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In the next few years, fundamental technological transitions are expected both for wireless
communications, soon resulting in the 5G era, and for the kind of pervasiveness that will be
achieved thanks to the Internet of Things. The implementation of such new communication
paradigms is expected to significantly revolutionize people’s lives, industry, commerce,
and many daily activities. Healthcare applications are considered to be one of the most
impacted industries. Sadly, in relation to the COVID-19 pandemic currently afflicting our
society, health remote monitoring has become a fundamental and urgent application. The
overcrowding of hospitals andmedical facilities due to COVID-19, has unavoidably created
delays and key issues in providing adequate medical assistance. In several cases,
asymptomatic or light symptomatic COVID-19 patients have to be continuously
monitored to prevent emergencies, and such an activity does not necessarily require
hospitalization. Considering this research direction, this paper investigates the potentiality
of cloud-based cellular networks to support remote healthcare monitoring applications
implemented in accordance with the IoT paradigm, combined with future cellular systems.
The idea is to conveniently replace the physical interaction between patients and doctors
with a reliable virtual one, so that hospital services can be reserved for emergencies.
Specifically, we investigate the feasibility and effectiveness of remote healthcare monitoring
by evaluating its impact on the network performance. Furthermore, we discuss the
potentiality of medical data compression and how it can be exploited to reduce the
traffic load.
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1 INTRODUCTION

Over the last few years, we have witnessed how the advent of Internet of Things (IoT) has led the
world into a new communications Era. The recent breakthrough in technology, both in terms of
hardware and software, has allowed human life to be pervasively supported and influenced by
machines and devices. In this context, Machine to Machine (M2M) Communications have emerged
as a typical IoT paradigmwhere the data exchange among devices takes place automatically over both
wired and wireless channels (Al-Fuqaha et al., 2015). Having billions of entities simultaneously
connected has therefore led to the redefinition of the concept of global networking. Moreover, the
coexistence of several activities and applications relying on different traffic patterns has to be
properly supported.
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Such a task represents one of the main challenges of the
upcoming 5G paradigm, where the enhancements provided in
terms of quality of service (QoS) pass through the smart
management of the available network resources.

In this paper we investigate the effectiveness of the use of
cellular technologies combined with IoT for a specific application
scenario, i.e., remote patient assistance. We foresee the use of
these technologies as being one of the components of an efficient
response to the COVID-19 pandemic. We contribute under three
perspectives: 1) by providing a discussion on how this remote
healthcare can be framed in the 5G infrastructures; 2) by
indicating the benefits of data compression in cloud-based
services designed to collect and analyse IoT data measured at
the patient’s side; 3) by assessing the behaviour in the current
cellular setting, based on LTE. As for this latter point, since 5G
infrastructures have not been fully deployed yet, the existing 4G
network framework (5G in fact partially relies on 4G) can be
fruitfully exploited to support healthcare activities. To this aim
the testing has been done in that context, but guidelines can be
easily extended to 5G.

1.1 5G and IoT Infrastructures in View of
Health Monitoring
It is well known that the IMT 2020 (International Mobile
Telecommunications) organized envisioned 5G usage scenarios
in a pyramidal structure that summarizes the current trends in
IoT applications (Figure 1). Specifically, three main categories are
placed at the pyramid edges (Shafi et al., 2017): Ultra-reliable and
low latency communications (URLLCs), Enhanced mobile
broadband (eMBB) and Massive machine type
communications (mMTC).

URLLCs, introduced by the 3GPP (Third Generation
Partnership Project) Release 15 standards, are oriented
towards mission-critical scenarios with stringent constraints in
terms of scalability, latency and reliability. Similar requirements

characterize factory, process and power system automation in
industry, autonomous driving, road safety and traffic
management in intelligent transportation, remote surgery in
healthcare, and many other fields of applications (Bennis
et al., 2018). High data rate connections over wide areas are
supported by eMBB services, developed from the 4G broadband
framework and destined to significantly outperform LTE (Long
Term Evolution) performance. The enhanced connectivity is
beneficial for faster network access and better user experience
when dealing with high-quality video streaming, file share/
transfer and device remote control (Wan et al., 2018). Finally,
mMTC considers the presence of a very large number of devices
sporadically exchanging an extremely variable, but limited,
volume of data without any constraint to the delay. Such a
scenario is exactly the one related to the IoT, affecting both
people daily lives (Palattella et al., 2016) and industry
(Bandyopadhyay and Sen, 2011). The features of mMTC are
perfectly tailored to the nature of IoT traffic, with benefits also in
terms of energy savings for battery supplied sensors. Wearable
devices, smartphones, and other portable instruments used in
Personal Area Networks (PANs) are typically supported by
technologies like Zigbee, Bluetooth Low Energy, and Wi-Fi.
On the other hand, the so-called Low Power Wide Area
Networks (LPWANs) have emerged as potential technologies
that are able to provide coverage in the order of kilometers for IoT
devices. In this category we can find Sigfox and LoRaWAN,
developed to operate in the ISM (Industrial, Scientific, Medical)
unlicensed electromagnetic spectrum band (Centenaro et al.,
2016). Alternatively, LTE-M and, more recently, Narrowband
IoT (NB-IoT) were defined as cellular based technologies built
within the LTE framework (Foubert and Mitton, 2020).

Overall, the services categorization in 5G has been realized by
jointly considering the requested QoS, the traffic volume that
needs to be supported, and the characteristics of the end devices.
However, it is worth noting that some applications span over
multiple, heterogeneous, usage scenarios, therefore they cannot

FIGURE 1 | 5G usage scenarios (Shafi et al., 2017).
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be identified in a single category of 5G services. An example if this
is smart healthcare, that, due to its current relevance, has emerged
as one the most challenging fields where cellular technology can
find a use (Ullah et al., 2019). Patient tracking and monitoring,
emergency alarm systems, and remote surgery represent some of
the potential use cases, each one characterized by specific
performance and constraints. Network architectures for
e-Health have already been proposed for private use in
hospitals and medical facilities, while remote monitoring has
been implemented through dedicated applications. Some issues,
however, are still under investigation. The monitoring of
hospitalized patients with data stored in a private cloud server
improves the informationmanagement, but the facilities still have
to face the costs of treatment and the potential reduction of
available inpatients beds.

