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The rapid advancements in the field of artificial intelligence (AI) have

reinvigorated profound debates on the nature of intelligence, consciousness,

and communication. Large language models (LLMs), in particular, are at the

center of these discussions, as they generate complex linguistic patterns and

challenge the traditional distinction between machine computation and human

understanding. While LLMs are often seen as highly advanced statistical systems

that generate text based on probabilistic patterns, both laypeople and experts

tend to attribute human-like qualities to them.This article analyzes AI, particularly

LLMs, from a systems-theoretical perspective and examines the extent to which

these models can be understood as autopoietic, operationally closed systems.

Building on Luhmann’s system theory, it is argued that classical Turing machines

are not sense-making systems, as they lack both self-reference in the sense of re-

entry and the ability to make contingent selections from possibilities. In contrast,

artificial neural networks (ANNs) exhibit a novel, loosely coupled interaction with

social systems, as they can extract patterns from societal communication. This

form of coupling di�erentiates them from classical software and positions them

as hybrid systems that, while lacking their own mental states, are nonetheless

deeply embedded in the structures of societal meaning production. The paper

argues that LLMs should neither be regarded as purely technical tools nor as

genuine cognitive entities. Instead, it proposes understanding their functioning

as a new form of artificial meaning production—not as independent thinking, but

as a recursive reflection of socially shaped linguistic patterns. This perspective not

only opens new insights into the relationship between humans andmachines but

also calls for a critical reflection on how AI technologies are transforming our

understanding of communication and cognition.

KEYWORDS

systems theory, artificial intelligence, large language models, artificial communication,

autopoiesis

1 Introduction

Recent advances in artificial intelligence (AI) have reopened philosophical questions

about the nature of human beings. In particular, the widespread use and remarkable ability

of large language models (LLMs) to mimic human language has reignited and intensified

old debates about concepts such as intelligence, consciousness, mind, etc. As a result, LLMs

are increasingly perceived as human-like—an effect reinforced by the use of metaphysically

charged terminology (Shanahan, 2024).
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This growing perception of human-likeness in AI systems

has brought longstanding philosophical disagreements back to the

forefront. The debates surrounding AI are deeply controversial

and often hinge on differing metaphysical positions. Dualism

(Robinson, 2023), functionalism (Fodor, 1980, 1981), illusionism

(Frankish, 2016; Dennett, 1991), panpsychism (Brüntrup and

Jaskolla, 2016), reductionist (Hemmo and Shenker, 2023), and

non-reductionist physicalism (Murphy, 2013), among others, each

yield vastly different conclusions about the possibility of attributing

mental states to machines. Functionalists, for example, argue that

mental states are independent of their substrate and result from

their causal role (Rosengrün, 2021 p. 40) while panpsychists

believe that all matter is also mental. In both cases, strong

AI—that is, AI that acquires genuine cognitive abilities (Searle,

1980)—is possible but for different reasons. Some positions

link intelligence to consciousness, claiming it requires subjective

experience (McKenzie, 2024; Juliani et al., 2022); others equate it

with the capacity for thought (Floridi, 2011; Gabriel, 2018); while

still others decouple the two, suggesting that consciousness, though

distinct, may correlate with certain advanced AI achievements

(Chalmers, 2023).

While philosophers have long debated intelligence and

consciousness, such questions were largely neglected in AI

and computer science, a criticism that was expressed early on

by Dreyfus (1972) and Dreyfus and Dreyfus (1986). Instead,

practitioners focused on the observable and measurable results

of computer artifacts, thus avoiding deeper discussions. However,

from the work of Turing (2009) and McCulloch and Pitts (1943)

to Hopfield (1982) and Hinton (1989), researchers have often

avoided explicit definitions of intelligence, while still consistently

comparing machine performance to human capabilities. The

Turing test embodies this anthropocentric stance: it assesses a

machine’s ability to “think” by measuring whether it exhibits

“intelligent behavior” comparable to that of a human.

The same seems to be true of current AI research, and the

tradition of using humans and their abilities as a benchmark for the

performance of computing machines continues, with Sam Altman,

CEO of OpenAI, also frequently predicting that AI will soon

surpass “human reasoning.” In addition, philosophical questions

such as “What is AI and what is AI compared to humans?” are

becomingmore important in current AI research after a long period

of productive neglect. For example, AI researchers such as Nobel

Laureate Hinton (2023) are openly speculating about machines that

are not only intelligent but potentially conscious. Furthermore, new

fields of research are emerging around these discourses, such as

the research area known as human-centered artificial intelligence

(HAI). The emergence of this new research seems plausible: The

way AI is conceptualized and classified has a direct impact on

human self-understanding and social structures of how humans are

conceptualized and classified. As AI systems are increasingly seen as

cognitive and intelligent entities, these shifts may redefine notions

of humanity, agency and intelligence, and influence legal, ethical

and societal frameworks. Understanding AI is therefore not just a

matter of technological classification, but a crucial factor in shaping

social interactions and institutional practices. Finally, AI is not just

an artifact, a field of research or a tool—it is also a promise.

However, what is striking about both the old and the new

debates on AI, is that despite their different positions, they all

share a more or less anthropocentric perspective, taking humans

and their capabilities as the starting point for either attributing

or denying machine intelligence, consciousness, mind, etc. As the

sociologist Niklas Luhmann noted, discussions of AI are deeply

embedded in a long humanistic tradition that questions whether

computers and their so-called “artificial intelligence” can ever

be equated with human consciousness—or even surpass it. The

humanities have historically focused on this issue, making it the real

reference point (refuge) of research (Luhmann, 1998 p. 303). As he

argues further:

“[I]t remains questionable whether this is even the right

problem to pose and whether the computer, in this competitive

situation, will not sooner or later emerge as the winner,

provided that society grants it ‘equal opportunity’.” (Luhmann,

1998 p. 303)

If we take Luhmann’s comment seriously—and extend it

in light of Heidegger’s critique that modern thinking about

technology remains bound to inherited metaphysical frameworks

that obscure more originary modes of understanding (Heidegger,

1977)—then a shift in emphasis becomes necessary. Rather

than clinging to the modern, human-centered paradigm

of the subject/object distinction, we propose to frame the

discussion in terms of a theory of contingency and difference, in

particular the system/environment distinction. This posthumanist

approach, we argue, allows for a sophisticated understanding

of (generative) artificial intelligence. Furthermore, it also allows

for the theoretical exploration of an autopoietic, non-sense-

making, cognitive “artificial” system—a system whose defining

features are exemplified by the operational mechanisms of large

language models.

