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Energy costs of communicating
with AI

Maximilian Dauner * and Gudrun Socher

Munich Center for Digital Sciences and AI (MUC.DAI), HM Hochschule München University of Applied

Sciences, Munich, Germany

This study presents a comprehensive evaluation of the environmental cost of

large language models (LLMs) by analyzing their performance, token usage,

and CO2 equivalent emissions across 14 LLMs ranging from 7 to 72 billion

parameters. Each LLM was tasked with answering 500 multiple-choice and

500 free-response questions from the MMLU benchmark, covering five diverse

subjects. Emissions were measured using the Perun framework on an NVIDIA

A100 GPU and converted through an emission factor of 480gCO2/kWh. Our

results reveal strong correlations between LLM size, reasoning behavior, token

generation, and emissions. While larger and reasoning-enabled models achieve

higher accuracy, up to 84.9%, they also incur substantially higher emissions,

driven largely by increased token output. Subject-level analysis further shows

that symbolic and abstract domains such as Abstract Algebra consistently

demand more computation and yield lower accuracy. These findings highlight

the trade-o�s between accuracy and sustainability, emphasizing the need for

more e�cient reasoning strategies in future LLM developments.
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1 Introduction

Artificial intelligence (AI) is transforming communication at all levels, from

one-on-one interactions to organizational and societal exchanges, by enhancing speed,

creativity, and personalization, while also raising challenges related to bias, privacy,

and governance (Polak and Anshari, 2024; Sonni, 2025). As AI technologies permeate

the communication domain, it becomes essential to quantify their environmental costs.

Natural Language Processing (NLP) is a subfield of artificial intelligence focused on

enabling computers to understand, generate, and interpret human language. In particular,

the rapid development and widespread adoption of large language models (LLMs) have

profoundly impacted NLP, communication research, and adjacent fields. LLMs are deep

neural networks trained on large corpora of text data to learn statistical patterns of

language, enabling them to generate and interpret human-like text. With new architectures

and benchmarks emerging on the scale of weeks or months, LLM capabilities and

applications are expanding at an unprecedented pace (Minaee et al., 2024; Movva et al.,

2024). These applications include multilingual machine translation (Zhu et al., 2024), text

summarization (Liu et al., 2024), question answering (Arefeen et al., 2024), and code

generation (Jiang et al., 2024). Following the release of ChatGPT, the average daily rate

of arXiv preprints mentioning “large language model” in their title or abstract rose from

0.40 to 8.58, highlighting the surge of interest in this domain (Zhao et al., 2024).

The growing adoption of LLMs has opened new research opportunities while

amplifying concerns about data security, cultural bias, and societal impact. Recent

studies reveal systemic issues of linguistic and cultural dominance, mainly driven by
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English-language training corpora, which threaten the inclusion

of AI systems (Wang et al., 2024; LI et al., 2024). In response,

researchers have proposed bias mitigation frameworks and

culturally adaptive training methodologies to promote more

equitable, globally representative LLMs (Wang et al., 2024).

These ethical and societal dimensions are increasingly reflected

in publication trends. Between 2018–2022 and 2023, the Computers

and Society subcategory on arXiv grew 20× faster in its share

of articles related to LLMs than other subfields. Submissions

on Applications of ChatGPT and Societal implications increased

eight times and four times, respectively (Movva et al., 2024).

Almost half (49.5%) of first authors in 2023 LLM papers

and 38.6% of corresponding authors had no previous NLP

publications, indicating a growing interdisciplinary research

community exploring LLM applications in human–computer

interaction, security, software engineering, and beyond (Movva

et al., 2024).

Despite extensive attention to social and security issues,

sustainability remains critically underexplored. Generative AI

models, including LLMs, are estimated to consume ∼29.3 TWh

annually, comparable to Ireland’s total energy consumption (de

Vries, 2023), yet only a small fraction of LLM research addresses

the carbon footprint or environmental impact. As model sizes

grow, reaching hundreds of billions of parameters (Zhao et al.,

2024), their sustainability implications intensify. A Scopus analysis

shows that LLM-related publications increased by 82.7% from

2020 to January 2025, but only 1.82% and 0.64% of those

papers explicitly address “carbon emissions” or “CO2” impacts,

respectively (Elsevier, 2025). Moreover, existing work often relies

on theoretical estimates rather than empirical measurements of

energy consumption during training and inference.