Currently, this problem has been highlighted with the sudden
spread of COVID-19. The high number of patients requiring
assistance has caused the collapse of health systems in many
countries because of the lack of hospitalization resources.
Therefore, the prioritization of hospital services has become
crucial, with patient assistance being necessarily implemented
into new settings wherever possible.

In this regard, for asymptomatic patients and those with light
symptoms, the use of IoT devices makes their monitoring, outside
of the hospital setting, feasible as well. Furthermore, IoT sensors
can be programmed and can therefore work automatically
without any intervention from the user (this is an advantage
especially when dealing with elderly people who may not be
familiar with technology). The only drawback of this solution is
that IoT supports limited and sporadic traffic, therefore only spot
measures of vital parameters can be transmitted efficiently. When
the patient monitoring becomes more complex which requires a
large amount of data to be transmitted, a different approach must
be followed. By referring to the 5G pyramid in Figure 1, such a
particular scenario can be positioned closer to eMBB than to
mMTC, since the pattern of traffic to be supported is quite similar
to that envisioned for eMBB, while the number of entities
simultaneously connected may be large but not comparable
with numbers expected in the IoT.

Furthermore, some pre-optimization of the network traffic can
be performed at the application layer where raw data coming
from devices are handled. In fact, especially when dealing with
cloud-based architectures, the information generated by the end
devices represents an updated version of data already stored in
the cloud. Therefore, the information to be transmitted may be
conveniently reduced only by dealing with the part necessary for
the cloud updating. Such a procedure is in general referred to as
data synchronization and relies on particular data compression
algorithms.

1.2 Contributions
In the framework of health monitoring through cellular systems
and IoT, we identify a cloud-based cellular network scenario
where we implementmonitoring applications for people suffering
from respiratory disease (and others). We focused on such kind of
applications, considering the efforts required currently to
remotely manage COVID-19 patients from their home. While

the very latest literature about IoT and cellular technologies has
dealt with contact tracing implementation and screening
applications (Alsaeedy and Chong, 2020; Chamola et al.,
2020), few papers have concentrated on the use of these
technologies for monitoring patients at home as was required
in many countries during COVID-19 lockdowns. Challenges
characterizing the considered use case can be listed as follows:

• The potential presence of a large number of patients
concentrated in the same restricted geographical area (a
house, a building, a city district) gives rise to scalability
issues;

• Many heterogeneous health sensing devices may be used for
the same patient, so this implies that the kind of data that
must be exchanged may vary in size and QoS requirements;

• Given the specificity of the diseases provided by COVID-19
(respiratory issues) it is fundamental to have punctual and
reliable data acquisition.

We then based our study on real medical measurements,
exploited to evaluate the network performance considering
particular scenarios involving a potential high number of users
to be served in a limited area. Furthermore, we discuss the
feasibility of data compression on medical information, also
evaluating the impact on network traffic load. To the best of
our knowledge, such a type of analysis has never been proposed
before. In fact, many works dealing with cellular technologies for
healthcare applications investigate only those issues related to
networking, without any specific consideration of the pattern of
data that needs to be handled. On the other hand, algorithms and
mechanisms for data compression are typically evaluated in terms
of compression ratio and loss, but the impact of data reduction on
the network traffic is not discussed at all. In contrast, our
contribution addresses both data compression and traffic
optimization issues jointly. As stated before, for the
performance assessment we used LTE, to have it ready as a
practical case, since this is technology has already been assessed.
However, the study proposed here paves the way to the 5G
evolution since the architectural model as well as the use of
cloud computing fit perfectly to that framework.

The rest of the paper is organized as follows. Section 2 reports
the literature review about the use of LTE technology in the
healthcare context. In Section 3 the state-of-the-art of medical
data compression is described. The proposed network
architecture for remote healthcare monitoring is introduced in
Section 4. A simulation analysis is performed and discussed in
Section 5. Finally, Section 6 draws conclusions.

2 LTE-BASED SOLUTIONS FOR
HEALTHCARE

The use of cellular technologies for healthcare applications has
been introduced to address two important issues. The first one
concerns data accessibility and management, with the aim to
improve the quality of interactions between patients and medical
personnel. The second one instead regards healthcare services
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organization, in terms of both scheduling and prioritizing, so as to
minimize latency periods for patients. Therefore, many 4G/5G
based healthcare solutions have been developed to support
activities in hospitals and other medical facilities where the
presence of a large number of individuals is expected. In this
direction, network architectures and platforms have been tailored
to specific application scenarios (Islam et al., 2015). An example is
given in Zhang et al. (2018) where a real-time drug infusion
monitoring system based on infrared sensors and NB-IoT is
described. The large coverage provided by NB-IoT makes it
efficient in smart buildings/areas. Sensors measuring heart
rate, blood pressure, and body temperature are typically
provided by NB-IoT technology for data transmission, as
detailed in Malik et al. (2018). In this regard, it is worth
highlighting that NB-IoT belongs to the LPWANs category, so
it is perfectly suited to an IoT context, such as the one presented,
where small size data are sporadically transmitted. Hence, such
technology is not properly tailored to support a close monitoring
of activity where a large amount of data is transmitted.
Furthermore, since no traffic analysis is provided in Malik
et al. (2018), Zhang et al. (2018), it is not possible to evaluate
the impact of the proposed solutions on the overall network load,
especially when a large number of users is simultaneously
connected.