Against this background, this article analyses AI, in particular

LLMs, from the perspective of Luhmann’s systems theory. By

introducing the main concepts of his theory, it attempts to

examine the extent to which these models can be understood as

autopoietic, operationally closed systems. Finally, it will conclude

by offering new insights into the relationship between humans and

machines, but also by calling for a critical reflection of how our

concepts of cognition and communication are being transformed

by AI technologies.

2 From subjects to systems

Since Kant (1781), reality has been understood as resistance—

as something that challenges the mind and thereby demands

explanation. When something fails to work, we are forced to

construct models to account for the failure. Yet even Kant’s

distinction between the empirical and the transcendental leads back

to the problem of the relation between “a reality that remains

unknown” (Kant’s thing-in-itself ) and the subjective phenomenal

appearance. From this ontological standpoint, an epistemological

question remains: how can cognition recognize anything as

external to itself, when all recognition presupposes cognition

(Luhmann, 1988 p. 9)? This challenge lies at the heart of radical

constructivism (von Glasersfeld, 1995) and also guides Luhmann’s

systems theory.
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While Kant focused on the conditions of possibility for

experience within the boundaries of subjectivity, Luhmann’s theory

redirects the focus away from the human subject. The reference to

Luhmann’s systems theory is interesting for a posthumanist view

of AI in general and LLM in particular, as it extends the notion of

cognitive systems beyond human consciousness (Luhmann, 1998

p. 122). For Luhmann, cognition no longer presupposes a mind

(Möller, 2011 p. 39), but rather interprets cognition as a system-

internal operation and distinguishes between sense-making and

non-sense-making cognition.

2.1 Self-asserting systems

Like axiomaticmathematics, Luhmann begins as he writes, with

a “naive starting point”, namely the assumption “that systems exist”

(Luhmann, 1988 p. 14). By adopting the concept of autopoiesis

from Maturana and Varela (1987), Luhmann argues that a system

produces and maintains itself through its own operations. In doing

so, it distinguishes itself from its environment through a recursive

demarcation of its operations, thereby acquiring its own identity as

a system.

Systems, then, are not things—they are distinctions. Every

system is both what it includes and what it excludes. The

system/environment boundary is a form that exists only through

the relation of its two sides (Luhmann, 1998 p. 63). Without this

difference, there is no system. This distinction is not just logical;

it is operationally necessary for self-reference and organization

(Luhmann, 1998 p. 60). However, every distinction inevitably

carries with it an implicit absence, what Spencer-Brown (1969)

refers to as the unmarked space. Saying “tree” implies everything

that is not tree. Furthermore, “the observer is the excluded third of

their observation” (Luhmann, 1998 p. 69) and the distinction they

use is the hidden condition, i. e., a necessary blind spot for seeing.

To judge something as lawful, one must treat the distinction itself

as lawful. To see, one must be blind to the act of seeing—one does

not see the perspective and the difference through which one sees.

This logic equally applies to psychic systems. Thoughts are

not isolated processes, but the means by which a psychic system

stabilizes itself through recursive differentiation. No thought leaves

the system, that is, psychic systems are operationally closed;

meaning arises only in relation to other thoughts. Thinking

does not determine in advance what comes next; it can only

retrospectively interpret what has been thought. Each thought

enacts distinctions—for example, between tree and non-tree

when thinking “tree.” Crucially, it is through the fundamental

system/environment distinction—“I think (system)/this is not my

thinking (environment)”—that an external world is constructed.

Without this distinction, we could not differentiate thoughts from

what they refer to. We would risk confusing a tree with a thought,

or communication with what is being communicated.

The self-referential nature of consciousness aligns with the

phenomenological tradition: consciousness is not an entity but a

“stream of experiences” (Husserl, 1993), connecting only to itself

and not open to external interruption. Adopting Husserl’s concept

of Sinn (sense), Luhmann defines sense-making as the selection

of meaningful references from an excess of possibilities—there are

always more meanings than can be used. Luhmann radicalizes this

further: even the environment of a sense-making system appears

only as sense, and sense can refer only to sense (autopoiesis), never

to anything external (Buchinger, 2012). Paradoxically, even non-

sense is a form of sense—sense that fails to make sense, and thus,

still makes sense.

2.2 Choice and contingency

A major implication of operational closure is the problem

of freedom, conceptualized as the ability to choose between

alternatives. If mental and social systems operate through self-

referential flows of thought or communication, how can choice be

meaningfully exercised?

Luhmann addresses this question through the concept of

contingency. Borrowing from Aristotle, Luhmann defines a

contingent event as one that is neither necessary nor random, but

could have unfolded differently (Möller, 2011 p. 45). Contingency

refers to everything that exists “in the light of its possible variation”

(Luhmann, 1984). All evolutionary events could have happened

differently. Moreover, social evolution is an extraordinarily

unlikely phenomenon.

Within the horizon of possible variations, thought itself

remains a spontaneous yet contingent process. Unlike mechanical

causality, operationally closed systems do not respond in a

linear fashion to inputs, but respond to stimuli in unpredictable

ways due to their internal structure, which “determines” how

they adapt and reorganize themselves. While operational closure

maintains a degree of causal dependence, it does not entail absolute

determinism. Cognitive processes are neither entirely random nor

fully predetermined; retrospectively, events appear necessary, but

in the present moment, they remain contingent.

