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Unmanned aerial vehicles (UAVs) are supposed to be used to provide different services
from video surveillance to communication facilities during critical and high-demanding
scenarios. Augmented reality streaming services are especially demanding in terms of
required throughput, computing resources at the user device, as well as user data
collection for advanced applications, for example, location-based or interactive ones.
This work is focused on the experimental utilization of a framework adopting reinforcement
learning (RL) approaches to define the paths crossed by UAVs in delivering resources for
augmented reality services.We develop an OpenAI Gym-based simulator that is tuned and
tested to study the behavior of UAVs trained with RL to fly around a given area and serve
augmented reality users. We provide abstractions for the environment, the UAVs, the
users, and their requests. A reward function is then defined to encompass several quality-
of-experience parameters. We train our agents and observe how they behave as a function
of the number of UAVs and users at different hours of the day.
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1 INTRODUCTION

Latest advancements in science and communication unlock the opportunity to employ in everyday
life new and exciting technologies that will improve the experience of the users in surprising and
innovative ways. Augmented reality (AR) is the perfect example: it is becoming a service frequently
desired for a wide range of purposes, but it requires high data rates, heavy rendering computation
resources at the user device, and support for a rich application layer feedback channel for advanced
services such as geo-referenced ones.

Among others, next-generation networks are expected to support advanced multimedia services,
encompassing single, multi-view, or 360° video sequences, as well as more complex visual data
involving 2D/3D natural and synthetic video objects (Mangiante et al. 2017) referred to as mixed and
augmented reality, ISO/IEC JTC-1 (2016). In Milani et al. (2020), Taha et al. (2020), and Sheikhipour
et al. (2019), static and dynamic representations are studied for textured point clouds, mesh, and
volumetric data. Fujihashi et al. (2019) propose an end-to-end transmission scheme for 3Dpoint clouds
with visual information, presenting results related to the open 3Dpoint cloud database Pan et al. (2020).
Furthermore, the growing interest to represent this kind of object in several applications has solicited a
parallel standardization activity as in Jang et al. (2019). New standards have been released Lafruit et al.
(2019) with the purpose of 3D static and dynamic visual content compression for immersive reality
multimedia services (360° video with head-mounted displays and free navigation in 3D space with
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head-mounted and 3D light field displays). Augmented reality
streaming toward a mobile device represents typical challenges
discussed in Lai et al. (2019) and Chakareski (2020); the quality of
experience is related to the visual content Han et al. (2020), Zhang
et al. (2020), rate adaptation Hosseini and Timmerer (2018), Liu
et al. (2020), and device power consumption Cheng (2020).

The increasing popularity of these high-tech facilities will
indubitably increase the network traffic and the users’ needs
for huge amounts of both exchanged data and computational
capacity. The support of such services is still very challenging,
especially in rural environments or where high bandwidth
interconnections are unavailable. Since the existing network
infrastructures may not be capable of sustaining the heavy
loads associated to AR, unmanned aerial vehicles (UAVs)
come into play. Resources can be delivered to users without
the need for modifying the preexisting infrastructure, making
these new services feasible, sustainable, and accessible.

1.1 Our Goal
In this article, we address the specific use case of UAVs serving
AR users. We model the needs of the AR users in a simple and
effective way, that is, as a composition of requests of throughput
provisioning, edge mobile computing, and data gathering. We
represent UAVs, space and time in a realistic but computationally
affordable way. In order to make UAVs autonomous, we train
them through reinforcement learning (RL) and observe their
behavior changing throughout the various epochs. We
encompass different environments and situations, showing
how (in percentage) the users’ demands are satisfied and
taking into account various metrics for the quality of
experience (QoE) of AR services. The ultimate goal is to
provide a framework to test and evaluate these challenging
services in areas where the infrastructure is supported by
UAVs as well as algorithms and methods to compute optimal
behaviors maximizing some performance metrics. RL method
allows dealing with the big amount of parameters required by
such complex and challenging problems without the need of any
modeling, resulting to be a smart and fast technique. The use of a
proper simulation framework also allows us to execute many
experiments to learn optimal policies (i.e., behaviors) and to
analyze the impact of some parameters on the solution. Such
policies can then be used to produce flight plans for real UAVs.
Finally, producing relevant trajectories for specific missions is an
important task for collision risk analysis. Thus, this work
contributes also to the definition and validation of a UAV
collision risk model, developed within the BUBBLES project1.

1.2 Reinforcement Learning Advantages for
UAV Applications
The main motivation for using RL as a basic technique to solve
the considered problem is given by the advantage of using a
simulation tool instead of a formal model. Indeed, in complex
cases and scenarios like the one considered in this article, the

number of parameters to be modeled may be very high and it
increases with the complexity of the scenarios. Model-based
approaches tend to provide optimal solutions for the features
that are explicitly modeled, but sometimes formal methods do not
simply allow for modeling some complex aspects of the system we
want to analyze. On the other hand, developing simulation tools
for such scenarios is a more common choice that can also exploit
previous work in this area. Reinforcement learning is a preferred
solution when, like in the cases considered in this article,
providing a simulation tool for a scenario is more convenient
and effective than having a formal model.