Another potential application scenario for cellular
technologies is represented by emergency and alarm systems.
In the healthcare context, giving aid to patients out of hospitals
as soon as possible is crucial. In this direction, the authors in
Cical et al. (2016) propose a framework for supporting
ambulance services with remote assistance through video
streaming. In that case, LTE Advanced (LTE-A) is considered
for data transmission, since real-time video and image delivery
requests large bandwidth systems to guarantee high quality and
small latency (on the other hand, the IoT paradigm is not suited
to provide such performance). More recently, the same use case
has been investigated in Rehman et al. (2018) where medical
video streaming is proposed in the context of future 5G small
cell heterogeneous networks. The paradigm of mobile health is
recognized as useful for disaster management as well. In fact, the
work in Adibi (2018) shows how affected people can be
conveniently supported by means of a vital parameters
remote monitoring service. However, such emergency
scenarios are quite particular and are rarely expected to
occur. Therefore, the impact of these services on the network
traffic load is negligible with respect to a continuous remote
monitoring application.

In addition to patients support in hospitals and emergency
events, which can be conveniently handled by means of cellular
networks, the largest part of remote healthcare solutions concerns
the monitoring and tracking of individuals outside of medical
facilities. In fact, patients are typically provided with body sensors
measuring vital parameters that have to periodically be collected
and sent to a medical data store or cloud. Such devices can be
simple wearables, but also include body implants, so they are
designed to be energy efficient and have a guarantee of between 5
and 10 years. Data transmission is performed in a wireless fashion
but due to the problem of energy consumption, the device

transmission power is only sufficient enough to cover an area
of a few meters. A viable solution to allow long range
communication from sensors to the cloud considers the
presence of an intermediate node acting as data collector. The
work in Adibi (2014) presents an end-to-end network framework
for mobile healthcare, referred to as a biomedical sensing
analyzer, where data transmission from the medical device to
the cloud is performed using a smartphone as a sort of gateway.
Specifically, the measurements collected by the sensor are first
sent to the smartphone using a short-range communication
oriented to PANs. The smartphone is then responsible for
data forwarding to the cloud exploiting the LTE-A network.
The same approach is exploited in Hindia et al. (2016) where
a smartphone application controls and aggregates the
measurements coming from several sensors. In that case, the
communication between the smartphone and cloud is realized by
exploiting LTE-Femtocell networks. Furthermore, a particular
scheduling strategy is proposed in order to optimize the data
traffic based on the priority of the information that needs to be
transmitted. The use of LTE-Femtocells (the dimension of which
is in the order of few tens of meters) is envisaged in a IoT context,
providing better coverage and more efficient traffic management.
For those scenarios where sensors generate limited-size data and
where their transmission occurs infrequently, the IoT paradigm is
demonstrated to be an effective solution. An example of
healthcare services relying on NB-IoT is described in
Manatarinat et al. (2019). In this context, one of the most
important aspects to consider is that M2M communications
are not only efficient from a networking point of view, but
they are also user-friendly since the standalone behavior of
IoT devices makes their management very easy.

The literature review about the healthcare network has
revealed how the proposed solutions are tailored to specific
application scenarios and, in particular, to the data traffic that
will be handled. However, further optimization can be achieved
by resorting to machine learning. An example is given in Hadi
et al. (2019), where an algorithm for big data analysis is used to
process patient aggregate data coming from biomedical sensors to
recognize potentially dangerous events such as a stroke. By doing
so, the LTE-A uplink transmissions are scheduled based on the
service priority. Concerning healthcare data mining, the authors
in Jiang et al. (2021) show how the promising deep learning can
be exploited to improve the interaction and data exchange in a
cloud-based network. Another solution oriented to the future 5G
is proposed in Lloret et al. (2017) where the problem of
continuous patient monitoring is tackled. In that case,
machine learning is used to efficiently handle the expected
large amount of received data, while 5G technology is
considered to support a higher number of simultaneous users
than 4G.

In summary, the literature review of LTE-based remote
healthcare systems highlights how the proposed solutions are
mostly presented and discussed in terms of communication
architectures and scheduling protocols, with performance
evaluation being considered from an applications point of
view. On the other hand, no discussion is reported about the
LTE framework capability to support such services. That is, LTE
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is introduced as part of the system, but the analysis about network
traffic is very often neglected.

3 HEALTHCARE DATA COMPRESSION
AND SYNCHRONIZATION

The performance of remote healthcare monitoring systems
mainly relies on the efficient usage of resources at the network
layer. However, the interaction between end device and cloud
server is first driven by upper layer protocols responsible for the
management of data generated by sensors before being
transmitted. In this regard, data compression algorithms are
typically implemented on the end devices in order to reduce
the amount of information to be sent. Following such an
approach returns a twofold optimization. First, energy saving
is provided for devices since the time spent in active mode for
transmission is minimized (this aspect becomes particularly
important when dealing with battery-supplied IoT devices).
Then, with a view to networks with thousands of entities
simultaneously connected, the traffic load may be significantly
reduced. The authors in Stojkoska and Nikolovski (2017) propose
a novel coding scheme for delta compression tailored to delay
insensitive data transmissions. By considering the time
correlation of data, significant performance in terms of data
reduction can be achieved, at the expense of a very low
computational cost and low device power consumption.
Spatio–temporal correlation of data can be fruitfully exploited
for big data scenarios, as discussed in Moon et al. (2017).
Specifically, by means of Discrete Cosine Transform and Fast
Walsh–Hadamard Transform, an efficient lossy data
compression can be achieved in terms of both the
compression ratio and the error rate. Dealing instead with IoT
streaming services, a content-sensitive compression algorithm is
introduced in Hsu et al. (2017). Following a lossy approach, video
frame reduction is operated with the aim of achieving a
convenient trade-off between data reliability and storage
reduction.