This interplay of contingency and system closure becomes even

more pronounced in social interactions, where double contingency

arises. Here two systems meet, each contingent in its own way.

“I’ll do what you want if you do what I want” (Luhmann, 1984

p. 166). Communication emerges as a way of dealing with this

mutual uncertainty. It is unlikely, but it happens precisely because

the lack of transparency forces the creation of shared meanings and

expectations. Communication continuously creates structures and

reduces uncertainty over time, with past communication creating

historical contexts (memory) that structure future communication.

The most profound form of freedom appears in re-entry

(Spencer-Brown, 1969), where a system reintroduces its own

guiding distinction into itself. This keeps the system/environment

boundary dynamic and open to reevaluation. For example, a system

can reassess its own notions of inside and outside, generating new

self-descriptions. Psychic systems can reflect on the criteria by

which they deem aspects of reality “real” or “significant.” Similarly,

a social system like science can reapply its true/false distinction to

reflect on its own methods.

The capacity for re-entry enables self-observation—a special

case of what Heinz von Foerster and Margaret Mead called second-

order cybernetics (von Foerster, 2003) and Luhmann second-

order observation. It refers to a system’s ability to observe how

it and others observe reality. For Luhmann, this is a defining
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characteristic of modern society. We no longer judge things in

isolation: when buying a house, we consider market evaluations; in

academia, researchers examine both findings and their reception.

Even everyday actions such as shopping are shaped by evaluations

and reputations. First-order observations are increasingly shaped

by second-order reflections—we not only perceive objects, but also

how they are perceived. Whereas Gabriel (2020 p. 34) observes that

we “live our life in the light of an idea of who or what we are”, we

also increasingly live in the light of an idea of how others observe us.

Yet this recursive capacity is not universal. While psychic

and social systems engage in sense-making, many systems do

not. They process environmental stimuli but operate outside

the medium of sense. Such systems cannot assign significance,

as they lack second-order observation and the ability to reflect

on their own distinctions—especially the difference between self-

reference and other-reference, which is essential for observing

an environment (Luhmann, 1998 p. 92). For instance, the

immune system distinguishes between the body’s own cells

and foreign invaders, yet it does not observe itself making

this distinction.

2.3 Structural coupling

Despite being operationally closed, systems do not exist in

isolation. They remain autonomous while depending on other

systems through structural coupling—a mechanism that allows

interaction with a complex environment without processing its full

complexity. For example, society communicates about “humans”

even though psychic systems cannot define what a human is.

Structural couplings limit the range of viable structures for

autopoiesis, meaning every system is already environmentally

adjusted (Luhmann, 1998 p. 100).

Further, structural couplings replace the notion of “human

nature” by concentrating causal influences that perturb and reshape

the systems involved. As Luhmann argues, adaptation is not the

result of natural selection or cognition, but a precondition: systems

can only build complexity within existing structural constraints

(Luhmann, 1998 p. 102). Communication, for instance, has such

high degrees of freedom only because it is only indirectly affected

by the physical world via operationally closed brains and psychic

systems (Luhmann, 1998 p. 114). Its emergence, therefore, is

highly improbable.

Luhmann notes that structural couplings must transform

analog relations into digital ones to allow environmental influence.

Language fulfills this role between the psychic and social

systems. Although the psychic system is operationally closed

and guided by its own processes, language constrains some of

its thinking while preserving a surplus of possibilities—enabled

by the medium of sense shared by both systems (Luhmann,

1998 p. 101). Language allows these systems to relate to each

other without direct access: thought can shape communication

and communication can influence thought. But this is not a

transfer of meaning (Luhmann, 1998 p. 73). Communication,

Luhmann argues, would be impossible without psychic systems—

even though psychic systems themselves cannot communicate

(Luhmann, 1998 p. 103).

3 Language models as cognizing
systems

Having clarified key terminology, we shift from the humanistic

question—“Is AI intelligent?”—to a systems-theoretical inquiry: “Is

(generative) AI autopoietic?” and “Does it operate in the medium

of sense?” In other words, are language models autopoietic systems

capable of sense-making cognition? Are they operationally closed

and able to distinguish between self-reference and other-reference?

Rather than the binary classification of intelligent/non-intelligent,

we propose an alternative distinction grounded in systems theory.

Within this framework, language models become particularly

relevant not simply because of their functional output, but because

they create the impression of “understanding language”—an effect

that invites further examination of their potential coupling with

psychic and social systems.

3.1 Technology as functional simplification

According to Luhmann, “natural technology”—such as celestial

mechanics or tidal movements—serves as a paradigm for “artificial

technology” due to its reliability and minimal deviation from

expectations (Luhmann, 1990 p. 224). Although inherently

more fallible, artificial technology enables the identification and

correction of errors. Luhmann thus characterizes technology as

transparent, insofar as its functional purpose is explicit: even when

psychic systems lack full comprehension of its inner workings,

they can still evaluate whether it functions as intended. In this

sense, technology constitutes an evolutionary achievement that

operationalizes complexity reduction (Luhmann, 1998 p. 517),

transforming uncertainty into a form of manageable ignorance

(Luhmann, 1998 p. 525).

Although embedded within communication, technology

remains external to social systems, serving instead as a structurally

coupled interface between society and the physical world that

stabilizes or transforms communicative processes. Technical

systems, while operating in communicative environments,

typically do not themselves communicate: a data center or an

operational artificial neural network (ANN) is not autopoietic but

allopoietic—externally constructed, reliant on external inputs, and

incapable of reproducing their own components.

Technological functioning hinges on the distinction between

controllable and uncontrollable conditions. Unlike biological

organisms, which maintain stability through loose coupling,

technology relies on strict coupling to guarantee precision

(Luhmann, 1998 p. 525), manifesting in the binary distinction

works vs. does not work. This functional efficacy suppresses

dissent by precluding alternative operations (Nassehi, 2019 p. 228).

