite differences in the way the rearrangement was 
performed, which can be associated with the individual choices of each 
lecturer and the different goals of each course, in all three courses 
we could identify a common underlying logic. The original, complex 
equation was transformed into a form that could be used to answer 
specific questions about the contents and the geometry of the Universe.

By combining data from all three courses, we chose the following 
transformations between different forms of the equation, which 
we believe to be representative of the transformations performed by 
all three lecturers.

The initial (well-known) form of the Friedmann equation 
describes how the universe expands over time, depending on what it 
contains. This is particularly important in cosmology because the 
equation is then essentially saying where the universe came from, 
how it developed and its future fate. By substituting in the speed of 
expansion of the universe that we can see today through observation 
and making some assumptions about the total contents of the 
universe, cosmologists can determine three possible scenarios for the 
geometry of the universe: closed, flat, or open. These three options 
essentially determine whether the universe will continue expanding 
forever, or eventually contract to a so-called “big crunch.”

In what follows, we present each of the forms of the equation in the 
chain of transformations along with a brief explanation of the symbols 
involved. Important note to the reader: it is not necessary to be able to 
follow the mathematics here in order to understand our later findings.

	•	 Line 1: Initial Form

	

( )
( ) ( )

( )
π κε

 
= −  

 



2 2

2 2 2
0

8 1
3

a t G ct
a t c R a t

Without going into too much detail, the ( )a t  symbol indicates 
how much the universe has expanded at any given time, the ( )ε t  
symbol indicates the amount of different components (matter, 
radiation, and dark energy) that make up the universe as a whole and 
κ  indicates the three possible types of shape of the universe:

Closed (κ = −1), flat (κ = 0), or open (κ = +1). We need not worry 
about the meaning of the other symbols.

In order to move to the second form of the equation, the so-called 
Hubble parameter is introduced:

	 ( ) ( )
( )

 
=   
 

a t
H t

a t

The Hubble Parameter indicates how fast the universe is 
expanding and was first introduced by the astronomer Edwin Hubble 
in 1929. Estimating the current value of the Hubble Parameter is an 
open problem in Cosmology. Substituting this parameter into the 
original equation is the first transformation performed and leads to 
the second form of the equation:

	•	 Line 2: Second Form

	
( ) ( )

( )
π κε= −

22
2 2 2

0

8 1
3

G cH t t
c R a t

In order to make the next transformation, students are introduced 
to the concept of critical density, the energy density needed for the 
universe to be flat:

	
( ) ( )

ε
π

=
223

8c
c H t

t
G

Dividing both sides of the equation by this critical density, the 
previous line becomes:

	

( )
( ) ( ) ( )

επ π κ π
ε

= − ⇒
2

2 2 2 2 22
0

8 8 1 8
3 3 3c

tG G c G
tc c R a t c H t

Then, dividing by 	
π
2

8
3

G
c

gives: 
	

( )
( ) ( ) ( )

ε κ
ε

= −
2

2 22
0

1
c

t c
t R a t H t

Cosmologists then introduce the density parameter Ω which they 
define as the ratio of the energy density of the universe at any given 
time, over the critical energy density:
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This means that the new term Ω indicates how “far away” the 
universe is from being totally flat.

	
( )

( ) ( )
κ

=Ω −
2

2 22
0

1 ct
R a t H t

A simple rearrangement leads to the third form:

	•	 Line 3: Third Form

	
( )

( ) ( )
κ

−Ω = −
2

2 22
0

1 ct
R a t H t

By comparing the left and right side of this form of the equation, 
it becomes possible to make the following statements:

	•	 If Ω = 1, then κ = 0 (flat universe).
	•	 If Ω < 1, then κ > 0 (open universe).
	•	 If Ω > 1, then κ < 0 (closed universe).

In the final form, the Ω parameter is broken down into the sum 
of all the energy densities associated with the different components 
of the universe (matter, radiation, dark energy) 
( ΛΣΩ =Ω +Ω +Ωi m r ). Moreover, a new density parameter is also 
introduced, associated with the curvature of the universe:

	 ( ) ( )
κ

κ
Ω = −

2

2 22
0

c

R a t H t

This leads us to the final form of the equation:

	•	 Line 4: Fourth Form

	 κΣΩ +Ω =1i

This form of the equation clearly highlights a very important 
relationship for cosmologists: the density parameters of each 
component of the universe, plus the curvature density parameter, 
add up to a constant number (1). This means that depending on the 
shape of the universe (open, flat or closed) we would expect to find 
different values for the density parameters. In simpler terms, that 
means that the shape of the universe “tells” us how much “stuff ” 
(energy, radiation, dark energy) we should expect to find in it (see 
Table 3).