The same issues concerning image and video compression can
also be found in healthcare applications, especially regarding the
compression of continuous and burst data measurements. In this
direction, a potential use case is represented by remote
electrocardiography (ECG) data transmission. The work in
Deepu et al. (2017) presents a two-step algorithm for ECG
data compression, specifically designed to be energy efficient
in a wireless IoT sensors context. First, the size of data to be
transmitted is minimized by resorting to lossy high compression
ratio techniques. Then, entropy coding is used to minimize
potential decompression errors. On-chip ECG data
management is also addressed in Joseph et al. (2014) where a
Discrete Wavelet Transform based compression algorithm is
introduced. With low complexity processing, suited to battery-
powered sensors, significant performance in terms of the
compression ratio is achieved. Another example of healthcare
data compression may concern electroencephalography (EEG).
The authors in Nasrallah et al. (2015) present a combined lossy/
lossless data compression technique that relies on Discrete Cosine

Transform and adaptive differential pulse coded modulation with
the aim of minimizing the data volume to be transmitted while
maintaining a high level of information integrity.

The use of data compression is particularly effective when
dealing with cloud-based applications where sensors exchange
information with a data center. In this scenario, the cloud saves
the updated version of data generated by sensors and devices.
However, it usually happens that consecutive versions of the
same information are not that different from one another;
therefore it may be convenient for the sensors to transmit
only the new parts of data that are necessary for the cloud to
update. In this direction, data compression can be combined
with the so-called data synchronization algorithms that rule the
interaction between end device and cloud. Timestamp, Bitmap,
and RAKE algorithms are exploited in Sari and Riasetiawan
(2018) to reduce the amount of traffic between IoT devices and
the cloud. The combination of such techniques drives the
processing of data in terms of compression, synchronization,
and decompression. A multi-layered framework for data
compression and storage optimization is described in
Hossain and Roy (2018). By conveniently processing the
output of the IoT sensors, an optimal network bandwidth
usage is achieved during data transmission, furthermore,
providing low decompression loss. The work in Petroni et al.
(2018) introduces an adaptive data synchronization algorithm,
tailored to the IoT context but is also efficient in heterogeneous
traffic scenarios. By exploiting a bi-directional communication
link, the cloud sends a compressed version of its data to the
end device. The end device then operates the comparison
between its data and those coming from the cloud to
recognize the new parts of information that have to be
transmitted for the cloud update.

Overall, compression and synchronization can be achieved
through either lossless or lossy approaches. In the first case, data
integrity is guaranteed but at the expense of a limited
performance in terms of the compression ratio. On the other
hand, with the lossy approach the traffic volume can be
significantly reduced, but the reliability of data cannot be
fully guaranteed. In the healthcare context, data integrity is a
crucial issue especially when dealing with applications for
emergency scenarios, where the information must be
delivered without errors. Therefore, the choice of the most
effective method has to be driven by the characteristics of the
context under investigation. Finally, another aspect that must be
stressed is that most of the mechanisms for healthcare data
compression relies on features extraction and pattern
recognition algorithms specifically tailored to the data. That
is, they are efficient when dealing with specific data, but they
may fail if applied to other data patterns (for instance, the
method for ECG measurements compression may not provide
the same performance when working on EEG data). So, having a
data content-insensitive compression mechanism may be
convenient so as to guarantee good performance despite the
nature of the information that needs to be processed. Such an
aspect becomes even more relevant in scenarios where
compression is operated on heterogeneous data, potentially
coming from different sensors.
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4 ARCHITECTURE MODEL

In this section, we present the network model implementing the
envisaged remote healthcare monitoring service. Let us refer to a
cloud-based scenario, where data coming from some patient
medical instrument/sensor have to be stored in a data center,
making them remotely available for medical personnel and
doctors. By assuming the final user/patient to be potentially
provided with multiple devices, we consider the presence of an
LTE medical gateway (LTE–MGW) responsible for patient data
collection and transmission over the LTE network (Figure 2).
Such a solution demonstrates advantages for two main reasons.

First, medical devices may not be provided with an LTE
interface and the problem of power consumption may limit
the transmission range to only a few meters. Therefore, the
LTE–MGW allows entities locally connected in a PAN/LAN
context (for instance with Bluetooth or Wi-Fi) to be part of a
wider network context. The second benefit concerns the cloud
service management, where data processing and transmission
considers only LTE–MGW and the data center. So, the
computational effort for medical sensors is significantly
reduced, since they are no longer directly involved in the
cloud network. From an applications point of view, the
LTE–MGW implements data compression and
synchronization protocols, allowing the optimization of traffic
towards the eNodeB and the cloud server. In this direction, the
presence of an LTE–MGW can be seen as part of an edge
computing paradigm, where the distance between end-devices
and the cloud is virtually reduced by moving some data
processing and storage on an intermediate node (Bangui et al.,
2018).

In detail, we present the proposed healthcare remote
monitoring system through a two-layered description. The first
layer is referred to as the characteristics of the LTE network and is
what the service relies on, while the second one concerns the
application handling data synchronization between LTE–MGW
and the cloud server. So, we do not deepen the interaction
between medical sensors and LTE–MGW since this part of the
network is not directly involved in the cloud service.