The rest of the article is organized as follows. Section 2 discusses
some key related works while Section 3 introduces the considered
scenario. The adopted models are described in Section 4.
Experimental settings are discussed in Section 5 and the achieved
results in Section 6. The conclusions are given in Section 7.

2 RELATED WORK

UAVs may be employed for a large range of services due to the
fact that a big interest is arising in having them as a part of the
network infrastructure. The use of UAVs to provide services from
the sky and its main challenges are described in Zeng et al. (2019),
while Ferranti et al. (2020) describes SkyCell: a prototyping
platform for 5G autonomous aerial base stations
demonstrating the feasibility of an aerial base station where
wireless backhaul, autonomous mobility, and 5G
functionalities are integrated within a unified framework.

UAVs’ features can be exploited also in an AR service scenario.
In Chakareski (2019), a system of UAV is employed to capture
different views, and reinforcement learning is employed to drive
the UAV in such a way as to maximize video reconstruction
fidelity at the remote user, subject to given per-UAV and overall
bit-rate budget. In Tan et al. (2020), UAVs provide cache-enabled
edge computing elements to support social augmented reality
services, while in Santos et al. (2021) interactive augmented
reality is related to the potential of UAVs in the evolution of
digital photogrammetry toward georeferencing is explored. Thus,
UAV deployment paves the way for the development of advanced
mobile augmented reality services.

In general, when we have to face complex services like AR, first
we need to deal with the complexity in providing this service
through UAVs integrated with (or replacing part of) the
communication infrastructure. Then, we have to provide their
fundamental components like the bandwidth, the computing
capability, the data gathering, and also the energy for
transmission and movement in the case of aerial nodes like
the UAVs. Jiang et al. (2019) show how cache-enabled UAVs
are used to assist mobile-edge computing: here the best position
among Internet of Things devices is searched to maximize data
throughput. A study of the optimal path using Q-Learning is
performed in Zouaoui et al. (2019), taking into account the QoE
and the energy consumption, while Colonnese et al. (2019)
focuses on the study on the support of video services and
their quality and delay optimization. With respect to these two
latter works, the framework used in our work allows UAVs to1http://bubbles-project.eu/.
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move according to a more accurate and precise path: indeed
drones can fly between cells (in which the considered map has
been initially split), without letting them move only between
Point of Interests.

Wang et al. (2019) instead discuss the ways to adapt UAV
deployment to the best provisioning of instantaneous wireless traffic
in a given territory. The authors propose an adaptive deployment
scheme for a UAV-aided communication network, where the UAV
adapts its displacement direction and distance to serve the
instantaneous traffic of randomly moving users in the target cell.

Optimal joint resource allocation and path planning are also
definitively relevant for multi-UAV development. One possible
application for which path planning is needed is that of energy-
efficient mobile computing Zhou et al. (2018). Energy efficiency is
very desirable as it has been observed in Chakareski et al. (2019),
where a framework is designed for a multi-tier multi-band mmWave
cellular network integrating UAV-based aerial small cells. Energy
efficiency is taken into account also in works focused on data
gathering such as Liu et al. (2021), where deep-learning
techniques are used to train multiple UAVs ensuring a fair service
for all the considered users. When the energy is also provided by
renewable sources, like in Chiaraviglio et al. (2019), the plan of the
UAV missions has to take into account the grid-connected
microgenerations.

Multiple UAVs can also provide services of wireless power
transmission for multiple energy receivers (ERs), as described in
Wang et al. (2017), Zhang et al. (2019) andXu et al. (2017). InWang
et al. (2017) and Zhang et al. (2019), alongside the power transfer
service, UAVs also provide clients (IoTs) edge-computing, with
tasks offloading which can be binary, for example, Wang et al.
(2017), or partial, for example, Zhang et al. (2019). In Xu et al.
(2017), a trajectory is designed to maximize the amount of energy
transferred to all ERs during a finite charging period. Zhou et al.
(2019) uses deep learning to pre-train a UAV employed to collect
data from various IoTs devices trying to minimize the Age of
Information (AoI) to enhance data freshness. Bertizzolo et al. (2020)
propose a “Swarm Control” to easily manage multiple UAVs: a
software-defined framework centralized control for UAV wireless
networks based on distributed optimization principles. This allows
to set and modify the behavior of a whole aerial network in real-
time. In Cheng (2020), a model for mobile augmented reality users
and an approach merging caching and cloud computing to AR is
provided. The composition of AR and edge computing is also
studied in Tan et al. (2020), where multiple UAVs allow caching for
social AR applications.