4.2 Methodology

Our analysis is primarily inspired by Sherin’s framework of 
symbolic forms (Sherin, 2001). In his work, Sherin examined 
undergraduate physics students attempting to construct equations 
when dealing with physics problems. Students were faced with 
several physics problems with the final goal of constructing an 
equation that would describe the physical system at hand. By 
recording and analyzing their discussions during the equation 
construction, Sherin provided detailed descriptions about several 
ways in which students assign meaning to mathematical 
symbolism in an attempt to describe a “real world” physics 
situation. These descriptions were subsequently formulated into 
the semi-exhaustive list of symbolic forms that we  described 
above. This semi-exhaustive list can work in two ways: it not only 
indicates how students make meaning when constructing 
equations, but also how they attempt to interpret and assign 
meaning to mathematical symbolism, when they are faced with a 
physics equation.

For our data analysis, we  followed methods from the 
framework of abductive reasoning (Upmeier zu Belzen et al., 
2021). In abductive reasoning, data are first collected in an 
exploratory way and in a second stage are fitted into a 
pre-existing theoretical framework. For us, this framework was 
Sherin’s semi-exhaustive list of symbolic forms. However, the 
subsequent steps of abductive reasoning methodology, such as 
collection of new data, discrimination of plausible explanations, 
or checking for consistency were not implemented. This is 
because rather than attempting to expand the already existing 
theoretical framework of symbolic forms, we  were simply 
interested in applying it to our data in our attempt to better 
understand the transformation of the equation. Since Sherin 
claims that symbolic forms add semantics to an equation, 
we  intuitively felt that this could be  a useful framework for 
our endeavor.

We adopted the following approach: Each line in the 
transformation has the possibility to be associated with several 
of Sherin’s symbol templates. We therefore separately examined 
each line of the transformation of the Friedmann equation 
identifying all the symbolic forms that could potentially 
be  assigned to that line. Since each of these possible symbol 
templates is associated with a different conceptual schema, 
we  then essentially have a list of the possible mathematical 
meanings that can be made with that line of the transformation. 
This approach therefore gives us the opportunity to “map out” 
the potential conceptual meanings that can be associated with 
each line of the transformation. Our argument is that when 

TABLE 3  Transformation of the initial form of the Friedmann equation.
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students are presented with these equation forms for the first 
time, they will automatically attempt to interpret them using one 
or more of these potential templates.

Let us illustrate our methodology with a simple example of how 
we applied it to a specific line of the equation. For simplicity, we can 
choose the fourth form of the equation:

	 κΣΩ +Ω =1i

The symbolic forms framework states that this symbol 
template can potentially be associated with just two different 
conceptual schemas, resulting in two different symbolic forms: 
competing terms and parts of a whole. In terms of meaning 
making, this means that students can potentially conceptualize 
this line of the transformation in two different ways: Either they 
activate the competing terms symbolic form to make sense of the 
different density parameters as competing influences that 
“battle” each other (if one increases, the other will need to 
decrease), or they activate the parts of a whole symbolic form 
and think of them as two different “ingredients” that make a 
whole. In this way, we  believe we  have mapped out the 
disciplinary meaning potential of this specific line in the 
transformation. For reference, we  have included a detailed 
description of all the symbolic forms used in our analysis in 
the Appendix.

5 Data analysis

5.1 Reduction in the number of potential 
symbolic forms

Our first finding from applying the methodology described 
above is that as we move from line to line in the rearrangement, the 
number of potential symbolic forms decreases. This is evident from 
the fact that while the initial form of the equation has very many 
potential symbol templates, that can be  associated with it, each 
subsequent line is transformed so that fewer and fewer potential 
symbol templates are possible. Finally, what emerges as the final 
form of the equation can be  associated with only two different 
schema: competing terms or parts of a whole. A summary of this 
analysis can be found in Table 4.