4.1 Network Layer
In this work, we take as a reference model for the non-standalone
5G configuration, where LTE is considered to as access

technology in compliance with the last releases by 3GPP
(3GPP, 2019). An example of an access/core network could be
obtained by considering two different network segments, namely
Evolved Packet Core (EPC) and LTE Radio Access Network
(RAN). The EPC, including the S1-U Protocol Stack (GTP
over UDP/IP), is composed of the Mobility Management
Entity (MME), the Serving Gateway (SGW) and the Packet
Data Network Gateway (PGW), and it is responsible for the
connection of eNodeBs (eNBs), between them and to external
networks (i.e., internet). The LTE RAN segment, including the
LTE Radio Protocol Stack (PHY, MAC, RLC, PDCP and RRC),
represents the radio access segment for the mobile end-users. The
architecture of the LTE cellular network has been realized in ns-3,
a discrete event network simulator typically used to evaluate the
performance of large-scale systems. Specifically, ns-3 (Baldo et al.,
2011, Baldo et al., 2013) provides the modeling of the LTE
network data user plane, using two important simulation
simplifications. First, it does not implement the control plane,
as it is not of interest for most designs and evaluations concerning
end transmissions. The other simplification concerns instead the
network nodes that connect the LTE system to external networks
(for example Internet), i.e., the Packet Gateway (PGW) and the
Service Gateway (SGW), which are simulated through a single
entity. Figure 3 shows the network architecture of the LTE-EPC
model as defined in the simulator.

The unification of SGW and PGW in a single node has allowed
the S5 interfaces/S8, specified by 3GPP, to be removed, thus
simplifying the model. On the other hand, the S1-U, S11 and X2
interfaces (necessary for handover procedures) and the entire
protocol stack (PHY, MAC, RLC, PDCP and RRC) of the LTE
access network have been modeled as specified by 3GPP. Figure 3
highlights two network segments: the LTE segment, where users
(UEs), identified with the LTE-MGW, connect to the eNodeB,
and the EPC segment, where eNodeBs are connected between
each other and the internet by means of point-to-point optical
fiber links.

Without loss of generality, we refer to a single frequency
channel to evaluate the radio coverage and capacity of the
LTE RAN, which are expected to be dependent on the
number of users (that is, LTE–MGWs) simultaneously
connected. Each LTE–MGW is considered as transmitting the
data available after compression as fast as possible so as to exploit
the whole bandwidth allowed, defined as a function of the

FIGURE 2 | Healthcare remote monitoring scenario.
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signal-to-interference-plus-noise ratio (SINR) and modulation
and coding schemes (MCS) characterizing LTE. Further details
concerning the simulation scenario are provided in the next
section.

4.2 Application Layer: Data Synchronization
The procedure for cloud update is handled at the application layer
by means of so-called data synchronization protocols. The aim of
such protocols is to make the end device and the cloud cooperate
in order to perform effective data sharing, minimizing the
amount of overhead information to be transmitted. Therefore,
data synchronization results in a sort of information
compression, since only part of the data generated by the end
device are actually sent to the cloud. For our purposes, we
consider the implementation of the synchronization algorithm
introduced in Petroni et al. (2018) the essentials of which are
recalled below.

Given a client-server scenario, two entities referred to as
A and B, respectively, are considered. The client A,
represented by the LTE-MGW, stores some data, namely
FA, that have to be transmitted to the server B, which is the
cloud. The server B buffers FB, which is an older version of
FA, which therefore has to be updated. Such a procedure can
be accomplished by replacing FB with the newly received FA,
however this would require FA to be fully transmitted from A
to B. Since the content of FA and FB are likely to be
unchanged in some parts, it is sufficient for A to send
only the new information in FA which is strictly necessary
for B to the update FB to FA. Such amount of data is usually
referred to as Delta (Δ), since it represents the difference
between FB and FA. By doing so, the dimension of Δ may be
significantly smaller than the entire size of FA, therefore the
information overhead to be transmitted is minimized,
allowing the network traffic load to be reduced. The
computation of Δ is performed by exploiting a bi-
directional communication between A and B, described as
follows:

1. The server B organizes its data version FB in non-overlapping
blocks, referred to as chunks, of size Bc. Chunks are subject to a
double-hashing compression and sent to the client A.

2. Client A scans its current data FA by means of a moving
window exactly equal to Bc. For each portion of data under
investigation, the client checks for potential matchings with
any chunk received from the server. By doing so, client A is able
to compute the differences between FA and FB and to store
them in a file Δ. Specifically, Δ is composed of an ordered list of
literal bytes and tokens. Literal bytes represent the new
information gathered in FA but not in FB, while tokens refer
to the index of chunks recognized as present in both FA and FB.

3. The file Δ (the size of which is likely to be much smaller than
FA) is sent to the server B and exploited for the update FB,
finally resulting in the exact copy of FA.

Concerning the procedure for data synchronization
described above, two aspects deserve to be highlighted. First,
differences in the data computation strictly relies on the chunk
size Bc. In fact, if Bc is too large, the probability to find matchings
between FA and FB may be low, therefore Δ will be mainly
composed of literal bytes, with its size becoming comparable
with the dimension of FA (so, the gain in terms of traffic
reduction may not be significant). On the other hand, if Bc is
small, the computational effort to obtain Δ grows. Typically,
data synchronization protocols relying on the delta
computation approach are meant to work with static
parameters, therefore traffic optimization performance
depends also on the characteristics and heterogeneity of the
data to be handled. In this direction, in order to make
synchronization protocols independent of the nature of data,
an adaptive algorithm to calculate the optimal chunk size has
been implemented. Specifically, the solution proposed exploits
the information about tokens (their number and position within
the file Δ) recognized during the current synchronization
procedure to predict the optimal value for Bc to be used in
the next synchronization event. In fact, having consecutively

FIGURE 3 | LTE network framework.
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indexed tokens means that there is a portion of data, larger than
Bc, that has remained unchanged. Therefore, the chunk size
could be conveniently increased so that the number of tokens to
be stored in the file Δ is reduced, thus reducing its size. On the
other hand, when two tokens are not consecutive, it means that
some updates are in between. So, the chunk size should be
conveniently decreased to reduce the transmission of redundant
literal bytes. By analyzing the sequence of tokens in the file Δ, we
are able to calculate several estimates of the new chunk size as
follows [see Petroni et al. (2018) for further details]:

