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Techniques from artificial intelligence have been widely applied in optical communication

and networks, evolving from early machine learning (ML) to the recent deep learning

(DL). This paper focuses on state-of-the-art DL algorithms and aims to highlight

the contributions of DL to optical communications. Considering the characteristics

of different DL algorithms and data types, we review multiple DL-enabled solutions

to optical communication. First, a convolutional neural network (CNN) is used for

image recognition and a recurrent neural network (RNN) is applied for sequential data

analysis. A variety of functions can be achieved by the corresponding DL algorithms

through processing the different image data and sequential data collected from optical

communication. A data-driven channel modeling method is also proposed to replace

the conventional block-based modeling method and improve the end-to-end learning

performance. Additionally, a generative adversarial network (GAN) is introduced for

data augmentation to expand the training dataset from rare experimental data. Finally,

deep reinforcement learning (DRL) is applied to perform self-configuration and adaptive

allocation for optical networks.

Keywords: artificial intelligence, machine learning, deep learning, optical communications, optical networks

INTRODUCTION

Machine learning (ML) techniques have been developed and applied to optical communication
in both the physical layer and network layer for years (Musumeci et al., 2018; Khan et al.,
2019). Various algorithms from ML communities powered a wide range of aspects in optical
communication, involving digital signal processing (DSP), optical performance monitoring
(OPM), signal detection and analysis, proactive fault management, network automation, and
optical sensing, etc. The conventional ML system is limited by the ability to undertake feature
extraction and complex analysis, and has always relied on considerable domain expertise and
feature engineering. In recent years, rapid advances in information technology have made great
strides and parallel developments in computation and low-cost computing hardware have made
big data modeling possible. Driven by this growth in the volume of data and improvements to
computing power, ML has successfully evolved into deep learning (DL), which addresses complex
and large-scale problems with robust, adaptable, and efficient solutions (LeCun et al., 2015), as
illustrated in Figure 1.

In general, DL can be understood as a deep neural network (DNN) with multiple
non-linear layers made up of a large number of neurons, each of which is mathematically
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modeled as an activation function. In DL communities,
different algorithms with specific structures were suitable for
different problems and specialized in different data types.
Among them, convolutional neural network (CNN), recurrent
neural network (RNN), generative adversarial network (GAN),
deep reinforcement learning (DRL), end-to-end learning based
on autoencoder, and their variants have made a distinctive
contribution to fields such as machine vision, natural language
processing, drug discovery, genomics, speech recognition,
information retrieval, affective computing, and automatic
deriving (Deng, 2014). Meanwhile, to promote the development
of artificial intelligence (AI) in optical communication, the
evolution from ML to DL is making major advances in a wide
variety of applications in both physical and network layers (Fan
et al., 2020; Häger and Pfister, 2020; Saif et al., 2020).

This paper reports the progress of AI in optical
communication from ML to DL. Unlike other review papers
about conventional ML algorithms, the presentation focuses
on state-of-the-art DL techniques and aims to highlight
the contributions of DL to optical communication for both
the physical layer and the network layer. Examining the
characteristics of different DL algorithms and data types,
we briefly review multiple DL-enabled applications for
optical communication. First, as one of the most popular
DL algorithms, CNN is introduced for image recognition
to process seven kinds of common image data from optical
communication to execute various functions. Then RNN
is applied for sequential data analysis to process digital
signal waveforms, network traffic data, and equipment state
parameters. In addition, a data-driven channel modeling
technique using DL is proposed to provide a supplementary
solution to the conventional block-based modeling, which
could also improve end-to-end learning performance. As
an emerging technique, GAN is implemented for data
augmentation to expand image data and network traffic
data. Finally, DRL is considered for various decision-
making tasks, including routing, resource allocation, and
automatic configuration.

CONVOLUTIONAL NEURAL NETWORK
FOR IMAGE DATA

DL belongs to a branch of the ML family mainly referring to
the faction of neural networks. The term “neural network” has
its origins in attempts to find mathematical representations of
information processing in biological systems, which are built
of a lot of interconnected neurons. As the basic unit of a
neural network, each neuron can be modeled as an activation
function to emulate the process of transferring information in the
practical biological system. According to the network topology,
neural networks can be categorized into feedforward networks
and feedback networks. A convolutional neural network is a
specialized type of feedforward network for primarily processing
image data that can be regarded as a two-dimension (2D) grid of
pixels (LeCun et al., 2015). The operating process of CNN can be
described as convolution, pooling, and activation.