5.2 Research question Ι: purposeful 
transformation

In this section, we would like to discuss the implications of our 
previous analysis, regarding the possible meaning making functions 
that transformation of a semiotic resource can have. Based on our 
analysis, we  identify a certain type of transformation of semiotic 
resources that displays three characteristics (narrowing down 
meaning potential, moving meaning from the foreground to the 
background and a purposeful direction) and we attempt to give a first 
definition of this type of transformation process. These three 
characteristics, in our opinion showcase how transformation can play 
an important role in meaning making, contrary to what has been 
suggested in earlier research, as described in section 1.

5.2.1 Narrowing down the meaning potential
The first characteristic that stems out of our analysis is the 

narrowing down of the meaning potential of the initial semiotic 
resource. According to Airey and Linder (2017), the notion of 
meaning potential is one of the key reasons why the social semiotics 
framework can produce useful insights in the context of university 
physics’ teaching and learning. Meaning potential refers to the idea 
that each semiotic resource does not possess a single fixed meaning; 
rather, depending on the task at hand or a student’s prior knowledge 
and experience, each resource comes with a range of meaning 
potentials. Consequently, identifying which meaning potentials 
become activated by a particular semiotic resource in an educational 
setting becomes important. Building on this idea, it has also been 
suggested that for a better understanding of physics teaching and 
learning, we need not only to examine how meaning is transferred 
across semiotic systems but also to focus on individual semiotic 
resources and their range of meaning potentials (Airey and 
Linder, 2017).

Drawing on this idea of meaning potential in our analysis, we can 
see that each symbolic form represents a different meaning potential 
of the equation form that it is associated with. For example, in Line 4 
of the transformation of the Friedmann equation (final form), the two 
different associated symbolic forms represent two different possible 
meanings that students may assign to it: the universe consisting of 
different influences in competition (competing terms) or the universe 
as a whole consisting of different “ingredients” (parts of a whole). 
Following on from that, the reduction in the number of symbolic 

TABLE 4  Reduction in the number of symbolic forms in the line-by-line rearrangement of the Friedmann equation.

Lines Equation forms Possible symbolic forms
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4 κΣΩ + Ω = 1i
PARTS OF A WHOLE, COMPETING TERMS.

Multiple or fewer indicates that the aforementioned symbolic form can be applied multiple or fewer times in this equation form.
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forms as we move from line to line in the transformation, means that 
the initial range of meaning potentials becomes narrower. Examining 
the initial form of the equation, we can clearly see many different 
symbolic forms that can potentially be associated with it—this 
accounts for a wide range of meaning potentials. Whilst this is a true 
reflection of the many possible uses of the equation, this also makes 
it difficult to use the equation as is for meaning-making purposes. The 
final form of the equation, however, only offers the potential to make 
meaning in two ways and is therefore more useful (Figure 3).

Hence, one of the meaning-making functions that we identify for 
this type of transformation is that it narrows down the meaning 
potential of the initial semiotic resource.

5.2.2 Moving meaning between the foreground 
and the background

The second characteristic that we  identify for this type of 
transformation stems primarily from the introduction of new terms in 
each subsequent equation form. At first glance, looking at the first and 
the final form of the equation, it is almost impossible to recognize that 
they are the same equation. A lot of aspects that are present in the initial 
form (for example, symbols like c or a(t)) are absent from the final form, 

whilst new ones have emerged (e.g., the Ω symbol). It is as if the 
cosmologists performing this rearrangement carefully chose which 
aspects of the initial equation they wanted to “hide” and which others 
they wanted to highlight in the final form. This procedure, in the 
semiotic system we are examining (mathematics), occurred by grouping 
terms together and “hiding” them under a new, single label (in our case 
the Ω parameter). We identify this procedure as a movement of meaning 
between the foreground and the background of the semiotic resource 
and we believe it to have important meaning-making functions.

According to Marton and Booth (1997), in order to assign 
meaning to something it is crucial to be able to discern it from its 
environment. This is: assigning meaning to something refers to 
distinguishing it from the whole that it belongs to and simultaneously 
discerning its parts and how they relate to each other (Marton and 
Booth, 1997). Let us examine this particular transformation from this 
perspective. In the final form of the equation the mathematics leads 
us to the following insight:

	•	 If Ω = 1, the universe is flat.
	•	 If Ω < 1, the universe is open.
	•	 If Ω > 1, the universe is closed.