2 Sustainability calculation for large
language models

Accurate quantification of the environmental impact of a

product requires a comprehensive Life Cycle Assessment (LCA), in

which all environmental burdens are evaluated, from the extraction

of raw materials to the end of life disposal (Klöpffer, 1997).

For LLMs, this assessment encompasses both the manufacture

of computing infrastructure (including raw material acquisition,

processing, and fabrication of server components such as

GPUs) and all subsequent lifecycle stages: dataset generation,

data preprocessing, iterative experimentation, model training,

deployment, and eventual retirement (Luccioni et al., 2023). Due

to limited transparency across these phases, existing studies often

rely on estimates of material and manufacturing impacts (Khowaja

et al., 2024; de Vries, 2023) or focus on directly measurable

quantities, notably energy consumption during training and

inference (Luccioni et al., 2023; Liu and Yin, 2024; Faiz et al., 2024).

Standard analyses of LLM greenhouse gas (GHG) emissions

typically focus on computing related impacts during deployment.

However, a full LCA requires converting all GHGs, carbon dioxide

(CO2), methane (CH4), and nitrous oxide (N2O), into carbon

dioxide equivalents (CO2eq) by applying the global warming

potential (GWP) of each gas relative to CO2 (Luccioni et al., 2023;

Faiz et al., 2024; Strubell et al., 2020; Liu and Yin, 2024).

Although CO2eq is the de facto standard for reporting LLM

sustainability, meaningful comparison across studies is impeded

by methodological heterogeneity. Variations in system boundaries,

estimation methods, functional units, model parameterizations,

and architectural differences complicate direct benchmarking and

the transferability of conclusions.

3 Method

In this study, we investigate the relationship between

performance and carbon dioxide equivalent emissions (CO2eq)

for various LLM families and evaluate multiple models with

different numbers of parameters. The examined LLMs include

Meta’s Llama3.1 models (Grattafiori et al., 2024) with 8 billion and

70 billion parameters, as well as the Llama3.3 model (Grattafiori

et al., 2024) with 70 billion parameters. Additionally, Alibaba’s

Qwen models (Bai et al., 2023) and the Qwen2.5 models (Qwen

et al., 2025), each with 7 billion and 72 billion parameters, are used

for comparison. Furthermore, two reasoning models developed by

Deep Cogito, with 8 billion and 70 billion parameters, are included.

These models operate in both standard text generation mode and

reasoning mode. Also, Deepseek R1 models (DeepSeek-AI et al.,

2025), specifically designed for reasoning, are included, featuring

variants with 7 billion, 8 billion, and 70 billion parameters.

All models were tasked with answering the same 500

questions drawn from different subject areas. The questions

and their correct answers were extracted from the Massive

Multitask Language Understanding (MMLU) dataset (Hendrycks

et al., 2021). The MMLU dataset evaluates multitask accuracy in

diverse knowledge domains, comprising 15,908 multiple choice

questions from 57 subjects including engineering, mathematics,

humanities, and social sciences. The questions are sourced from

publicly available practice exams and academic materials that span

various educational levels and each question provides multiple

choice answers, with correct responses derived from the original

educational content created by experts (Hendrycks et al., 2021).

For the purposes of our study, the five subjects Philosophy, High

School World History, International Law, Abstract Algebra, and

High School Mathematics were selected to ensure a comprehensive

range of questions from general historical and legal knowledge

to mathematical logic across educational levels. Each model

answered 100 questions per subject and underwent two distinct

testing phases.

In the first phase, the models received the question

accompanied by four multiple choice options and were required

to select the correct answer. For standard text-generation models

such as Qwen, Llama, and Cogito (in their default text-generation

mode), the output was limited to a single word, indicating the

index of the chosen answer. This allowed for straightforward

and objective comparison between the model’s chosen answer

and the correct answer from the MMLU dataset. However, for

reasoning-based models, output word limits were not imposed, as

these models require generating additional text to complete their

reasoning processes.