Our work starts from a multi-agent environment defined in
Brunori et al. (2021) and extends it with additional features,
providing more complex and realistic implementation details.
The major novelty of our work with respect to the other ones is
the original model of the AR user demands, defined as a
composition of requests for different resources and modeled as
continuous functions over the timeline (24 h). Our framework
allows replicating a realistic scenario in which the requests vary
according to the moment of the day. Moreover, it allows to render
two different environments (urban and rural) and observe the
different impacts that UAVs can have in serving AR users in these
scenarios.

3 OPERATIONAL SCENARIO

We consider an operational scenario in which there exist multiple
AR-user requests (see Figure 1). The demands for AR applications
translate into users requesting at the same time and jointly three
services identified as 1) throughput to support high data rate AR
video download, 2) edge computing for efficient AR rendering, and 3)
data collection for customized user services based on user-generated
data (e.g., location, speed, and acceleration). The users are scattered in
a grid-like areawhere some charging stations are also placed.Multiple
UAVs operate in the area. Each UAV starts from one of the charging
stations placed in the considered area and reaches the users to serve
them. This service is constrained by the limited UAV battery that is
supposed to last 30min in our experiments; however, the proposed
tool can be used in different environments built on top of the
proposed setting.

3.1 Space and Time
The proposed setting is based on an operational area that is a 3D
grid divided into 10 × 10 × 10 cells. Each cell has a size of 25 m
and thus the agent, that is, the UAV, is able to traverse the area
one cell at a time at a speed v (m/s): in our experiments, an agent
can go from the center of a cell to the center of another one in 5 s.
The building-like obstacles are scattered on the area and the users
can be inside or outside these buildings, which obviously have to
be avoided by UAVs. We pose also the charging stationsmodeled
as low buildings (platforms) acting as a home base for the UAVs
which take off, land, charge, and pause in the idle mode on top of
them. We designed two different kinds of areas: an urban one
with frequent and tall buildings (Figure 2A) and a rural one with
smaller and rarer obstacles (Figure 2B).

We model our AR high requests of demanding users as a
composition of sub-requests for three different services:

• Throughput-TH: due to the high visual complexity of AR
content, the AR user needs bandwidth to maintain a
connection with the servers and exchange the needed data;

• Edge Computing-EC: offload of heavy computing tasks will
be crucial to make AR feasible for a generic user, which may
not possess the needed resources to sustain the high
computational tasks that AR requires, including the
rendering of virtual user-dependent AR views; the idea is
then to provide some offloading capabilities toward the
UAVs that are here assumed to have the needed
computational resources;

• Data Gathering-DG: in order to merge reality with the
virtual world providing rich, interactive, geo-referenced
AR services, it will be needed to gather data about the
environment of the users and surroundings. Moreover, data
are also commonly fetched either to perform statistic
analysis or to keep relevant information about the users.

Thus, each user generates a general request (expressed for sake
of convenience in kbps) related to service of throughput, edge
computing, or data gathering. The time is assumed to be split into
timeslots of f seconds and each movement of a UAV lasts exactly
one time slot. UAVs perceive time as integers (i.e., timeslots),
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while the requests of the users are defined by using a function that
takes as input the time as a real number h (described in the next
section).

Given an initial hour (h0), the timing of the user request at the
n − th timeslot is computed as follows:

h � h0 + (n * ts/3600) [Hours], (1)

where h0 ∈ [0, 24] and ts is the timeslot duration expressed in
seconds. Notice that the resulting h is in ∈ [0, 24) ⊂ R.

The simulations considered in this article last for 30 min,
which is also the battery autonomy B of each UAV. The channels
for wireless communication to the UAVs are assumed to be ideal

since the scope of the proposed approach is to evaluate the
behavior of the UAV as a function of the users’ requests.

3.2 Model of User Requests
To model the user requests, we derived from the literature some
significant curves as for the time evolution of the three services
above. The evolution of throughput curve (3) is obtained by
artificially recreating the Columbia University Commodity
Internet Traffic (Aggregate) curves representing the data
collected in the Columbia University campus Columbia
University Information Technology (n.a.). Very similar curves
can be found also in Graham-Cumming (2021), which deals with

FIGURE 1 | An urban area where multiple UAVs operate to serve some AR and IoT users asking for service; some charging stations are placed in the considered
area.

FIGURE 2 | Two different areas: Urban area (A) and rural area (B).
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the internet traffic during the first COVID-19 outbreaks and the
following lockdown: we focused on data traffic related to Northern
Italy. For what concerns the edge computing curve equation(4), it is
shaped in such a way as to replicate the trend of the requests received
from the Akamai servers [Peill-Moelter (2012), Palasamudram et al.
(2012)]. The last curve (5) representing the data gathering requests
has been modeled following a Gaussian evolution, with a peak
assumed around 12 PM: this is mainly due to the lack of data
available in the literature.