{ B(m)
c � Bc + μNac

B(m)
c � Bc − μNud

(1)

with the first row describing the mth estimate obtained by means
of the current chunk size increase, while the second row refers to
the mth estimate obtained through the decrease of Bc. In detail,
the chunk size estimates are a function of the number of tokens
stored consecutively and the number of updated bytes expected
between two non-consecutive tokens, respectively Nac and Nud.
Finally, μ is a step size ruling the speed of adaptation of the
estimates. Depending on tokens™ distribution in Δ,M chunk size
estimates are obtained, with the final resulting averaged chunk
size given by:

Bc,NEW � 1
M

∑M
m�1

B(m)
c (2)

So, the value Bc,NEW represents the new chunk size to be used
during the next data synchronization event. The second issue to
be discussed is about the computation of Δ and the update of FB,
which requires the client and server to cooperate through a bi-
directional communication. Such a paradigm may not be
convenient because of the potential latency introduced to
implement both a downlink and an uplink transmission flow.
However, it is worth noting that devices acting as LTE–MGW are
typically provided with large storage resources. Therefore, we can
reasonably assume that the LTE–MGW to buffer both the new
data FA and the old one, essentially, corresponds to FB stored in
the cloud. In this scenario, the downlink communication from the
server to the client can be avoided since the LTE–MGW has all
the information necessary to compute Δ. A pictorial description
of data synchronization architecture implemented at the
LTE–MGW side is reported in Figure 4.

The block responsible for computing Δ receives as input FA
and FB, both stored in the device. The adaptive chunking
algorithm, returning the optimal value Bc (actually referred to
as Bc,NEW in Eq. 2) driving the differences in computation,
operates instead in a feedback loop since it exploits the output
Δ to predict the input parameter for the other block.

As a final remark, it is worth noting that the data
synchronization algorithm considered here operates a lossless
compression and is information insensitive, which means it
works independently of the pattern of data to be handled. It
can therefore be easily implemented for any kind of application.
On the other hand, the literature review reported in Section 3 has
shown that many data compression algorithms are tailored to
specific data types such as ECG and EEG, so they may not be
suited to different scenarios.

5 SIMULATION RESULTS

The feasibility and performance of the proposed LTE-based
remote healthcare monitoring service has been evaluated by
means of several network simulations performed with ns-3.
The scenario has been designed to represent a typical case of
COVID-19 patient monitoring at home. Indeed, some radio
access points are organized to provide coverage in a given area
and serve groups of users concentrated in some locations (for
instance homes, buildings, city districts). In this direction, we
consider the LTE scenario depicted in Figure 5A, where seven
radio access points are organized in a hexagonal spatial layout.
Each site is designed with three antennas allowing the coverage
area to be divided into three 120° sectors (Figure 5B).

According to the proposed architecture, the access points are
connected via X2 interfaces (black lines), while the
communication PGW/SGW (green node) is realized through
dedicated point-to-point links. The presence of the network
server (yellow node) has also been included to simulate the
end-to-end communication performance. Finally, the blue
nodes represent the LTE-MGWs randomly distributed in the
considered area.

The data traffic has been modeled considering different
patterns of real healthcare parameters that may be measured
for COVID-19 patients affected by respiratory issues. Specifically,
we divide users into three categories, depending on the service
they apply for:

1. Service 1 (S1): data refer to the tracking of respiratory rate and
pressure;

2. Service 2 (S2): data on oxygen saturation are provided together
with the parameters measured in S1;

3. Service 3 (S3): more complex data about patient health
conditions are considered, including respiratory rate,
pressure, tidal volume, inspiration and expiration flows.

The services have been simulated by considering oxygen
saturation data taken from the available database in
Physionet.org (2020), while the other breathing measurements
have been obtained from a Garbin ventilator (Linde Medicale,

FIGURE 4 | Data synchronization mechanism implemented at the LTE-
MGW side.
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2019) employed in a lab test bed (Figure 6). The LTE-MGW has
instead been implemented in a tablet, connected to the LTE
network via a SIM card and is capable of quite a large data storage
(in the order of gigabytes).

It is worth highlighting that S1, S2, and S3 gather
measurements potentially coming from different medical
devices, therefore we identify each user with an LTE-MGW
that is able to perform the data collection as described in
Section 4. Such a choice is a perfect fit for the home
monitoring scenario that we are investigating. However, it is
worth noting, for the sake of completeness, that it may also be
possible for a single LTE–MGW to serve multiple users in specific
scenarios where several patients are placed in a restricted area
such as a hospital room or ward. In that case, since data coming
from health sensors/instruments are typically provided with a
unique ID identifying the corresponding patient, information
management between LTE–MGW and the cloud server may be

easily handled. In general, for tablet-like devices acting as
LTE–MGW no problems are expected in terms of storage
saturation, neither for single nor for multiple users scenarios.
Despite the fact that patients may connect to several sensors, the
average daily traffic is in order of megabytes, which is far below
the LTE–MGW storage capacity. Moreover, note that the
LTE–MGW essentially acts as a buffer, storing data only for
the time necessary to update the corresponding data in the cloud.
Then storage space can be released and reused for future
measurements.

Simulations have been performed to evaluate two main
aspects of remote monitoring: the impact of the number of
users and the amount of data exchanged on the network traffic
load. The analysis of the available medical datasets has revealed
that daily measurements of users are stored in multiple files, the
number of which varies from three to 11 per user, generated at
different times. Therefore, we conveniently consider such a

FIGURE 5 | LTE simulation scenario (A) and radio map (B).