Convolution
The kernel convolves with pixel points across the width and
height of the input image, computing the dot product between
the entries of the kernel and input. The kernel works like
a filter that scans the input image to extract the informative
features for recognition. The extracted features from the image
are displayable and explainable, such as eyes, nose, or mouth in
face photos. Convolution takes advantage of sparse interaction,
parameter sharing, and equivariant representations to improve
the performance of image recognition.

Pooling: Down-Sampling Operation
The output of the convolution layer at a certain location is
replaced by a summary statistic of the nearby outputs. The typical
pooling is to calculate the average or maximum value of a small
local region in one feature map to down-sample the dimension of
the feature map, thereby greatly reducing the parameter size and
creating an invariance to small translations of the input.

Activation: Non-linear Operation
The representation capacity of the whole network is improved
through the non-linear mapping between adjacent layers.
Common activation functions include ReLU, Softmax, Softplus,
and Sigmoid, etc.

Due to the above factors, CNN is particularly effective at
examining image data, including image recognition, objection
detection, image understanding, and video translation (Gu et al.,
2018). It has been statistically established that images often
account for a large proportion of various data types. Therefore,
CNN is one of the most useful approaches in DL for image
processing. In optical communication, most data are denoted
in the format of a digital signal, while some other kinds of
information are presented in the form of images, as summarized
and displayed in Figure 2. Compared with the data format of
digital vectors, one great advantage of image formats is that
various digital data of different sizes can be comprehensively and
integrally presented in a picture with a fixed pixel size. Image data
with a fixed size can therefore contain various information, which
is important for ML and DL in keeping their structures stable
(Wang et al., 2019).

As can be seen from Figure 2, the seven kinds of typical
image data in optical communication are linear polarization
(LP) mode diagrams, orbital angular momentum (OAM) mode
diagrams, eye diagrams, constellation diagrams, optical spectrum
diagrams, asynchronous amplitude histograms (AAH) diagrams,
and asynchronous delay-tap plot (ADTP) diagrams (ADTP
combines asynchronous sampling with a two-tap delay line, so
that each sample point comprises two measurements, separated
by a fixed time corresponding to the delay length. The samples
are plotted as sample pairs, producing a joint map of the power
and evolution over the delay time) (Wang et al., 2017a,b; Li et al.,
2018). Through analyzing and processing these image data, CNN
can explore a large number of informative features for optical
communication to execute a variety of functions, including
but not limited to channel estimation, mode demodulation,
optical signal analysis, impairment diagnosis, OPM, DSP, and
spectral analysis. For example, CNN is capable of: detectingmode
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FIGURE 1 | Advances in artificial intelligence in optical communications. Driven by powerful parallel computing capacity and big data, traditional machine learning

algorithms are progressing to deep learning techniques with a variety of applications, promoting the evolution of optical communications toward intelligence.

crosstalk and estimating a few mode fiber channels from LP
mode diagrams; demodulating multiplexed modes and detecting
atmospheric turbulence from OAM mode diagrams; analyzing
the signal quality; diagnosing system impairments from eye
diagrams (for intensity-modulated signals) and constellation
diagrams (for complex-modulated signals); monitoring optical-
to-noise ratio (OSNR) and identifying modulation format
with low-cost methods from ADTP and AAH diagrams;
and measuring and analyzing spectral characteristics from
spectrum diagrams.

RECURRENT NEURAL NETWORK FOR
SEQUENTIAL DATA

Unlike CNN designed for image data, RNNs are specifically
proposed for sequential data, where temporal correlations exist
at a range of different timescales. Different from feedforward
neural networks, RNNs containing cyclic connections aim to
provide neural networks with memory, meaning that the outputs
are not only related by the current inputs but also the formerly
available information (Mikolov et al., 2010). Thus, RNNs have
achieved great success in sequence modeling and prediction
tasks, such as speech recognition, handwriting recognition,
language translation, and stock price forecasting. The principle
of RNN is illustrated in Figure 3. The input vector is a series of
sequential data X = {. . .xt−1, xt , xt+1. . . }, and the neurons in
the hidden layer get inputs from not only xt of the input layer
but also the output ht−1 of the hidden layer at the previous time
steps. Passing through multiple hidden layers, an input sequence
xt can be mapped into an output sequence yt that involves some
previous stated information.