Yet, as complexity increases, technology becomes subject to the

paradox of control: while built on causal attributions—selecting

limited causes and effects—its growing intricacy renders causal

mechanisms opaque, thereby generating emergent instabilities

that demand further technological intervention. Luhmann already

notes this recursive dilemma, echoed in Heinz von Foerster’s

notion of non-trivial machines (von Foerster, 2013 p. 86), which
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behave unpredictably and undermine transparency, reinforcing the

necessity of continual refinement.

The increasing complexity of non-trivial machines has led

scholars such as Reichel (2011), Watson and Romic (2024),

and Lovasz (2024) to conceptualize technology as a closed,

potentially autopoietic system. Reichel (2011) frames technology

as distinct from both society and individuals, governed by the

binary code work/fail within the medium of operativeness. In this

view, technology is neither physical nor social, but recursively

enacts itself through the continual application of its own code,

evolving via internal feedback while perturbing and co-evolving

with its social environment. It evolves through recursive processes,

irritates society, and co-evolves with social systems. Building

on this, Watson and Romic (2024) interpret ChatGPT as an

autopoietic subsystem of technology—an operationally closed

mediator between cognition, society, and the physical world.

Their focus lies on the role of such systems in education,

inclusion, and ethical integration. Similarly, Lovasz (2024) further

develops Reichel’s perspective by integrating Ellul’s theory of

technological autonomy, arguing that high technology generates

risk, unpredictability, and complexity, thereby approaching a form

of quasi-autonomy beyond instrumental control.

While these accounts share a compelling interest and valuable

insights into the systemic evolution and increasing complexity

of technological systems, they lack a critical examination of how

such systems might engage in re-entry—the reintegration of the

system/environment distinction into the system’s own operations

which is essential for sense-making systems in Luhmann’s

theory, as it underpins their capacity for reflexivity, second-order

observation, and self-description. Reichel’s notion of technological

autopoiesis, for instance, does not demonstrate how technology

reflects upon and internally operationalizes its boundaries as a

meaning-constituting system. Likewise, Watson and Romic (2024)

do not clarify how (sub)systems like ChatGPT would engage in

second-order observation or generate their own self-descriptions.

Lovasz (2024), while more cautious, aligns with Ellul’s view of

technological sovereignty but similarly leaves unaddressed the issue

of internally generated systemic distinctions. In each of these cases,

the invocation of autopoiesis appears more metaphorical than

formally systemic. While these theories successfully highlight the

recursive complexity and increasing autonomy of technological

systems, they fall short of demonstrating the reflexive, self-

producing and systemic boundary-construction—hallmarks of

autopoietic systems of high complexity.

Rather than generalizing technology as autopoietic, we adopt

a narrower approach by examining a specific domain: artificial

neural networks (ANNs). Our aim is not to classify technology

as a whole, but to investigate whether and how certain types

of computations exhibit features associated with autopoietic

systems—such as operational closure, recursive complexity, and

structural coupling—without necessarily fulfilling the criteria for

full autopoiesis. We also reject spatial definitions of systemic

boundaries. As Luhmann stresses, what constitutes a system

is not physical separation, but the production of distinctions

between system and environment (Luhmann, 1998 p. 66).

While organisms may have spatial boundaries, systems such as

consciousness, the economy, or computation do not. Our analysis

thus aims to explore how ANN operations instantiate system-like

dynamics—complexity, contingency, and relative autonomy—

without presupposing full-fledged autopoiesis.

3.2 The self-referentiality of Turing
machines

The theoretical construct of the (universal) Turing machine

(Turing, 1937), foundational to computer science and AI,

exemplifies self-referential computation. It is a formal abstraction

that can be described within a mathematical language as a

digital pattern (information) while simultaneously being realized in

hardware to transform digital patterns (programs and inputs) into

new patterns (outputs). As a materialized computer or program, it

differs from simple calculators by its ability to branch computations

based on intermediate results. A universal Turing machine (the

computer) can receive a description of a Turing machine (a

program) as input and execute it.

This recursive relation of computation extends beyond

individual machines. Software development is typically facilitated

by software environments that translate human-written code

into machine-executable instructions, effectively allowing Turing

machines to construct other Turing machines. If we conceptualize

these realized computational operations as a system and place

psychic and social systems in the environment of machine

computations, it follows that Turing machines—both as digital

patterns and as their physical realizations (hardware)—can be

understood as a self-reproducing system. A recursive structure

emerges: machines, once programmed, can generate newmachines,

creating a recursive loop of code and computation. Using

Luhmann’s extended concept of cognition, we can observe a basal

self-referentiality within computational operations.

However, from a different perspective, software is not genuinely

generated by machines but by human developers,1 who encode

meaning through formal languages. This deductive process relies

on logical calculi and mathematical syntax—structures that

are essentially transparent. While psychic systems imbue code

with meaning by selecting among alternatives, Turing machines

act purely as symbol manipulators or, in Luhmann’s terms,

generators of medium/form distinctions within the “medium

of computational operations” (Luhmann, 1992 p. 399). Even

the notion of code “interpreters” remains metaphorical, as no

meaningful decisions occur within the machine itself—it lacks

contingency and could not have acted otherwise.

From this, we infer that while Turing machines exhibit

cognition, they do not perform sense-making cognition, which

presupposes contingency. As Luhmann argues, the contingency

of meaning is a “necessary moment of meaningful operations”

(Luhmann, 1998 p. 55). In contrast, psychic systems satisfy

this criterion; machines do not. This distinction is reinforced

by Hartmann (1992), who describes machine processing as a

1 This situation is currently becoming more complex as language models

intervene in the programming process, meaning that machines not only

transform but also generate code. We will disregard this for now.
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“destruction of the meaningful reference horizon”, and human-

machine interaction as a “reduction and systematization of

reference horizons”:

“Machines do not recognize complexity because, for them,

there are no more possible environmental references than

those currently being actualized. Only the human perspective

on the machine or its produced output restores complexity.”