FIGURE 6 | Lab test bed including a Garbin ventilator and a tablet acting as medical gateway.
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feature to model the user daily data traffic. Furthermore, the size
of the available datasets allowed us to simulate the presence of
up to 120 users. The LTE-MGWs are implemented to work both
with the data synchronization protocol described in Section 4
and without any data compression protocol. By doing so, we are
able to evaluate the effect of traffic reduction on the network
performance. In this regard, Table 1 reports some reference
information about the average data volume generated by S1, S2,
and S3. It is worth highlighting that the algorithm for data
synchronization introduced in Section 4 has been implemented
in a tablet acting as an LTE-MGW, so the results in Table 1
actually come from real tests (the network performance analysis
has instead been performed by means of simulations).

The second column reports the average number of daily
transmissions performed by users belonging to the S1, S2, and
S3 service categories, respectively. The third and fourth columns
show the average size of a single transmission data. From a network
point of view, the maximum data size column corresponds to the
worst case, while the minimum data size reference is the best one.
Finally, the last column describes the daily average data traffic
volume. For table cells containing two values, the first one refers to
the full data size, while the value indicated in parentheses is
obtained after data compression. Furthermore, based on the
reference values in Table 1, we measure the performance of the
employed data synchronization algorithm in terms of the
compression factor, expressed as:

CF � 1 − Δ
Ftot

(3)

where Ftot is the amount of data collected by the LTE–MGW from
medical devices and Δ is the size of information effectively
transmitted to the cloud. The value of CF is expected to range
from 0 to 1. Specifically, if CF approaches 0, it means that the data
reduction gain provided by the synchronization algorithm is low.
On the other hand, the higher the CF, the better the data
compression achieved. Figure 7 reports the average
compression factor measured for S1, S2, and S3. We refer to
the scenario where users concurrently try to transmit the
maximum sized data in a single transmission (column three of
Table 1) as a worst case, while the best case refers to users
concurrently transmitting the minimum volume size of data
(column four of Table 1). The last metrics instead concerns
the average daily data traffic.

By observing the results, it is possible to appreciate the quite
flat performance provided by the data synchronization algorithm,
with values ranging from 0.2 to 0.3. In detail, S2 seems to be the
service taking best advantage of data compression. This is due to
the fact that measurements referring to oxygen saturation may be
quite constant in time; therefore, the resulting data can be
conveniently compressed. On the other hand, S1 and S3
measure variable parameters like breath flow, therefore the
achievement of a higher compression factor mainly depends
on the pattern of data to be handled.

The second part of the analysis provides coverage and capacity
evaluations for both the scenarios of compressed and
uncompressed data. In particular, we focus on the uplink
network direction, considering a certain number of LTE-
MGWs (data traffic originator), deployed inside the cellular
network, and one destination (gathering server), located
outside the cellular network domain. To this aim, during the
simulation each traffic originator generates data as fast as
possible, trying to fill the bandwidth, up to a maximum
quantity of bytes given by the dimension of real data collected
in Table 1. Once the lower layer transmission buffer is filled, the
LTE–MGWwaits until space is free to send more data, essentially
keeping a constant information flow. Moreover, considering the
reliability as the main KPI related to patient monitoring service,
we use TCP as the transport protocol.

Network performance is evaluated in terms of the following
network metrics:

• Load: total bytes received by the server during the whole
simulation.

TABLE 1 | Data traffic characteristics for S1, S2, and S3.

Service Av. daily transmissions Av. maximum data
size (single transmission)

Av. minimum data
size (single transmission)

Av. daily
data volume

S1 9.35 684.61 (511.31) kB 34.01 (24.32) kB 1887.84 (1,413.45) kB
S2 8.32 704.28 (522.07) kB 42.04 (29.69) kB 1894.41 (1,397.12) kB
S3 6.62 1,625.73 (1,278.34) kB 91.96 (66.12) kB 3,659.12 (2,864.93) kB

FIGURE 7 | Compression factor provided for S1, S2 and S3.
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• Coverage: ratio between the number of LTE–MGWs able to
upload their data on the remote server and the total number
of LTE–MGWs deployed in the scenario.

Additionally, service performance is evaluated in terms of the
following end-user metrics:

• Throughput: total received bits over to the total receiving
time interval.

• Packet Delivery Ratio (PDR): ratio between the number of
correctly received packets and the number of related
transmitted ones.

• End-to-End Delay (E2E-Delay): end-to-end delay between
the transmitting and the receiving of a data packet.

• Jitter: variation of the end-to-end delay between packets
belonging to the same data flow.

The performance of the LTE network supporting healthcare
remote monitoring has been measured as a function of the
number of users to be served, ranging from 30 to 120. These
users are uniformly deployed in a squared simulation area of
1 km. Moreover, to statistically validate the simulation results, we
perform 10 simulations for each scenario and show the final
results in terms of mean value and Confidence Interval of 99% for
each performance metric. Users have been distributed uniformly
among the services S1, S2, and S3. Figure 8 depicts the trend of
network traffic load as a function of the number of users
simultaneously transmitting, hence concerning the connection
between users and eNodeBs.

The curves referring to the worst and best case (previously
introduced) suggest two important results. First, it can be
observed how the effect of data compression allows the
network load to be reduced with respect to the case where
compression is not considered. In other words, given the
number of transmitting users, the network load is reduced
when data compression is applied. This is true for any
number of considered users, in fact the red lines are always
under the corresponding blue lines. As expected, the network
load is proportional to the amount of data that needs to be
transmitted, therefore the worst case presents higher values than
the best one. Second, by having a specific network load as a target,
it is possible to appreciate how the use of data compression allows
a larger number of users to be served in the network.

The LTE performance analysis also concerned the throughput,
expressed in Megabits per second (Mbps), described in Figure 9.

Interestingly, we observe that, when the number of users is
sufficiently small, the throughput is higher in the worst case (that
is, when the maximum amount of data is transmitted) than in the
best case. This means that when the network load is far from the
RAN saturation level, users transmitting a large amount of data

FIGURE 8 | Network load as a function of the number of users.