FIGURE 3

The reduction in the number of symbolic forms indicates a narrowing down of the meaning potential of the initial semiotic resource. Each symbolic 
form represents a different way of assigning meaning to the equation—a different meaning potential. Hence, when fewer symbolic forms are 
associated with the equation, its meaning potential has been narrowed down.
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In order to achieve that meaning-making capacity, the initial 
semiotic resource was transformed in a way that is in line with the 
part-whole relationship described by Marton and Booth. The parts 
that had to be discerned from the whole were identified (the terms 
that had to do with the different contents of the universe and its 
geometry) and they were distinguished from the whole by “hiding” 
the rest of the terms under newly introduced labels. Consequently, in 
the final form of the equation a relationship between the highlighted 
parts could be established and a particular meaning-making potential 
emerged. Therefore, we  identify this foreground-background 
interplay as the second characteristic of our examined transformation, 
that gives it important meaning-making functions.

5.2.3 Purposeful direction
The previous two characteristics we  described, generally 

provide insight as to how the initial equation is transformed into a 
form that is easier to reason with. The third characteristic that 
we  observed has to do with the directionality of this process. 
We  suggest that in order to fully describe the observed 
transformation, we  need an element of purposefulness. The 
transformations made are not random, rather they are purposefully 
moving towards a certain end point.

If one were to look at this transformation from a purely 
algebraic point of view, then the procedure might be considered 
random and pointless. Mathematically, this grouping up of specific 
terms under a different label has no clear value. In addition, 
algebraically speaking, there are a great number of possible 
transformations that could have been carried out without breaking 
mathematical rules. However, for cosmologists, the majority of 
those transformations are not valued; instead, the discipline of 
cosmology finds clear value in the particular transformation 
we describe that brought very specific concepts to the fore. These 
concepts had to do with the distribution between the different 
contents of the universe and its curvature and are highlighted by the 
Ω parameters in the last form of the equation.

Why did cosmologists choose, via this transformation, to 
highlight these specific aspects instead of other ones? We believe that 
this is where our argument about purposefulness comes into the 
picture. Cosmology, as a discipline, has long-standing questions 
regarding the geometry of the universe (is the universe open, closed, 
or flat?), the distribution between its different ingredients (how much 
matter, radiation and dark energy are there in the universe?) and the 
relationship between them (how does the distribution of these 
different ingredients affect the geometry?). The purposefulness of the 
transformation lies in the fact that cosmologists took a well understood 

equation and introduced new mathematical terms loaded with 
physical meaning in a way that was directed by their discipline’s 
questions of interest and meaning-making agenda.

5.2.4 Purposeful transformation: a definition
To answer our first research question, we will attempt to define 

purposeful transformation. Drawing from the characteristics 
described above, we define purposeful transformation as a shift in the 
meaning of a semiotic resource, without changing semiotic system. 
This shift in meaning does not occur randomly but is dictated by 
disciplinary questions of interests and overall agenda. The outcome of 
a purposeful transformation is a transformed resource that is more 
useful for creating and communicating knowledge than its initial 
form. A comparison of the differences between transduction, 
transformation and purposeful transformation can be  found in 
Table 5 below.

5.3 Research question II: implications on 
social semiotics

5.3.1 Disciplinary and pedagogical affordance
As mentioned earlier, the work of Fredlund et al. (2012) and Airey 

(2015) suggests that the disciplinary-specific semiotic resources used 
in science disciplines (such as Physics or Astronomy) have two 
different aspects of their affordances: disciplinary and pedagogical. 
Disciplinary affordance is described as the agreed meaning making 
function of a semiotic resource between the members of a disciplinary 
community (in this case physicists or astronomers), whereas 
pedagogical affordance is defined as the aptness of a semiotic resource 
to be used in an educational setting. Airey and Eriksson (2019) have 
described how these two terms generally tend to be  in functional 
opposition; the higher the disciplinary affordance—i.e. the more 
disciplinary-specific the resource is—the lower the pedagogical 
affordance tends to be. This is mainly because disciplinary practice 
and discourse is based upon the creation of semiotically dense 
resources, that leave out information that can be taken for granted by 
disciplinary experts. This practice has been described as creating a 
disciplinary shorthand (Airey and Linder, 2017). On the other hand, 
when these disciplinary semiotic resources are used in teaching, they 
are often as impenetrable to an outsider as shorthand. As a result, 
raising the pedagogical affordance of disciplinary resources by 
unpacking becomes an important task (Patron et  al., 2021). This 
necessarily involves lowering their disciplinary affordance—their 
parsimonious role as disciplinary building-blocks becomes unwieldy 

TABLE 5  Comparison between transduction, transformation and purposeful transformation.