The curves were designed according to the following
assumptions:

• The request of throughput slightly increases in the evening,
when high-quality entertainment services will be
required most.

• The request of edge computing slightly increases during the
morning, to account for typically higher user mobility.

• The request of data gathering is modeled after a flat
Gaussian curve to represent a permanent, although low,
throughput request.

Given a time hour value h, then the overall request for the AR
service is defined as a weighted sum of TH(h), EC(h), DG(h),
respectively denoting the throughput, the edge computing and
data gathering request functions. The resulting AR request is
computed as follows:

AR(h) � αAR pTH(h) + βAR p EC(h) + cAR pDG(h) [Kpbs],
(2)

where αAR, βAR, and cAR are the coefficients (whose values in the
simulations belong to the interval [0.05, 1]) encompassing
different weights that can be assigned to the three type of
resources. The services requests TH(h), EC(h), DG(h) are
modeled during the 24 h. For the sake of concreteness, we

specify the amount of kbps requested for each service
depending on the hour of the day in which the requests occur:

TH(h) � P1 * sin
h
4
+ π

8
( ) + P2 * sin

h
2
+ 2.2 + π

4
( ) + P3 [kpbs],

(3)

EC(h) � −0.9 * P1 * sin
h
4
+ π

2
( ) + P2 * sin

h
2
− 2 + π( ) − P3( ) [kpbs],

(4)

DG(h) � N (σ, μ, h) � max
1401
σ

���
2π

√ * e−
(h−μ)2
2σ2 , 1( ) [kpbs], (5)

where σ � 31.2 and μ � 11 represent, respectively, variance and
expected value.

The curves in Figure 3 can be flexibly tuned with the parameters
P1, P2, and P3. In Table 1 we report the values assigned to these
variables in our case study, chosen to reach a peak of 4000 kpbs to
simulate a typical high request in the case of AR. Figure 3 shows the
AR request with these three coefficients all set to 1, corresponding to
a simulation with the maximum possible request for each user at
each moment of the day. The edge computing and throughput
requests are higher with respect to data gathering, indeed they are in
the order of Mbps, changing drastically from day to night. On the
other hand, the data gathering requests are much lower (100 kbps at
their peak) and it is mainly due to the fact that the information
related to this service uses less bandwidth, and it is not necessarily
tied to a physical user.

Table 1 summarizes the main parameters used in the equation
previously defined, providing a direct association between the
meaning and the value of each parameter.

3.3 UAVs
Each UAV moving in the considered area takes off from a
charging station acting as a home base, and it can move up,

FIGURE 3 | Evolution of the three service requests and their composition during the day.
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down, left, right, forward, and backward. It can also fly in place
(Hover), rest (Idle), or charge in the charging station. The goal of
each UAV is to find and serve most of the users in a span of half
an hour providing the highest QoE. It has limited bandwidth and
limited battery. UAVs are also battery aware and are supposed to
learn to choose the right moment to go to the closest charging
station and charge. They also need to learn where the obstacles
are placed in order to avoid them and not failing.

4 REINFORCEMENT LEARNING
ENVIRONMENT

Our environment involves an operating volume that is made up
of K small cells whose size Ak, k � 0,/K − 1 can be selected based
on the desired resolution per cell. Obstacles can be randomly
generated and placed on the operational volume and also
different heights for each building are randomly generated.

We can set different N users spread out on the map of the
considered operational scenario. UUAVs can be deployed andM
charging stations (CSs) are placed in locations that are equidistant
from the middle of the operational volume and each of them is
placed at an equal distance from another. UAVs serve users while
flying and their service performance is evaluated based on specific
metrics.

UAVs are represented as agents defined by a state
representation (including key state variables like its battery
level) and an action space (which can differ based on the
considered scenario). The following assumptions are considered:

• UAVs have a given footprint (due to their communication
coverage) and each of them can detect and serve only users
inside it.

• UAVs are not aware of other agents and do not explicitly
communicate with each other.

Since the state representation of each UAV is not affected
by the others, these assumptions guarantee the scalability of
the model: scalability is guaranteed at the cost of possibly not
being able to find a global optimal solution for the whole
system.

Although UAVs operate in the same environment at the same
time by learning a behavior independently of each other, they
receive reward signals that contain also the effects of the action of
the other agents. Thanks to these global reward signals, UAVs will
implicitly learn to avoid obstacles and also to spread around the
environment in order to maximize the performance metrics
related to the services provided to the users.

4.1 Agents Model
In order to train our UAVs as learning agents, wemodeled each of
our agents as an independent Markov decision processes (MDP),
denoted by the following tuple:

〈S,A, δ, r〉,

where

• S is the set of all the possible states;
• A is the set of the possible actions;
• δ represents the transition function;
• r is the reward function.