FIGURE 9 | Network throughput performance.

FIGURE 10 | Network coverage percentage.
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can fully exploit the available network resources and can attain a
high throughput. On the other hand, when the amount of data to
be handled is limited (that is, in the best case), user performance
results are slightly lower because the traffic volume has less
impact on the network load. Such behavior is no longer
respected when the number of users grows. In fact, as the
network load increases, users throughput is necessarily reduced.

From another perspective, QoS provided to users has been
measured in terms of coverage and PDR. Specifically, the
coverage refers to the percentage of users allowed to access the
LTE resources for transmitting, as depicted in Figure 10.

In the worst-case traffic scenario, the difference between
handling compressed an uncompressed data is not relevant if
the number of users is small. On the other hand, a larger
presence of active users makes the benefits of data
compression more appreciable. When dealing with the
best-case scenario instead, the need to transmit a lower
amount of information makes the effect of compression
insignificant even for a large number of users. Such results

can be confirmed by looking at Figure 11 which describes
the PDR.

Stable trends can be observed for both the worst and best
scenarios, with a slight performance decrease only affecting the
worst case where uncompressed data are considered. However,
the sloping of the blue solid line suggests that, in view of the
presence of a larger number of users, data optimization could be
crucial in avoiding a significant performance decrease in terms
of PDR.

The last aspect investigated is the network latency, evaluated
through the E2E-delay and jitter. Overall, by observing both
Figures 12A,B, how the amount of data to be transmitted impacts
on the latency is highlighted.

By recalling the results in Figure 7, since the compression
factor is quite constant for all the considered scenarios, the trend
of blue and red lines are similar except for an amplitude factor.
Therefore, the difference in terms of performance is essentially
dependent of the average traffic characterizing the worst and the
best case.

In summary, the analysis presented here has highlighted how the
LTE system, in its current state, can be suitably exploited to support
remote healthcare monitoring services. Specifically, we measured
the impact of data traffic generated by tens of users on the LTE
performance. In this regard, we also investigated the effect of data
compression, resulting in fundamental reductions of the network
load. To the best of our knowledge, this type of study has not been
conducted thus far, so we were not able to perform a comparison
with other analyses in the literature. Thework inHindia et al. (2016)
reports the throughput analysis for different classes of IoT
applications, with the goal of demonstrating that the proposed
priority-based data scheduling algorithm is able to efficiently serve
up to 50 users, providing the requested QoS. It deals with an IoT
scenario where health data are essentially spot measures (blood
pressure, temperature, heart rate), therefore the resulting traffic
pattern is quite different from what we considered in our study.
Moreover, the provided throughput is in the order of 250 Kbps,
which is significantly lower than the result we achieved (some
Mbps). Data transmission scheduling is also addressed in Adibi
(2014), but no performance investigation is provided for the LTE
network, which is what the proposed service relies on. The authors

FIGURE 11 | Network packet delivery ratio (PDR) performance.

FIGURE 12 | LTE network end-to-end delay (A) and jitter (B).
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in Hadi et al. (2019) apply the principles of big data analytics in the
context of LTE-based out-patients monitoring services. However,
the analysis is oriented to the physical layer, measuring the quality
of the service in terms of signal-to-interference-plus-noise ratio,
while networking issues are not considered.

The lack of network performance analyses also characterizes
the literature on 5G-based solutions for healthcare. Some
examples are given in Lloret et al. (2017), Zhang et al. (2020)
where 5G is considered as the network framework supporting
continuous health monitoring activities. However, these studies
exclusively concern the scheduling and processing of data, and do
not focus on the network performance.

An important aspect to be recalled for 5G is that it considers
network slicing, essentially allowing the optimal assignment of
resources depending on the QoS requested by the applications. In
the field of e-Health, 5G is specifically envisaged to provide a
significant boost to services requiring high reliability and low
latency (belonging to URLLCs category depicted in Figure 1),
such as remote surgery (robotic aided) and health alarm systems
(Silva et al., 2020). In fact, several works have recently been
proposed about the delay of such critical applications (Acemoglu
et al., 2020). On the other hand, we expect no particular impact on
patients remote monitoring activities (categorized as eMBB
service in Figure 1), since such kind of service is already
supported by LTE. Of course, it is expected that with 5G the
network access will be extended to a larger number of users/
devices than in LTE. However, the most important difference
between 5G and LTE, in the healthcare field, is related to the
support of very low latency applications. Finally, it is worth
noting that the architecture considered here shares the same
edge computing principles than with future 5G networks, so it is
perfectly tailored to upcoming network scenarios.

6 CONCLUSION

In this paper, we investigated the feasibility of an LTE-based
remote monitoring system oriented to healthcare applications, so
as to allow the physical interaction between patients and medical
staff to be substituted, whenever possible, with a reliable, virtual
one. The considered monitored data (coming from respiratory
medical devices) as well as the kind of patterns from patients
represent practical cases thatmay arise in case of themonitoring of

COVID-19 patients who are at home. To this aim, we evaluated
the amount of traffic that can be supported by the LTE to assess
scalability issues that may be related to the number of patients to
be served. Furthermore, the impact of data compression is
investigated, highlighting its benefits when dealing with cloud-
based services. The emergency related to the COVID-19 pandemic
has highlighted the importance of technology to support the
healthcare system. In this context, we showed how remote
patient assistance can be effectively realized by exploiting the
current LTE framework. In view of the upcoming 5G Era, remote
healthcare monitoring applications such as the one investigated
here will become part of the eMBB services, allowing a very large
number of users to be simultaneously connected, providing faster
network access. In this direction, services that already rely on edge
computing principles will be a perfect fit for such a new scenario.
Therefore, future works will deal with the investigation of such
new paradigm, focusing the attention on the data compression for
increasing data traffic scenarios.
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