Transduction Transformation Purposeful transformation

What it is Movement of the object of learning across 

semiotic systems.

Manipulating the object of learning within the 

same semiotic system.

Purposefully manipulating a semiotic resource 

within the same semiotic system in order to 

create new meanings.

What it does Always entails changes in an object of learning. Alters some features of a semiotic resource.

No guaranteed change in the object of learning.

Always entails changes in the object of learning.

Example Verbally describing the relationship between two 

variables by looking at a graph.

Algebraically manipulating an equation to obtain 

a numerical result.

Introducing new terms into an equation for 

reasoning purposes or plotting a theoretical 

curve in a graph of observational data.
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when everything is spelled out longhand. This is summarized in 
Figure  2, adapted from Airey and Eriksson (2019). However, our 
findings on the characteristics of purposeful transformation, give us 
new insight regarding the relationship between the concepts of 
disciplinary and pedagogical affordance. Our analysis indicates that 
when a semiotic resource is purposefully transformed, both its 
pedagogical and disciplinary affordances are raised (Figure  4, 
yellow arrow).

Firstly, from a disciplinary perspective, the purposeful 
transformation of the Friedmann equation led to a form that is widely 
useful for the discipline of Cosmology. As described before, the newly 
introduced Ω parameters are used by cosmologists to answer 
important questions for their discipline about the geometry of the 
universe, to calculate and compare with other observables and also to 
create new disciplinary semiotic resources (such as diagrams of model 
universes) with even further meaning making possibilities within the 
discipline. From all the above, it is evident that this purposeful 
transformation led to raising the disciplinary affordance of the initial 
equation form.

Second, from a pedagogical perspective, we believe that the first 
two characteristics of this purposeful transformation can lead to 

raising the pedagogical affordance as well. Narrowing down the 
meaning potential by reducing the number of associated symbolic 
forms with each line, brought the equation to a form where it became 
easier to conceptualize and reason with. From an equation with a 
wide range of meaning potentials, that was difficult to make sense of 
holistically, we transformed to an equation with just two possible 
meaning potentials. Introducing new terms and bringing certain 
aspects to the foreground of the semiotic resource, while 
simultaneously hiding others in the background, made it possible to 
transform the equation to a form where very specific physical 
arguments can be made with a simple, logical form (if Ω > … then 
the universe is…). Thus, in our opinion, purposeful transformation 
raises both the pedagogical affordance and the disciplinary affordance 
of the semiotic resource.

In summary, we  have shown that the pedagogical and 
disciplinary affordances of a semiotic resource are not always in 
functional opposition. With our notion of purposeful 
transformation, we have demonstrated how it becomes possible to 
simultaneously raise both affordances. This also demonstrates that 
unpacking a semiotic resource is not the only method for raising 
pedagogical affordance.

FIGURE 4

Disciplinary vs. pedagogical affordance. Purposeful transformation (yellow arrow) raises the disciplinary affordance and the pedagogical affordance of 
a semiotic resource simultaneously.
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5.3.2 Transformation just as useful as 
transduction: monomodal vs. multimodal

As described in our introduction section, researchers in social 
semiotics and multimodality generally agree that moving semiotic 
material across semiotic systems (transduction) is an important and 
challenging meaning-making task. That, along with the notion that in 
order to gain holistic access to disciplinary knowledge one has to 
become fluent in making meaning within several semiotic systems 
across a constellation of modes, has led to transduction being considered 
the primary meaning-making process. Performing transductions and 
their implications on the teaching and learning of science disciplines has 
been extensively explored in recent years, whereas transformations have 
not received the same attention in the literature.

We believe that with our characterization of purposeful 
transformation, we  have demonstrated that certain types of 
transformation can have important meaning making functions that 
can also be leveraged in science teaching and learning. All of the three 
characteristics of purposeful transformation that we described are 
valuable in a teaching scenario. Narrowing down the meaning 
potential can help with conceptualizing and mental modeling. The 
interplay between foreground and background increased the 
meaning-making capacity of the initial semiotic resource by allowing 
us to discern the important disciplinary aspects of the equation from 
the more complex whole. Finally, the purposefulness allows us to 
connect the whole procedure with the questions and interests of a 
scientific discipline, this is in stark contrast to the empty, algorithmic 
process that has been frequently reported.