However, conventional RNN finds it difficult to learn long-
term dependencies from sequential data. To overcome this
weakness in RNNs, long short-term memory (LSTM) was
designed to learn long-range temporal relationships among

sequential data and remember inputs for a long time (Zia and
Zahid, 2019). As one of the most famous RNN variants, the core
idea of LSTM is the memory cell, which can pass information
through time steps, and structures called gates, which are used
to remove or add information to the memory cell, as shown in
Figure 3B. The operating process of LSTM can be summarized
by forgetting the old state and memorizing the fresh state such
that the useful information in the cell can be passed on, and the
useless information can be discarded. Thus, LSTM can not only
allow the accumulation of information over a long period of time
but also forgets the old state by setting it to zero and starting to
count afresh.

In the era of big data, except for image data, most of the
rest are sequential data, such as speech, language, and words.
In optical communication, most data are sequential data, such
as optical and electrical signals, network traffic data, equipment
state operating parameters, as summarized and displayed in
Figure 3A. In optical communication, for tasks that involve these
sequential data, it is better to use RNNs to realize digital signal
pre-distortion and post-compensation, inter-symbol interference
(ISI) cancellation, network traffic prediction, and equipment
failure management, etc.

The optical signals can be regarded as a series of time-domain
data, and the mutual influence and the experienced impairments
from the transmission process can be embodied into temporal
signal waveforms. Considering the superior performance of RNN
for these data, RNN can pre-distort signal before transmission to
resist transmitter imperfection and the post-compensate signal
after receiver to mitigate system impairments or identify the
crosstalk between adjacent symbols to cancel the ISI (Lu et al.,
2019; Deligiannidis et al., 2020; Zhao et al., 2020).

For network traffic data, the traffic loads fluctuate regularly or
irregularly over time according to daily statistics (Lu et al., 2015).
Based on previous scenes, RNN can build a prediction model
for large-scale network traffic forecasting from the perspective
of temporal analysis, which is important for load balancing
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FIGURE 2 | Application of convolutional neural network (CNN) in optical communication for image processing. (A) Summarization of image data in optical

communication: linear polarization (LP) mode diagrams, orbital angular momentum (OAM) mode diagrams, eye diagrams, constellation diagrams, asynchronous

delay-tap plot (ADTP) diagrams, asynchronous amplitude histograms (AAH) diagrams, and optical spectrum diagrams. (B) The structure of CNN is composed of

convolution layers, pooling layers, and fully-connected layers. (C) A variety of functions can be achieved by CNN for optical communication.

and network planning (Gui Y. et al., 2020; Zheng et al.,
2020).

Early-warning and proactive protection are becoming
increasingly critical for network operators as a failure of
the optical network could result in huge economic loss. The
operating conditions of network equipment can be reflected in
the equipment state parameters, which are varied over time.
Through analyzing a great deal of historical data, RNN can learn
the variation trend of state parameters and establish a failure
prediction mechanism to prevent risk in advance (Wang et al.,
2018; Zhang et al., 2020).

END-TO-END LEARNING FOR JOINT
OPTIMIZATION WITH DL-BASED
CHANNEL MODEL

The conventional model of the optical communication system
is constructed in a divide-and-conquer manner and consists of
a series of model blocks, including symbol mapping, shaping

filter, laser, modulator, fiber channel, amplifier, optical filter,
detector, low-pass filter, and digital sampling, as shown in
Figure 4A. This block-based optical communication system
is strongly dependent on practical channel conditions and is
characterized by rigid mathematical models (Agrawal, 2012).
However, the conventional block-based communication systems
still have the following deficiencies: (a) they are only effective
in tractable and stable scenarios, but invalid for those complex
and dynamic scenarios; (b) they require a lot of artificial
expertise; and (c) they have a relatively long computation time
owing to the small step sizes and repeated iterative operations
they undertake.