4.1.1 State Space
The state s ∈ S of each agent is defined by the following tuple:

s � < (x, y, z), b, t > ,

where

• x, y, and z are the coordinates related to the current position
of the considered agent (i.e., UAV);

• b represents the current battery level;
• t represents the current time (made up by intervals of
timeslots ts � 5s) associated with the current agent
position and battery level.

4.1.2 Action Space
Each agent can choose its current action from a set of actions
defined as follows:

A � < left, right, forward, backward, up, down, hover, idle,
charge, go_to_charge> .

TABLE 1 | Scenario parameters used in the experiments.

Parameter Name Values

First scenario Second scenario Third scenario

V UAV speed 5 m/s 5 m/s 5 m/s
ts Timeslot duration 5 s 5 s 5 s
B Battery autonomy 30 min 30 min 30 min
P1 First tuning parameter 1836 1836 1836
P2 Second tuning parameter 612 612 612
P3 Third tuning parameter 2,501 2,501 2,501
h0 Initial hour 21 10 10
U Number of UAVs 1 From 1 to 3 1,2
N AR-users asking for a service From 1 to 15 5, 10, 15 4
M Number of charging stations 1 1 1,2
E Number of episodes 20,000 20,000 30,000
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More in detail, UAVs can:

• move horizontally by one cell: left, right, forward, and
backward

• move vertically by one cell: up and down
• fly in place: hover
• be operative without flying: idle
• charge and go to the charging station: charge and go_to_charge.
The latter is a complex action that is made up of all the actions
that an agent should perform to reach the closest charging
station through the A* planning algorithm.

The execution of each action leads to

• increase t by one timeslot, except for go_to_charge in which t
is increased by as many timeslots as needed to reach the
closest charging station;

• decrease of the value of the battery level b, except for the
charge in which it is increased;

• change of the agent position (x, y, z), only for the movement
actions.

4.1.3 Transition Function
The transition function δ of the MDP of each agent is not
known by the agent and only implemented in the simulator.
The implementation of the transition when executing the
actions described above is straightforward and it is not
reported in details in this article, since it is not relevant for
the learning process. Q-learning algorithm is model-free and
therefore the transition function is not learned.

4.1.4 Reward Function
The reward function r represents the objective function that we
want to optimize. Since the problem we are dealing with is
complex and challenging, this function includes several
parameters that are useful to describe the considered problem.
We provide a high-level explanation of the reward function to
improve understanding of the optimization target. Notice also
that the reward function is not known by the agent and only
computed within the simulator and thus it can be modified
without affecting the implementation of the learning agent.

Generally speaking, the reward function aims at optimizing
the following terms:

• services requests time coverage;
• users service waiting time;
• number of served users;
• battery consumption during UAV task execution.

More specifically, the reward r is defined as a combination of
four components, that is, R1, WP, F, and B. Each of these
components refers to the different aspects listed above and is
explained in detail in the next paragraphs.

1) R1: Composition of the service-related metrics

The metrics taken into account are as follows:

• TH: Average Connectivity Throughput

Referring to the users requesting connectivity, we want to
maximize the amount of throughput averaged among the overall
number of users requesting it. Thus, holds:

TH � ∑nth
i�1

thi
MPRth

, (6)

where nth is the number of users requesting the service, thi is the
throughput achieved for the i − th user, and MPRth is the
maximum value of a user throughput request.

• EC: Average Edge Computing Throughput

For users requesting edge computing, we maximize the
amount of throughput requested for offloading tasks averaged
onto the overall number of users as follows:

EC � ∑nec
i�1

eci
MPRec

, (7)

where nec is the number of users requesting the Edge Computing
service, eci is the throughput achieved for offloading the tasks of
the i − th user and MPR has the same meaning of Eq. 6, but
referring to the edge computing request.

• DG: Age of Information of Data Gathering

For data gathering users, we want to minimize the age of
information (AoI), thus we can maximize the freshness of
information. AoI of the data produced by a user is
incremented of one point for each timeslot in which the user
is requesting the service without being served:

DG � −∑ndg
i�1

AoIi
MPA

, (8)

where ndg is the number of users requesting the Data Gathering
service, AOIi is the Age of Information of the user i and MPA is
the maximum possible AoI of a single user.

MPR and MPA parameters are used to normalize the weight
of each service in the reward in such a way that each of the
listed metrics is included in the interval of values [0, 1]. When
operating in a realistic setup, it is assumed to approximately
know the traffic service of the considered area. Thus, it is a
likely choice to perform a normalization based on the
presumed traffic related to a specific service for the
considered operative area.

TH, EC, and DG are finally linearly combined to obtain the
first part of the overall reward:

R1 � uth pTH + uecpEC + udgpDG, (9)

where uth, uec, and udg are coefficients that can be tuned in
order to give higher priority to a specific parameter rather than
another.