(Hartmann, 1992 p. 253)

Machines—whether as abstract algorithms or material

implementations—lack the capacity to connect distinct

possibilities; they are not “free” but follow a fixed, externally

programmed sequence. They combine input openness with

operational determinism. Thus, while programming languages

serve as media through which humans specify machine behavior,

systems theory reframes this as a strict structural coupling between

psychic and computational systems via formal languages.

The rigidity of this coupling becomes most apparent when

classical machines yield unexpected outcomes. Users and

developers do not interpret such deviations as creative, but

as malfunctions. A clock showing the wrong time or a failed

digital transaction is deemed broken—not innovative. Since

classical machines operate under strict causal constraints, their

computations—however complex—can be retrospectively analyzed

for correctness.

This reveals a crucial limitation: although computational

systems exhibit a form of basal self-referentiality, this alone

does not suffice for meaning construction. As Luhmann argues,

sense-making requires not only cognition but the capacity to

distinguish self-reference from other-reference via re-entry—the

internal reapplication of the system/environment distinction.

Classical machines lack this ability; their operations are recursive

but non-reflexive. They cannot observe or differentiate their

functioning from an external context because they lack an internal

model of what is “inside” and what is “outside.”

This brings us to the next question: do the operations of

contemporary, self-programmed machines—particularly artificial

neural networks (ANNs)—differ in this regard? Can they, unlike

classical machines, engage in sense-making cognition? To explore

this, we now turn our focus to a specific type of ANN: large

language models.

3.3 The loose coupling of artificial neural
networks

While the individual computational operations of an artificial

neural network (ANN) remain traceable, the process by which

these operations are generated is inherently intransparent, and this

opacity extends to the network’s operations itself. Unlike traditional

algorithms, which are explicitly designed by developers, ANNs

construct their computational structures from data through multi-

objective optimization algorithms. Similar to a Turing machine,

these optimization algorithms remain strictly coupled to the

psychic systems of developers via formal languages. However, the

crucial difference lies in the nature of the data: it contains patterns

of communication that psychic systems themselves can not make

sense of.

This marks a fundamental shift. While the output of an ANN

is theoretically reproducible for a given input (factoring in pseudo-

randomness), the genesis of its computational operations remains

opaque due to the contingency of its training data. This data,

shaped by the selections of a contingent society, is neither necessary

nor impossible—it is simply improbable in its current form. Its

structure does not reflect an “objective” reality historically evolved

observational selections. As Luhmann argues, data—like sense—

is not discovered but constructed by systems that differentiate

themselves from their environment.

Factoring in data contingency, the operations of an

ANN become contingent themselves. Therefore, data-driven

computation results in a decoupling of computational systems

from psychic systems (e. g., the developers’ minds), which no longer

engage with formalism and protocols in the same way—making

it increasingly difficult to construct sense from the computational

operations of ANNs.

At the same time, the operations of ANNs form a new type

of structural coupling with social systems—not through direct

interaction, but by recognizing patterns in digitized communication

within their training data. Unlike classical machines, which are

strictly coupled to psychic and social systems via formal languages,

ANNs introduce a second, looser coupling through the “digestion”

of training data derived from memorized communcation of

social systems. In this way, they parasitically “absorb” social

contingencies. In other words, they integrate perturbations on their

own terms, that is, computationally.

Simultaneously, the first form of coupling—strict coupling via

formal language—appears to be diminishing, as language models

intervene in programming itself, mediating or even partially

replacing the formal language interface that traditionally structured

machine-human interaction. This means that the boundary

between programming and execution is becoming increasingly

fluid, as ANNs contribute to the generation of code, blurring the

role of formal languages as an exclusive medium between psychic

systems and computational systems.

From this, we can conclude that for self-learning systems

such as ANNs, contingency no longer ends with programming.

Unlike classical machines, ANNs absorb traces of societal

contingency through their training data. This gives rise to a

new form of structural coupling—less rigid, more emergent—

between computational systems with limited choices and social

communication. In a sense, society has already partially made

the choices that ANNs parasitically internalize, process, and then

project back into communication—a belatedness that can also

be observed between brains and psychic systems. This dynamic

grants ANNs a form of computational autonomy—one distinct

from the autonomy of psychic and social systems. However,

this autonomy remains incomplete, as ANNs (as computations)

cannot (yet) reflect on their computations or the solutions they

compute. Instead, they are supplied with reflection by psychic and

social systems.

Ultimately, state of the art ANNs do not “know” what they are

doing (Heßler, 2019). As computational operations, they do not

engage in contingent sense selection. They generate decisions but
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cannot interpret them meaningfully, as they remain dependent on

predefined objectives—such as generating plausible text. While this

might suggest a break from traditional programming, the objective

remains the same: a strict coupling between psychic systems and

machines through the medium of formal language. As Esposito

already pointed out, this introduces a paradox which is relevant in

practical applications of ANNs: the goal is to control the lack of

control (Esposito, 1997).

3.4 From neural networks to language
models

This paradox becomes even more pronounced in a specific

subclass of ANNs: large language models (LLMs). These systems are

optimized not merely for general computation but for interacting

with the core medium of both psychic and social systems. As such,

they offer a particularly rich case for analyzing how computational

systems structurally couple with communication processes and

potentially participate in the generation of meaning.

Language models such as OpenAI’s GPT models (Bubeck et al.,

2023; Radford et al., 2019), Claude (Anthropic, 2019), LLaMA

(Touvron et al., 2023; Grattafiori et al., 2024), and DeepSeek

(DeepSeek-AI et al., 2024, 2025) are specialized forms of artificial

neural networks (ANNs) designed for natural language processing.