In deep learning communities, autoencoder is another
important and popular algorithm. It is an unsupervised learning
algorithm for a neural network that sets the target output
values to equal the inputs. The autoencoder has been applied
in dimensionality reduction, feature reconstruction, and data
encryption (Tschannen et al., 2018). A new fundamental
way to interpret the entire communication systems as an
autoencoder has been proposed. It was first presented in
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FIGURE 3 | Application of recurrent neural network (RNN) in optical communication for sequential data processing. (A) Summarization of sequential data in optical

communication: digital signal waveforms, network traffic data, and equipment state operating parameters. (B) The schematic of RNN considers the extracted features

in the previous state as the one of the current input information and the current outputs depend on the current and previous inputs to provide the neural network with

memory; and Long short-term memory (LSTM) block diagram is the variant of RNN that can learn long-range temporal relationships among sequential data. (C) A

variety of functions can be achieved by RNN for optical communication.

wireless communication systems before being introduced to
optical communication systems (Karanov et al., 2018). This
technique is based on the concept of end-to-end learning
that seeks to jointly optimize the transmitter and receiver
components in a single process. However, a major drawback
hindering practical implementation is that a differentiable
channel model is necessary to execute parameter adjustment
through backpropagation. Accordingly, a DL-based fiber channel
modeling scheme was proposed (Wang et al., 2020). In theory,
DL can approximate any function to solve both linear and non-
linear problems. According to the characteristics of DL, the
model functions can be approximated by mapping independent
to dependent variables, corresponding to the input and output
data as shown in Figure 4B. DL constructs an approximate
model for a black box driven by source data and received
data. Furthermore, because the scheme does not rely on expert
experience, it can significantly reduce the modeling cost and
improve the simulation efficiency. This transmission simulation

model in the DT system can not only digitize the physical
process but also provide the numerical channel model that is
important for adaptive damage compensation, like the end-
to-end learning method, to ensure high reliable transmission
of optical communication. Based on the idea of an auxiliary
channel, a DL-based channel as shown in Figure 4C was also
flexibly embedded into an end-to-end learning model to perform
joint optimization more accurately (Karanov et al., 2020; Li M.
et al., 2020).

GENERATIVE ADVERSARIAL NETWORK
FOR DATA AUGMENTATION

One of the main motivations for DL is having an
effective and available dataset for training, and more
adequate data contribute to a better generalization of the
model. However, in practice, labeled data are valuable
and rare. In optical communication, it is difficult to
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FIGURE 4 | Deep learning for optical communication modeling. (A) The conventional block-based optical communication system, constructed in a

divide-and-conquer manner using a series of model blocks. (B) Deep learning-based optical communication model, built by the data-driven multi-layer neural

network. (C) Schematic of end-to-end learning for optical communication, based on the DL-based channel model.

collect both image data and sequential data, particularly
experimental data and practical data from network
operators or corporations. In addition to guaranteeing
sufficient data, diversity is also essential to improving the
robustness and generalization of DL models. Therefore,
a lack of sufficient and diverse training data is one
of the major limitations on DL to be well-applied in
optical communication.

GAN was recently introduced as an emerging technique to
implement data augmentation. At first, GAN was proposed
by Ian Goodfellow et al. as a way to generate image data,
including handwritten digits, human faces, and animal images
(Goodfellow et al., 2014). The idea behind GAN was based on
the concept of zero-sum game theory, as shown in Figure 5. The
framework of GAN consists of two neural network models: a
generative model called generator captures the data distribution
and output of the generated samples, and a discriminative
model that distinguishes whether a sample came from the real
dataset or a generated one. During the training procedure,
the two models compete with each other. The generator is
designed to generate data as realistic as possible so that it

is difficult to distinguish them, while the discriminator as a
binary classifier aims to identify real and fake data as accurately
as possible. The generator and discriminator are optimized
alternately until the augmented data are indistinguishable from
the actual data.

Inspired by GAN, a number of new applications have
been discovered in terms of images, such as image synthesis,
image style transfer, image-to-image translation, and image
reconstruction (Gui J. et al., 2020). For optical communication,
except for image data, other data types can also be combined
with GAN. A network traffic data augmentation technique
using GAN was proposed to augment the traffic dataset
adaptively for various scenarios (Li J. et al., 2019; Li S. et al.,
2019). Based on limited experimental traffic data, GAN
captured distribution characteristics and then generated
massive diverse traffic data, which significantly expanded
the training dataset and improved the performance of
DL models. Therefore, not limited to image data, GAN
can be applied to arbitrary data types by designing
appropriate generators for specific application requirements in
optical communication.
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FIGURE 5 | Schematic of the generative adversarial network, consisting of two neural networks: a generator and a discriminator. The generator is used to produce

the approximated samples from the N-dimensional random noise. The discriminator is used to identify whether a sample is real or fake. These two networks compete

with each other and are optimized gradually to realize data augmentation.