2) WP: User waiting time for delivery
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The waiting time is computed as the sum of all the seconds in
which a user was active and requesting a service that was not provided.
Timely provision of drone service is a relevant UAV path planning
factor since it affects both the experience of the users and service
feasibility, thereforewe introduce the term to penalize thewaiting time
for service. Our reward includes a waiting penalty if the average
waiting time T is larger than a specific threshold called critical time.
We apply then a discount on our reward if the UAVs are too late, and
eventually, the following quantity will be subtracted from the reward:

WP �
0, if T <CT
T
N
, otherwise

⎧⎪⎨⎪⎩ , (10)

where CT is the critical time threshold mentioned above and T is
the waiting time related to the users.

3) F: Balancing factor

This component of the reward aims to provide a service to the
highest number of users, despite either the low request or the
distance. This part of the reward is expressed as the difference
between the sum of served users servedi (over the number of users
requesting in that specific moment nr) and the previously
computed waiting penalty:

F � max ∑nr
i�1

servedi
nr

−WP, 0⎛⎝ ⎞⎠. (11)

(4) B: Battery consumption

We want the UAV to go and charge before reaching a fail state
due to exhausted battery, by using it in an efficient way without
wasting energy through unnecessary actions. Thus, the
component related to the battery consumption is defined as
follows:

Br �
battery_level

needed_battery
, if needed_battery > � 0

battery_level, otherwise

⎧⎪⎪⎨⎪⎪⎩ , (12)

where needed_battery indicates the battery level percentage needed to
get to the closest charging station. All of the above components are
eventually combined in the final reward function, and each of them is
multiplied by a coefficient to better tune theweight of every parameter:

r � αcBr + αs * (R1 + αf * F − αwpWP). (13)

The coefficients αf and αwp as well as the ones used in R1 (i.e., uth,
uec, and udg) can be freely chosen to provide greater relevance
respectively to F or to WP. Coefficients αs and αc depend instead
on the battery level: while the battery decreases, αcwill increase and αs
will decrease, giving more importance to the battery level with respect
to the service provision.

4.2 Simulation Framework
The final product of this modeling is a simulator that takes as
input different parameters such as the hour related to the service

requesting time, the number of users, and UAVs and allows the
training of agents with a Q-learning algorithm. We provide in
output an animation of the behavior of the UAVs and of the users,
the quality of experience metrics registered per episode, and the
Q-table. As for the input, the main parameters are as follows:

• Hour of the day: it affects the requests of the users;
• Numbers of UAVs;
• Number of users: we can set a minimum and a maximum
number of users;

• Urban or Rural setting: a flag indicating if we are working in
a rural or in an urban scenario and defining accordingly the
height and the number of buildings in the selected area.

For finer tuning, other parameters can be modified:

• Space and Time: it is possible to choose the size of the grid in
all the three dimensions and time representation;

• Battery: the basic battery consumption can be set. For
hovering, horizontal and vertical actions, a different
consumption rate was set. All these parameters are
related to a specific variable that allows you to speed or
slow down the battery consumption at will;

• User Request: the basics for users requests are here defined,
that is, requests types coefficients and requests duration;

• Actions: different subsets of actions are available based on
the current conditions, for example, when a UAV is
charging it cannot go_to_charge and if it is not on a
charging station, then it cannot charge;

• Others: more useful variables and macros are implemented
to define path colors and save folders used for an easy
understanding and orientation among the obtained results.

4.3 Training
Once all the parameters are set, we train UAVs as learning agents
with the Q-learning algorithm. We chose to initialize the Q-table
randomly with values ∈ [0, 0.5]: the learning rate is set to 0.9 in
such a way that the initial value (randomly selected) did not affect
the learning too much. The discount factor instead is set to 0.95
providing a relatively high discount for the future rewards and
thus returning solutions preferring to get high rewards as soon as
possible.

The Q-table is indexed through the agent state s and an action
a. The combination of space, battery, time, and action provides a
very large matrix to handle: the Q-table will have a size of |S| × |A|
� 3.6 · 108. This results in a very sparse matrix and therefore it will
not be efficient to initialize and use a matrix so large. For this
reason, we initialize a row of the matrix only at the moment in
which it is considered, allowing working only with the data we
strictly need.

In order to ensure a greater exploration in the first episodes
andmaximize the reward afterward, we decided to use the exploit/
explore parameter ϵ which is decreased at each epoch starting
from a maximum of 1 up to a minimum of 0.01. ϵ indicates the
probability to choose an action randomly, while 1 −ϵ is the
probability to choose an action according to the Q-table. The
decreasing trend of ϵ is derived from the following function:
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ϵt+1 � (102 * ϵt)− 1
(E−P), (14)

where E represents the total number of episodes, P is the number
of episodes we want ϵ to be 0.01, and t denotes the current epoch.