In the second testing scenario, models received only the

question as a prompt, without restrictions on output length. To

Frontiers inCommunication 02 frontiersin.org

https://doi.org/10.3389/fcomm.2025.1572947
https://www.frontiersin.org/journals/communication
https://www.frontiersin.org


Dauner and Socher 10.3389/fcomm.2025.1572947

assess the correctness of the responses, we used the fast, cost-

effective OpenAI o4-mini reasoning model as an evaluator. This

evaluator was provided with the question, the multiple choice

options, the correct answer, and the model-generated answer as

input, tasked with judging the correctness of the answer based

on the specific subject and the known correct answer from the

MMLU dataset.

All experiments were carried out on a local Nvidia A100

GPU with 80 GB of memory, allowing accurate measurement

of energy consumption, memory usage, and response time

during model evaluation. Measurements were performed using

the Perun framework, designed for energy benchmarking

of high-performance computing applications (Gutiérrez

Hermosillo Muriedas et al., 2023). To calculate associated

CO2eq emissions, an emission factor of 480 gCO2/kWh was

applied. This emission factor was selected as it represents the

latest global average. This value represents the global average

emission factor, reflecting recent trends toward increased adoption

of renewable energy, providing a realistic baseline to evaluate

environmental impacts (Wiatros-Motyka et al., 2024).

4 Results

Before relating model behavior to energy consumption and

the resulting CO2eq emissions, we first present the raw task

performance that underpins all subsequent analyzes. Specifically,

we quantify the precision of each model in the 500 MMLU

questions in two scenarios: a constrained multiple-choice phase

and a free-response phase, whose outputs are adjudicated by the

OpenAI o4-mini evaluator. Figure 1 shows the number of correct

responses each model achieves across the five MMLU subjects in

both phases. By comparing success rates across knowledge domains

and parameter scales from 7 billion to 72 billion parameters, we

find that the largest models consistently lead. In the multiple-

choice phase, the reasoning-enhanced Cogito 70B model tops the

field with 91.0% correct answers, followed by the Deepseek R1

70B reasoning model at 85.0% and the Qwen 2.5 72B model

at 80.2%. In the free-response phase, the same Cogito variant

again ranks first with 78.8%, narrowly ahead of Cogito 70B in

standard text mode (76.4%) and Qwen 2.5 72B (75.0%). Among

the compact 7–8 billion-parameter models, Deepseek R1 8B attains

67.4% correct answers in the multiple-choice phase and 49.8% in

the free-response phase. In contrast, the weakest compact model,

Qwen 7B, answers only 41.4% in the multiple-choice phase and

24.4% in the free-response phase. Subject-wise, multiple-choice

performance peaks on High School World History with an average

of 76.3% correct answers per model and bottoms out on Abstract

Algebra at 51.4% correct answers. In free-response mode, models

score highest onHigh School Mathematicswith 69.4 correct answers

and lowest on Philosophy with 52.1% correct answers.

In addition to the accuracy of the different models, we

also analyze the token footprints incurred by each model when

answering the 500 MMLU questions. A token is a unit of text,

such as a word, part of a word, or an individual character,

that is converted into a numerical representation, so that an

LLM can process it (Gastaldi et al., 2025). We distinguish

between response tokens (the tokens comprising the model’s final

answer) and thinking tokens (the additional tokens generated

by reasoning-enabled models before producing their answer).