Fredlund et  al. (2012) have shown that different semiotic 
resources within the same semiotic system can have very different 
affordances for the teaching and learning of physics. This is why, 
Airey and Linder (2017) have argued that when trying to understand 
physics teaching and learning, we need to focus not only on how 
we move across semiotic systems, but also on the individual semiotic 
resources and their particular affordances. Our work in this article 
builds on these arguments; we have demonstrated that individual 
semiotic resources can be  transformed in a way that facilitates 
meaning making and can be leveraged in educational settings. In 

multimodal terms, we believe that our work shows how monomodal 
processes can work within multimodal ensembles of semiotic 
resources in order to facilitate meaning making within a scientific 
discipline such as Cosmology. What we have demonstrated is how, 
without moving meaning potential across semiotic systems in a 
multimodal ensemble, we can remain within the same semiotic mode 
(in our case, mathematics), and still narrow down the meaning 
potential before we transduce it to other modes. This is an example 
of how transformation and transduction can work together in 
monomodal and multimodal settings, to further advance meaning 
making possibilities.

Drawing from our discipline of interest (cosmology), we can see 
practical examples of how purposeful transformation and transduction 
are implemented together by cosmologists, to create multimodal 
ensembles and facilitate meaning making. For example, after 
performing the purposeful transformation we examined in section 
4.1, cosmologists use the final version of the transformed equation 
( κΣΩ +Ω =1i ), to then plot the Ω parameters against each other and 
create graphs for cosmological models (Figure 5). These graphs help 
reveal how different combinations of cosmological parameters result 
in different “end of the universe” scenarios.

6 Discussion

6.1 Implications for future research

In this section we would like to suggest some implications of 
our work that can also lead to further explorations in the future. 
Firstly, our notion of purposeful transformation and what it means 
for multimodal teaching and learning can now be  a topic of 
discussion. Exploring purposeful transformation can give us further 
insight into how to leverage the affordances of individual semiotic 
resources within a multimodal ensemble, and how to use this in 
coordination with transductions in order to facilitate 
meaning making.

Additionally, we would like to stress the fact that while our case 
study in this article belongs to the semiotic system of mathematics, 
we  believe that it should be  possible to identify purposeful 
transformations and its three characteristics in other semiotic 
systems. The framework of symbolic forms that we used to analyze 
meaning making for this particle, has already been expanded to the 
semiotic system of graphs (Rodriguez et  al., 2020) with the 
introduction of the concept of graphical forms. This framework can 
be helpful for performing a similar analysis to the one we present in 
this paper in the semiotic system of graphs and further advance what 
we articulated as the characteristics of purposeful transformation in 
this article.

For example, a future question would be  how the three 
characteristics we  described for the purposeful transformation 
examined in this article, can occur within transformations in other 
semiotic systems. How might the narrowing down of meaning 
potential, movement between the foreground and background and 
the purposeful direction be instantiated in other semiotic systems, 
such as graphs, diagrams or images? Specifically for graphs, the 
framework of graphical forms should be  able to help us identify 
similar characteristics in this semiotic system. However, it is also of 
interest to investigate semiotic systems where such frameworks have 

FIGURE 5

Example of a graph of cosmological models, that forms a multimodal 
ensemble with the transformed version of the Friedmann equation.
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not yet been formulated, such as images. In the social semiotics 
literature, research has suggested that different systems posit different 
meaning making functions (Kress et  al., 2001a; Lemke, 2005). 
Therefore, identifying how purposeful transformation may alter the 
meaning making functions of resources belonging in different 
semiotic systems appears to be  a potential area of interest for 
further research.

An illustrative example of purposeful transformation in another 
semiotic system can be found in the process of fitting a theoretical 
curve between observational data points in a graph. When only the 
data points are plotted, it is impossible for disciplinary experts to 
infer which particular theoretical model fits the best. When 
theoretical lines are added to the curve (Figure 6), it becomes possible 
to reason that the data points correspond to a specific model better 
than other ones. Therefore, in this process, by transforming the initial 
semiotic resource without changing modes, new meanings were 
created by narrowing down the meaning potential of the initial form 
(plot of observational data points without theoretical lines).