5 EXPERIMENTAL SETTINGS

To validate the proposed approach, we explored different
scenarios varying several parameters initial hour settings,
amounts and positions of users, number of charging stations,
and frequency of obstacles. The settings used in the reported
experimental analysis are summarized in Table 1.

All the tests performed can be grouped into the following three
macro cases:

1) Urban environment and single UAV: the initial hour is set to
21, and a single UAV is assigned from 1 to 15 users.

2) Urban environment and multiple UAVs: at first we set the
initial hour to 10, observing how 1, 2, or 3 UAVs provide the
requested services coming from 3, 5, 10, or 15 users; after that,
we show how a change in the initial hour setting affects the
performance.

3) Rural environment and multiple UAVs: we place few users
(i.e., 4) far from each other and observe how one or two UAVs
handle rarer users and a greater travel time.

5.1 Metrics Employed
In order to measure the quality of experience of our AR-users,
we considered a different specific metric for each type of
service provided by UAVs. We took into account also the
more general delivery time metric, which can be applied to all
the sub-users of the users, regardless of the requested service.
The metrics are based on the following assessment
parameters:

1) Throughput: percentage of throughput granted with respect to
the one demanded. High throughput is desirable so that users
can download in a relatively short time their AR object with
high quality and high resolution, shrinking the gap between
the virtual stimuli and the real ones;

2) Edge Computing: percentage of throughput provided for edge
computing over the total requested. Throughput for edge
computing is a good metric because the higher the throughput
the more tasks are offloaded and with greater speed;

3) Age of Information: number of iterations elapsed before the
information is collected. If the collected information about a
user becomes obsolete, then it cannot be used anymore.
Therefore, the environment and the QoE of the user need
to be monitored constantly: the freshness of gathered data is
really relevant in AR;

4) Delivery Time: indicates the elapsed time between a user
request and its provision. Each time a user demanding for

FIGURE 4 | Percentage of satisfied bandwidth requests by a single UAV with 1 user (A), 5 users (B), 10 users (C), and 15 users (D).

Frontiers in Communications and Networks | www.frontiersin.org September 2021 | Volume 2 | Article 7092659

Brunori et al. Delivering Resources for Augmented Reality by UAVs

https://www.frontiersin.org/journals/communications-and-networks
www.frontiersin.org
https://www.frontiersin.org/journals/communications-and-networks#articles


a service is not served, 5 s are added to our delivery time. This
measure is really significant, mainly for augmented reality
applications which need to be very responsive in order to
avoid annoying frame delays.

6 EXPERIMENTAL RESULTS

We first discuss some general results which are common to each
case. From the overall experimentation activity, we have observed
that UAVs learned:

• where the users are placed and to reach them as fast as they
can without any path deviation;

• to manage their battery autonomy and go and charge it
when needed;

• to perceive in a proper way the environment surrounding
them so as to avoid failure during the actual mission.

Thus, we can deduce that the UAVs acquired an adequate
autonomy level in moving both in urban and rural
environments. The learned behaviors are thus effective in the
considered operational scenario and thus they can be considered
representative also for other kinds of analysis (e.g., collision
risk).

6.1 First Scenario: Urban Environment and
Single UAV
We conducted 15 different experiments with the same settings for
the hour, number of UAVs, and number of charging stations and
varying only the number of AR users (see Table 1).

The results are illustrated through graphs showing the
metrics averaged over the number of users for each epoch.
We show the cases with 1, 5, 10, and 15 users. It is clear how the
behavior of our UAV adjusts itself and our metrics easily
converge especially for the service-related metrics. In
Figure 4, we can look at the trend of the percentage of
satisfied bandwidth requests and we can notice that as the
number of users increases, performance worsens and the
convergence slows down. Because of the limited bandwidth, a
single drone can satisfy by itself up to 5 users, as shown by the
TH and EC metrics in First Scenario section of Table 2. In the
same table, it is possible to see the metrics regarding the cases
with more than 5 users: it is clear that a single UAV cannot serve
all the users, but it can provide great support to other sources of
connection and services such as a base station or (as we will see
in the next experiments) other UAVs.

6.2 Second Scenario: Urban Environment
and Multiple UAVs
In this second scenario, we analyze the impact of increasing the
number of UAVs to improve the quality of experience: we
manage to cover at least 99% of the requests for just 5 users
(as seen in the previous scenario) and proceed to try to cover up to
15. Dealing with this scenario, we can appreciate the importance

TABLE 2 | Results for the three considered scenarios.