For each LLM, separate markers denote the average number of

response tokens and, for reasoning-enabled variants, the average

number of thinking tokens. In the multiple-choice setting the

models generated 37.7 response tokens per question on average,

FIGURE 1

Comparison of the performance of tested LLMs on multiple-choice and free-response tasks, with individual subject performance displayed.
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FIGURE 2

Average number of tokens required by each LLM to answer questions across di�erent subjects. For reasoning models, the number of reasoning

tokens generated prior to providing the final answer is indicated in a darker color.

while reasoning-enabled variants required an additional 543.5

thinking tokens. Subject-wise, High School Mathematics incurred

the longest answers (83.3 tokens on average), while Abstract

Algebra demanded the highest thinking overhead (865.5 tokens on

average). In free-response mode, average response lengths increase

to 435.2 tokens. The shortest free-text answers (two tokens) occur

in the Qwen 2.5 72B model on Philosophy, while the longest

single output (37.575 tokens) was generated by the Cogito 8B

reasoning model on Abstract Algebra. Thinking tokens average

859.2 per reasoning run. Zero-token reasoning traces appear when

no intermediate text is needed (e.g. Cogito 70B reasoning on

certain History items), whereas the maximum reasoning burden

(6.716 tokens) is observed for the Deepseek R1 7B model on

an Abstract Algebra prompt. Figure 2 presents the distribution

of token counts for every model in all five subjects in the

free-response phase.

The total CO2eq emissions, expressed in grams of CO2

equivalent, required to process the complete set of 500 MMLU

questions in both the constrained multiple-choice and free-

response phases are illustrated in Figure 3. In the multiple-

choice phase, emissions spanned from just 1.25 gCO2eq for the

default Cogito 8B model to 717.31 gCO2eq for the Deepseek-

R1 70B model. Reasoning-enabled variants generated substantially

more emissions than their standard counterparts (e.g. Cogito 70B

reasoning: 411.72g vs. Cogito 70B default: 8.20g), and larger models

(70–72B) uniformly consumed on the order of 100–700 g, whereas

compact 7–8B systems emitted below 180g. In the free-response

phase, the range expanded further, from a low of 26.28 gCO2eq

for Qwen 7B to a high of 1,325.12 gCO2eq for Deepseek-R1 70B.

Again, reasoning modes incurred a 4×–6× increase in emissions

compared to text-only modes (e.g. Cogito 8B reasoning: 371.87g

vs. Cogito 8B default: 56.30g), and high-parameter models (70–

72B) emitted several hundred grams more CO2eq than their 7–8B

counterparts (e.g. Qwen2.5 72B: 418.12g vs. Qwen2.5 7B: 60.63g).

These trends underscore the environmental trade-off of scale and

reasoning depth in large language models.

When examining the combined CO2eq emissions and overall

accuracy across all 1,000 questions (Figure 4), clear trade-offs

emerge between model scale, reasoning depth, and environmental

cost. The smallest model, Qwen 7B, emits only 27.7 g CO2eq,

by far the lowest footprint, but achieves just 32.9% accuracy.

Conversely, the largest reasoning model, Deepseek-R1 70B, incurs

2,042.4 g CO2eq and reaches 78.9% accuracy. Notably, 12 of the

14 evaluated systems require less than 500 gCO2eq, yet none of

these exceeds 80% accuracy. In contrast, the reasoning-enabled

Cogito 70B emits 1,341.1 g CO2eq, 34.3% less than Deepseek-R1

70B, while delivering 84.9% correct answers, representing a 7.6%

improvement over its non-reasoning counterpart.
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FIGURE 3

Total CO2 emissions (measured in grams) produced by each LLM when answering all 500 questions, reported separately for the multiple-choice and

free-response scenarios.

5 Discussion

The analysis of combined CO2eq emissions, accuracy, and

token generation across all 1,000 questions reveals clear trends

and trade-offs between model scale, reasoning complexity, and

environmental impact. As model size increases, accuracy tends to

improve. However, this gain is also linked to substantial growth

in both CO2eq emissions and the number of generated tokens.

The largest reasoning model, Deepseek-R1 70B, achieved 78.9%

accuracy but emitted 2,042.4 g CO2eq, significantly surpassing

smaller counterparts like Qwen 7B, which only consumed

27.7 g CO2eq but provided just 32.9% accuracy.

Notably, the reasoning-enabled Cogito 70B model

demonstrates a superior performance-efficiency balance, achieving

the highest accuracy of 84.9%, a relative improvement of 7.6

percentage points over the Deepseek-R1 70B, while emitting 34.3%

less CO2eq (1,341.1 g). This suggests that adding a reasoning

component to large models can substantially improve accuracy

without proportionally escalating environmental impact.