As such, they are structurally coupled with both psychic and social

systems through their interaction with language. By influencing

patterns of communication and shaping linguistic practices

across these domains, large language models (LLMs) represent

a particularly significant site for examining how technological

operations intersect with meaning production in complex systems.

These models use self-attention mechanisms (Vaswani et al.,

2017) to weigh the importance of tokens in a sequence. Operating

autoregressively, they predict the next token based on previous

ones, learning from vast textual corpora through self-supervised

learning (SSL), which adjusts model parameters by minimizing the

difference between predicted and actual tokens (Zhou et al., 2021).

This process results in a probabilistic rather than deterministic

generation of text.

After training via self-supervised learning a rather

strict coupling exists between training data, i. e., digitalized

and memorized communication and the model’s internal

representations, via reinforcement learning [especially

reinforcement learning from human feedback (RLHF) (Ziegler

et al., 2020)] introduces an additional optimization layer

which loosens this coupling.2 Instead of direct token-to-token

supervision, models adjust based on reward signals that align

outputs with human expectations (Cao et al., 2024). However,

RLHF presents challenges, as discussed by Casper et al. (2023),

since goal-setting remains externally imposed.

In their use, language models do not follow explicit rules

but structure probabilities in a high-dimensional semantic

2 Luhmann (1990, p. 183) describes loose couplings as characteristic

of systems that bu�er environmental perturbations through internal

complexity—a definition that aligns well with how LLMs operate on

contingent, pre-structured data.

space, computing plausible continuations of input based on

statistical distributions. Tokens are mapped into numerical vectors,

transformed, and finally converted back into text. In the final step,

a distinction is drawn between plausible and implausible, based on

a rich representation in the form of a vector within the latent space.

As explained before, these models do not encode precise

computational instructions like programming languages. Instead,

they generate responses through stochastic logic, making their

outputs inherently contingent—shaped by training data rather

than deterministic algorithms. This gives rise to a distinct

form of structural coupling with communication and psychic

systems. Unlike programming languages, which explicitly

determine a machine’s operations, prompts do not encode precise

computational instructions. Consequently, the outputs of language

models remain fundamentally contingent, determined by both

their statistical training and probabilistic inference rather than

by deterministic rules. However, this contingency should not be

mistaken for conscious decision-making. As Shanahan (2024)

notes, and as we will see, “[a LLM] is not in the business of

making judgments. It just models what words are likely to follow

other words.”

3.5 Meaning without reference?

“Language models do not generate meaning.” On this point,

we agree with Bender and Koller (2020) and Shanahan (2024), but

not because LLMs lack access to “the real world” or “the truth

[...] against which they could compare the words they generate”

(Shanahan, 2024). From a systems-theoretical perspective, such

an argument is unconvincing if cognition is assumed to function

through operational closure. Sense, in this view, does not emerge

from an external reality but from the system’s own operations.

A central critique by Bender and Koller (2020) is encapsulated

in their octopus test, which draws on Frege’s premise that

meaning is at least partially determined by reference to an

external object (Frege, 1892). Similarly, Shanahan (2024) argues

that human speakers, unlike LLMs, can “consult the world” to

resolve inconsistencies and refine their assumptions. However,

this reintroduces a human-centered perspective and, in doing so,

highlights the paradox of cognition: no system can fully recognize

what lies beyond its own boundaries.

From the standpoint of operational constructivism, as

developed by Luhmann, sense does not require an external referent

but emerges through the interplay between actuality (what is

currently being communicated) and possibility (what could have

been or could be communicated). In this framework, resistance

is not imposed by an external reality but relocated within the

system itself:

“I think we should not abandon [Kant’s] idea of resistance,

but we should relocate it into the system. It is the result

of resolving an internal conflict—the result of the system’s

operations resisting the operations of the same system.”

(Luhmann, 1995)

Due to the removal of all traces of operational closure

under first-order observation, the experience of resistence and
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the non-arbitrariness of the operations’ results are assigned to an

external world (Luhmann, 1998 p. 93).

Nonetheless, Bender and Koller (2020) correctly emphasizes

that it is highly improbable that an operationally closed, sense-

making computational system would construct sense in the

same way as psychic or social systems. Because contingent co-

evolutionary systems follow distinct operational logics, they are

unlikely to construct similar meanings. Likewise, Shanahan’s

argument concerning LLMs’ lack of embodiment (Shanahan, 2024)

is valid: without structural coupling to a living body, i. e., a

living system, LLMs lack key perturbation that shape human

sense-making.

However, dismissing LLMs as mere “stochastic parrots”

(Bender et al., 2021) underestimates their functional capabilities.

While it is true that LLMs are trained to predict the next word based

on statistical distributions, this does not mean their post-training

processing is reducible to simple string matching. For example, Li

et al. (2023) provide evidence of an emergent non-linear internal

representation of board states when an LLM is trained on sequences

of chess moves. More broadly, research suggests that models

trained on textual corpora can develop internal structures that

capture key elements of interpretation (Piantadosi and Hill, 2022;

Søgaard, 2023; Sahlgren and Carlsson, 2021).

Expanding on this view, Piantadosi (2024) argues that in LLM

training, semantics and syntax are not separate entities but are

integrated, allowing word relationships and contextual roles to

shape predictions. Unlike traditional generative grammars that

impose syntactic rules, LLMs infer latent structural relationships

probabilistically (Piantadosi, 2024). Words (or tokens) are encoded

as vectors in a high-dimensional space, where their positions

reflect semantic relationships. These relationships shift dynamically

based on prior generated text. Notably, the model’s internal

states capture latent aspects of both syntax and semantics,

enabling it to reconstruct tree structures (Manning et al.,

2020). In this way, meaning does not exist in isolation

but emerges relationally, forming what could be described as

a “contingent index-card system (Zettelkasten)” of linguistic

associations and relations.