7 Conclusion

Finally, in this paper we  have highlighted how purposeful 
transformation can result in a unique meaning making function 
that has not been described before—simultaneously raising both 
the pedagogical and disciplinary affordance of a semiotic resource. 
We believe that for future research in social semiotics, it would 
be also interesting to look at whether this process is possible within 
other semiotic systems. Our analysis demonstrates that, at least in 
the system of mathematics, it is possible to transform a resource in 
such a way. Extrapolating that idea, it is interesting to consider how 
could we  simultaneously raise the disciplinary and pedagogical 
affordances of semiotic resources in other systems such as graphs, 
images, etc. Identifying such processes in other semiotic systems 
has the distinct potential for furthering our understanding of the 
teaching and learning of science in higher education. It is important 
to remember that this process of purposeful transformation is not 
something that we simply invented—it is something that has been 

going on unnoticed for a long time in higher education science that 
we simply identified. However, now that we have identified this 
process it is easier for teachers think about how to intentionally 
create purposeful transformations in their teaching. As discussed 
in our introduction, creating more accessible semiotic resources for 
students is crucial for developing their representational competence. 
Thus, we believe that our notion of purposeful transformation and 
its possibility for development to include other semiotic systems 
can potentially add one more tool to the science teacher’s “toolbox.” 
For disciplinary outsiders, such as communication professionals, 
however, we suggest that while it is useful to know about purposeful 
transformation, it would be  difficult to leverage the process in 
teaching without disciplinary guidance. This is because it is 
important to understand the discipline’s topics of interest and how 
these can be realized through purposeful transformation. Rather, 
for this group we suggest that it is the end products of purposeful 
transformations that should be  the focus of interest. Here, 
encouraging student transductions has the distinct possibility to 
help foster disciplinary literacy. In the example we presented here, 
that could entail something as simple as asking students to describe 
in words the disciplinary meanings represented by the 
final equation.
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Appendix: Symbolic forms used in our data analysis

Competing Terms
Description: Influences in competition.
Symbol pattern: □ ± □ ± □…

Identification: Frequently forces but also other directed quantities such as momentum or acceleration. Often used in tandem with free-body 
diagrams with influences indicated as arrows. The signs of terms are often explicitly associated with directions on the diagram. Utterances often 
enumerate the influences acting in a circumstance and match to terms in the expression.

Opposition
Description: Two terms, separated by a minus sign, associated with influences that work against each other.
Symbol Pattern: □ − □

Identification: Similar to competing terms but limited to the special case of two influences that oppose. Common words: “oppose” and “opposing.”

Prop+
Description: Directly proportional to a quantity, x, which appears as an individual symbol in the numerator.

Symbol pattern: x… … 
 … 

Identification: One entity under discussion corresponds to an individual symbol that appears in the expression. Often spoken: “As X increases, 
then Y also increases.” Often includes the phrase proportional to.

Prop-
Description: Indirectly proportional to a quantity, x, which appears as an individual symbol in the denominator.

Symbol pattern: 
x
… 

 … … 

Identification: Often spoken: “As X increases, then Y decreases.”

Ratio
Description: Comparison of a quantity in the numerator and denominator.

Symbol pattern: x
y

 
 
 

Identification: In most cases, the quantities x and y have the same units. Utterances involve whether x or y is greater and whether the ratio is 
greater than, equal to, or less than one.

Parts-of-a-whole
Description: Amounts of generic substance, associated with terms, that contributes to a whole.
Symbol pattern: [□ + □ + □…]

Identification: Unlike competing terms, these entities are not influences. Utterances enumerate the parts that contribute to a whole, sometimes 
in correspondence with a diagram. Also indicated by inferences, such as the observation that if one part increases and the others are held fixed, 
then the whole increases.

Dependence
Description: A whole depends on a quantity associated with an individual symbol.
Symbol pattern: […x…]

Identification: The observation that a particular symbol appears in the expression. Common phrases: depends on, is a function of. Also indicated 
by inferences, such as if x varies, then the whole must vary.

Coefficient
Description: A product of factors is broken into two parts and one part is identified with an individual symbol, the coefficient.
Symbol pattern: [x□]

Identification: The symbol treated as the coefficient appears on the left. Utterances include that this symbol is “just a number,” “just a factor,” or 
“a constant.” Coefficients tune the size of an effect.

Identity
Description: A single symbol that appears alone on one side of an equation has the same properties as the expression on the other side.
Symbol pattern: x = …

Identification: Extremely common but rarely reflected in utterances. The individual symbol x is usually written on the left side of the 
equation. Allows very quick inferences that anything true of the expression on the right is true of the individual symbol on the left.
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