Subject-wise analysis highlights significant variability in

performance across different domains. Multiple-choice accuracy

was consistently highest in High School World History, averaging

76.3% correct responses per model, likely due to the factual

nature of the questions enabling easier recall or recognition. In

contrast, Abstract Algebra posed the greatest challenge, averaging

only 51.4% correct answers, reflecting its higher complexity and

abstract conceptual demands. In the free-response phase, High

School Mathematics was answered most successfully, averaging

69.4% correct responses per model, likely benefiting from

explicit numerical computations. Conversely, Philosophy questions,

requiring nuanced and subjective reasoning, presented substantial

challenges with an average of only 52.1% correct responses.

The token generation analysis further underscores the

computational cost of reasoning. On average, reasoning-enabled

models required significantly more tokens in both testing phases.

Particularly in the multiple-choice phase, reasoning models

frequently struggled to produce concise answers, despite explicit

prompts instructing them to only return the choice index. For

instance, Deepseek-R1 7B generated up to 14,187 tokens on a

single mathematical question, while standard models consistently

produced minimal single-token responses. This trend persisted

in the free-response phase, with the Cogito 8B reasoning model

generating extremely verbose answers, such as a maximum of

37,575 tokens in Abstract Algebra, indicating an inherent challenge

in controlling response verbosity when using reasoning prompts.

From an environmental perspective, reasoning models

consistently exhibited higher emissions, driven primarily by their

elevated token production. For instance, the Qwen 2.5 model with

72 billion parameters achieved strong performance with 77.6%

accuracy while emitting only 426.8 g CO2eq, less than one-third
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FIGURE 4

Combined CO2 eq emissions (measured in grams) and overall accuracy of each LLM across 1,000 questions. The results illustrate trade-o�s between

model size, reasoning depth, and environmental impact.

of the emissions of Cogito 70B with reasoning. This efficiency is

partly due to its response generation remaining concise. While

Qwen 2.5 72B produced on average 1.0 word per answer for the

multiple-choice test phase, compared to the Cogito 70B reasoning

model, which required an average of 145.1 response tokens and

450.9 thinking tokens per question in mathematics alone. Such

findings highlight how reasoning capability, while beneficial for

accuracy, significantly increases emissions through longer outputs.

The environmental footprint of the Cogito 70B reasoning model

was substantially larger compared to non-reasoning models of

similar scale, yet it maintained a favorable efficiency balance due to

significantly higher accuracy.

In conclusion, while larger and reasoning-enhanced models

significantly outperform smaller counterparts in terms of accuracy,

this improvement comes with steep increases in emissions

and computational demand. Optimizing reasoning efficiency

and response brevity, particularly for challenging subjects like

Abstract Algebra, is crucial for advancing more sustainable and

environmentally conscious artificial intelligence technologies.

6 Limitations

Although this study compares a diverse range of language

models with varying architectures, training datasets, parameter

counts, and reasoning routines, the findings are not easily

transferable to other model families. Due to these structural and

architectural differences, generalizing the results to models with

significantly different designs is limited. Moreover, the current

findings do not allow for reliable conclusions about the behavior

of much larger LLMs (several hundred billion parameters). To

draw robust conclusions about the relationship between CO2eq

emissions and accuracy at this scale, these models would need to

be included in future analyses.

It should also be noted that all emissions were measured under

a specific hardware and energy profile, namely, using an NVIDIA

A100 80GB GPU and an emission factor of 480 gCO2/kWh. These

values depend heavily on the chosen infrastructure and local energy

grid, and results may vary significantly with different hardware

setups or emission baselines. Therefore, the CO2eq results

presented here cannot be directly extrapolated to other systems.

Future work could extend this investigation by including a

broader range of models, including those fine-tuned for specific

tasks across diverse domains. For instance, it would be valuable

to analyze whether models specialized in code generation perform

better on programming tasks, how many parameters are required

to achieve high accuracy, and whether such specialization leads to

lower CO2eq emissions compared to general-purpose LLMs.
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