This perspective aligns with conceptual role theory (Block,

1996), which views meaning as relational and functional and also

with Luhmann’s theory which claims that “objects” are never given

things in an external world but structural entities of the autopoiesis

of the system, i. e., conditions for continuation (Luhmann, 1998

p. 99), making it plausible that language models partially align with

meaning as constructed by psychic and social systems (Piantadosi,

2024).

However, this apparent alignment requires further conceptual

clarification—particularly in relation to sense production.

Piantadosi’s (2024) notion of semantic meaning differs

fundamentally from Luhmann’s concept of sense (Sinn).

Whereas, sense-making via the unversial medium of sense

functions as a structural principle within systems, semantics

is a historically evolved form of sense that takes shape within

communication. Sense-making structures system operations

by differentiating actuality from possibility and requires

a re-entry process (Luhmann, 1998 p. 50). Semantics, by

contrast, is a specific, socially patterned manifestation of sense

(Luhmann, 1997 p. 42).

Therefore, user-constructed sense, remains distinct, and

its degree of alignment with LLM-generated semantics varies.

This distinction can be compared to algebraic geometry,

where “geometric meaning” is often secondary or omitted.

Just as algebraic transformations preserve formal precision

while disregarding intuitive spatial interpretations, the meaning

produced by psychic or social systems is loosely coupled with LLM-

generated outputs. In both cases, meaning is reconstructed through

an interpretive process rather than being inherently encoded in

the system itself. Unlike in algebraic geometry, however, where

transformations are rigorously defined, the coupling between

LLMs and psychic systems is far more contingent, complicating

causal analyses.

Whether language models merely produce structured outputs

or genuinely construct sense ultimately hinges on a decisive

question: can they enact a re-entry—i. e., can they distinguish self-

reference from other-reference within their own operations? This

question will guide the next stage of our inquiry.

3.6 Co-creative sense-making

First, it is important to establish that language models exhibit a

form of self-referentiality by revisiting, expanding, or summarizing

their own previously generated text. However, this self-reference

is not intrinsic but must be explicitly reintroduced through input.

Unlike in psychic systems, where self-referential thoughts emerge

internally, LLMs rely on the structural properties of language itself

to create this effect. In this sense, their form of self-referentiality

mirrors the inherent self-referentiality of natural language rather

than an autonomous sense-making process.

A particularly striking example of this process is the chain-

of-thought (CoT) prompting method, which encourages models

to generate “step-by-step explanations.” These explanations often

reference prior outputs, forming an implicit feedback loop. Within

this process, the model may generate interim evaluations such

as “Is this step correct?” or “Do I need more information?”

However, it does not genuinely ask itself these questions in

a reflective sense; instead, these queries emerge as the most

statistically plausible continuations. If the most plausible response

involves justifying or rejecting an earlier statement, this recursive

plausibility evaluation can be seen as a rudimentary form of

processual self-referentiality—where plausibility assessment itself

recursively shapes subsequent outputs.

Expanding on this idea, one could envision a hypothetical

scenario in which a language model generates the text “How

do I make this distinction?” and, in doing so, encounters its

own system/environment differentiation within its latent space—

manifesting as a cluster of linguistic patterns. In this scenario,

the model could distinguish between patterns representing self-

reference (its internal structures and decision-making processes)

and those representing other-reference (external discourse and

user inputs). It could compute that its operation relies on

a system/environment distinction, recognizing factors such as

inherent biases, context window limitations, and its probabilistic

nature. In a sense, it would attempt to solve its own halting

problem (Turing, 1937), which is undecidable, thereby leading
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to a non-totalizing computation over time. Crucially, it could

begin to use this differentiation to shape its own computational

processes, thereby introducing an element of contingency into

its operations.

For this to occur, the model would not only need to

generate text but also process its own text generation as an

object or process of analysis, recognizing the very distinctions it

employs. This would mean acknowledging that its core function

is not truth-seeking but plausibility computation, with all other

considerations existing outside this marked domain. If the model

were to generate the question “Is my output plausible?” and

then modify its processing accordingly—adjusting its response

generation based on a recursive evaluation of its plausibility

computations—it could be seen as exhibiting a nascent form of

computational reflexivity.

However, such a scenario is purely speculative. While language

models generate text that references themselves, this does not

constitute genuine reflection. The fundamental limitation is that

language models, as far as we know, do not operate within the

medium of sense but within a vector space that is merely coupled to

a form of sense (semantics). They neither communicate nor think;

they compute. Thus, even if an LLM appears to “recognize” its

own probabilistic nature, this does not equate to a self-referential

re-entry in the Luhmannian sense.

For a re-entry to occur, a language model would need

to reflect on its own computational processes through its

generative mechanisms. This poses significant stability challenges:

a system that references itself too rigidly risks either infinite

recursion or collapse, while one that ignores self-reference

entirely remains externally determined. The key challenge, then,

is achieving a balance—an oscillation between self-reference and

external reference that enables productive adaptation rather than

systemic failure. Furthermore this, in turn, does not necessarily

mean that these models would function better, i. e., that they

would be more useful; on the contrary, the opposite might be

the case.

Currently, the only way to introduce such reflexivity is

through external interventions, such as delayed retraining or

fine-tuning. These interventions, in turn, generate new word

sequences, which are then subjected to evaluation by psychic

and social systems. Users provide direct feedback, policymakers

debate regulatory implications, companies optimize deployment

strategies, and researchers refine datasets, training methodologies,

and benchmarks. This iterative process continuously modifies

model architecture and training regimes. However, these

adaptations do not confer sense-making cognition or deeper

understanding upon language models; they merely enhance their

functional capacities within specific constraints.