DEEP REINFORCEMENT LEARNING FOR
NETWORK AUTOMATION

Reinforcement (RL) has made great breakthroughs in solving
complicated controlling problems based on environment-aware
mechanisms. DL plays an important role in perception that can
acquire information from observation of the environment and
provide current state information, while RL shows powerful
advantages in decision-making that can sense complex system
states and learn best policies through repeated interactions with
the environment, as shown in Figure 6. DRL combines the
perception of DL and the decision of RL to learn a policy that
maximizes the cumulative rewards for various tasks, like playing
Go, competitive video games, controlling continuous systems
in robotics.

The schematic of DRL is displayed in Figure 6. It can be
observed that in DRL there are two main elements (agent
and environment) and two core steps (observation and action).
The observation provides the current state information of the
environment and the action represents the adjustment that the
DRL agent makes according to the rewards or punishments
from the environment. Therefore, DRL reflects a universal
truth that the machine learns from failures in the past and
grows after correcting them. Similarly, the agent of DRL learns
from rewards and punishments rather than explicit instruction.
Through repeated training and learning for a specific purpose,
the agent grows powerful gradually to earn more rewards and
avoid making mistakes, even exceeding human capacity in
many domains.

In the context of optical communication, DRL is particularly
useful for network control and automation and thus has been
applied in the network layer to automatize the resolutions of
routing, resource allocation, orchestration, and configuration
(Chen et al., 2019a,b; Suárez-Varela et al., 2019; Andreoletti

et al., 2020; Wang et al., 2021). A DRL-based routing solution
was proposed for the optical transport network (OTN) that can
better capture the crucial relationships among the lightpaths
and paths in OTN topologies (Suárez-Varela et al., 2019).
Considering the real network topologies and traffic profiles, the
routing policy learned by the agent outperformed well-known
routing heuristics. Moreover, the elastics optical network (EON),
where the spectrum distribution becomes extremely flexible and
spectrum resource management confronts big challenges (Yin
et al., 2013; Zhu et al., 2013; Gong and Zhu, 2014), requires
more automatic and smart control schemes. Accordingly, a
DRL-based spectrum assignment scheme was introduced in
A DRL-based observer to select the duration of each service
cycle adaptively for realizing adaptive and high-quality virtual
network function services (Li B. et al., 2020). This study
obtained superior results, especially under dynamic, flexible, and
complex scenarios.

Additionally, we proposed an adaptive optical transceiver
configuration technique using DRL for data center optical
networks and passive optical networks (Li J. et al., 2020). The
traditional transceivers are only suitable for static scenarios,
where the transmission capability is fixed and massive spectrum
resources are wasted. Therefore, the flexible optical transceiver
is considered as a promising candidate to realize flexible
services provisioning but faces the challenges of searching
for optimum transceiver parameter sets when considering
complex network conditions, including diverse user types,
modulation formats, multi-level access distances, quality
of transmission, and transmission speed. With the help
of DRL, flexible transceivers can be adaptively configured
according to network environment states. To improve
throughput and spectral efficiency, the agent gradually learns
the relationship between network state and the reward of varied
configuration actions.
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FIGURE 6 | Schematic of deep reinforcement learning combing advantages of perception from deep learning and decision-making from reinforcement learning, to

provide a policy for complex controlling problems. Through observation, an agent can acquire the current information from the environment and adjust the action to

maximize cumulative rewards for a specific purpose.

CONCLUSIONS

In this paper, powerful DL algorithms were introduced in
optical communication to achieve a variety of applications. CNN
was used to explore information from image data, including
LP mode, OAM mode, eye, constellation, ADTP, AAH, and
spectrum diagrams, to implement channel estimation, mode
demodulation, optical signal analysis, impairment diagnosis,
OPM, DSP, and spectral analysis. RNN was applied to process
sequential data, including digital signal waveform, network traffic
data, and equipment state parameters, to execute signal pre-
distortion and post-compensation, network traffic forecasting,
and fault alarming analysis. A data-driven channel modeling
scheme was proposed to rethink conventional modeling methods
and improve end-to-end learning performance. GAN was
adopted to augment image data and sequential data to
ensure that the training data were sufficient and diverse.
Finally, DRL was introduced to realize self-configuration

and the adaptive allocation of optical networks. DL enables
optical communication to be more intelligent and adaptive
and is expected to make further contributions to optical
communication in the near future.
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