Even at an architectural level, there are substantial barriers

to achieving reflective self-reference. The linear, token-by-

token generation process of transformer-based models does

not naturally allow for recursive self-reference in a way that

would facilitate true oscillation. The same apprehension was

already expressed in a different form by Jürgen Schmidhuber

and Yann LeCun who argue that a system must develop an

internal world model “to overcome key limitations of even

the most advanced AI systems today” (Schmidhuber, 2015;

Assran et al., 2023). We reconceptualized “world model” into

a reflective distinction between system and environment to

differentiate between actuality and possibility, as required by

Luhmann’s theoretical framework. Yet, we have no reason to

believe that language models autonomously develop such a

model/re-entry.

Beyond these algorithmic considerations, the fundamental

requirement for genuine self-reflection is contingency—the ability

to recognize that an operation could have been otherwise. To

achieve this, language models would need to internalize their own

computational processes as variables subject to change. Yet, this

form of contingency remains external to them: it is ultimately

psychic and social systems interacting with the model that extract

meaning from its outputs and impose interpretations on its

probabilistic reasoning. So how can such a “double closure” occur if

it would enforce opacity on any observer of the system (Luhmann,

1998 p. 78)? Put differently, how could a language model make

sense of itself if psychic and social systems, struggle to make sense

of it while its only means of self-description seems to come through

observing communication, that is, through society’s descriptions

of it?

However, even in the absence of a re-entry, interactions

between language models and psychic systems nonetheless

constitute a form of communication—despite one participant

lacking any intrinsic capacity for sense making (Esposito, 2017).

Traditional communication presupposes double contingency,which

typically emerges between two psychic or social systems. However,

due to the loose coupling between LLMs and psychic systems,

a virtual double contingency arises, manifesting as programmed

unpredictability (Esposito, 2017). Here, “virtual” does not imply

something artificial or inauthentic but rather designates an

alternative form of contingency that functionally mirrors the

original. The language model does not experience its own

indeterminacy but processes perspectives from training data and

returns structured outputs that conform to learned distributions.

This creates the illusion of an autonomous perspective when,

in reality, the system is merely aggregating and reorganizing

textual patterns—an advanced computational “index-card system

(Zettelkasten)”. Interaction is perceived as reciprocal, even though

the algorithm does not engage in genuine decision-making. Much

like a mirror reflects an individual’s image from an external

viewpoint, language models reflect psychological and societal

contingency in a machine-processed form. This phenomenon has

been aptly termed artificial communication (Esposito, 2017)—not

because the communication itself is artificial (as all communication

is), but because an algorithm has been explicitly designed to

function as a communicative agent.

In conclusion, based on the arguments presented, we remain

highly skeptical that language models currently possess—or will

ever develop—a form of re-entry. However, we do not categorically

dismiss the possibility. What is clear is that sense, constructed

by social and psychic systems in response to language model

outputs, mirrors both: the contingency of society and the meanings

it generates. While language models may not (operationally)

independently construct sense, they serve as computational

reflections of human sense-making processes—a digital artifact of

societal contingency.
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4 Conclusion

Rather than framing the discussion on artificial

intelligence within the distinction of intelligent/non-intelligent,

conscious/non-conscious, mind/body or mental/material, we

have proposed alternative distinctions: system/environment,

autopoietic/non-autopoietic and sense-making/non-sense-

making cognition. We believe that this shift in perspective offers

new insights into contemporary AI research and allows for a

systems-theoretical classification of language models.

From this viewpoint, an artificial system would need to be

autopoietic, operationally closed and reflectively self-referential to

qualify as sense-making system in a systems-theoretical sense—

capable of maintaining and reproducing its own systemic

boundaries through its operations. However, whether such a system

could be artificial—that is, constructed by an external design rather

than self-producing—is an entirely different question, touching on

the paradox of artificial autopoiesis.

Our analysis suggests that while language models exhibit

self-referential and recursive properties, they do not engage in

their own sense-making, as they do not produce or reproduce

their own system/environment distinction. Their outputs are

generated through probabilistic distributions rather than reflexive

attributions of sense. Nevertheless, they can be integrated into

social systems as communication partners, producing texts that

psychic and social systems interpret and imbue with meaning. In

this dynamic, minds think, society communicates (Luhmann, 1998,

p. 105), and language models as well as other types of ANNs

compute—asserting themselves by their operational closure. This

conceptualization entails several key insights:

• Language models function as cognitive systems in Luhmann’s

sense, in that they are structurally coupled to communication

but possess only limited capacity, that is, limited processual

and no reflective self-referentiality.

• Their outputs emerge through pattern selection based on

internal probability distributions, yet without system-intrinsic

sense-making.

• Their coupling with social and psychic systems is partly

loose and partly strict: they depend on intransparent socially

generated data and transparent optimization algorithms, their

internal processes remain opaque.

• They extend beyond mere “parroting”: instead of simply

replicating existing text, they generate novel combinations

of linguistic elements, which psychic and social systems

subsequently interpret.

• They function simultaneously as both a medium and artificial

communication partners, blurring the line between a tool and

an autopoietic system.

Thus, language models occupy an ambiguous position: they

are neither mere tools nor autopoietic sense-making cognitive

agents. Instead, they function as computational systems that do

not construct meaning themselves but enable its construction in

psychic and social systems. Their impact on these systems does

not arise from intrinsic sense-making but from their influence on

communication, perception, and cognitive processes. As such, they

represent a novel, hybrid form of cognition and interaction, whose

societal and epistemic implications warrant further investigation.

The problem is misframed and likely downplayed when one

asks whether machines are conscious, capable of replacing or

even surpassing psychic systems. Instead, the question must be:

what consequences will arise if machines establish an entirely

independent structural coupling between a reality constructed for

them and psychic or social systems (Luhmann, 1998, p. 117)? How

might these new couplings shape the evolution of psychic and social

systems? Esposito (2024) thus urges reflection on historical shifts

in communication such as the emergence of language, writing,

and the printing press. She suggests that while human roles and

perspectives will remain indispensable, their prioritization may

diminish, as communication itself may no longer necessitate their

explicit consideration (Esposito, 2024, p. 79).
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