N U M TH metric EC metric AoI TH DT EC DT DG DT

First scenario

1 1 1 100% 100% 32 150 s 135 s 160 s
2 1 1 100% 93.75% 0 75 s 130 s 0 s
3 1 1 100.00% 100.00% 25 45 s 65 s 125 s
4 1 1 100.00% 100.00% 0 40 s 35 s 0 s
5 1 1 99.42% 100.00% 0 85 s 15 s 0 s
6 1 1 98.20% 85.27% 0 90 s 95 s 0 s
7 1 1 84.75% 100.00% 0 60 s 80 s 0 s
8 1 1 99.77% 92.07% 29 35 s 45 s 145 s
9 1 1 99.38% 93.07% 18 50 s 45 s 90 s
10 1 1 81.25% 81.25% 20 305 s 130 s 100 s
11 1 1 88.31% 97.52% 9 160 s 85 s 45 s
12 1 1 95.59% 92.68% 0 55 s 0 s 180 s
13 1 1 78.81% 98.95% 0 210 s 130 s 0 s
14 1 1 87.27% 85.32% 10 330 s 210 s 50 s
15 1 1 66.25% 65.69% 53 465 s 455 s 265 s

Second scenario

5 1 1 90.15% 89.88% 0 110 s 180 s 0 s
5 2 1 98.48% 100.00% 0 25 s 70 s 0 s
5 3 1 93.03% 95.33% 0 85 s 115 s 0 s
10 1 1 72.33% 72.30% 1 405 s 440 s 5 s
10 2 1 95.22% 96.43% 0 165 s 210 s 0 s
10 3 1 99.91% 100.00% 0 80 s 110 s 0 s
15 1 1 78.96% 65.65% 49 490 s 540 s 245 s
15 2 1 100.00% 93.49% 43 70 s 150 s 215 s
15 3 1 100.00% 100.00% 18 5 s 35 s 90 s

Third scenario

4 1 1 74.89% 62.25% 279 835 s 860 s 1,395 s
4 2 2 100.00% 100.00% 9 45 s 0 s 45 s

FIGURE 5 | Percentage of satisfied bandwidth requests with 1 UAV (A), 2 UAVs (B), and (3) UAVs in case of 10 users.
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of scalability and modularity of UAVs, giving us the opportunity
to add or remove bandwidth over the considered area. We can
observe how 1, 2, or 3 UAVs handle different amounts of users
(Figure 5).

Again in Figure 5, we can observe the throughput benefits
deriving from the addition of more UAVs. We will also visualize
in Table 2 the resulting values of the last episode related to our
second scenario simulations. Analyzing the values in this table,
we can deduce that having more UAVs generally results in more
user coverage. Nevertheless, this general behavior cannot always
be ensured due to the initial random initialization of the Q-table
(e.g., for the case with 5 users and 3 UAVs, we can observe worse
results with respect to the case with the same number of users but
with 2 UAVs).

In Figure 6, we can see how the reward of UAVs changes over
the epochs and with the addition of more and more users.

FIGURE 6 | Reward behavior for different numbers of UAVs over the epochs; 5-10-15 users are included in the scenario.

TABLE 3 | Comparative analysis results obtained for an operative scenario made
up of 2 UAVs which are expected to serve 5–10-15 users. Q-learning random
initialization refers to the usage of Q-learning algorithm by randomly initializing the
values of the Q-table, while the greedy algorithm is the comparative baseline we
used to evaluate UAVs performance.

N TH metric EC metric AoI TH DT EC DT DG DT

Q-learning with random initialization

5 83.60% 52.09% 122 655 s 760 s 608 s
10 99.43% 92.76% 0 150 s 235 s 0 s
15 98.06% 95.78% 0 55 s 105 s 0 s

Greedy algorithm

5 12.14% 40.76% 184 1,070 s 1,160 s 921 s
10 74.84% 60.58% 105 760 s 705 s 525 s
15 37.30% 46.64% 140 885 s 880 s 698 s
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6.3 Third Scenario: Rural Environment and
Multiple UAVs
The rural environments is modeled in such a way as to have few users
scattered in different areas in order to look at theUAVs behavior when
large distances among users are set. The ϵ parameter is initially set to 2,
ensuring a bigger exploration of the area to find all the users. Users
scattered over a bigger area make the UAVs consume more energy to
move from one part of the area to another: indeed here the number of
charging stations has been increased with respect to previous scenarios.
In Table 2, we can see how a single UAV struggles to satisfy all the
requests on its own and how much performance can be improved by
adding another UAV to help the first one in covering scattered users.

6.4 Comparative Baseline
Table 3 reports a comparison for a specific operational scenario
between the main performance parameters related to the used
Q-learning algorithm and a comparative greedy baseline. The
considered scenarios are made up of 2 UAVs serving 5, 10, and
15 users. The used Greedy algorithm is based on the assumption that
UAVs have a preliminary knowledge of the distribution of users in
the environment; according to this knowledge, UAVs move toward
the closest users with respect to their position without taking into
account if users are already served or not. Looking at Table 3 we can
notice that TH, ECmetrics aremaximized (byminimizing their delay
time) in all cases by applying Q-learning with random initialization.
The worst results are instead the ones related to the usage of the
Greedy algorithm. Thus, Q-learning always outperforms the Greedy
algorithm with respect to any parameter shown in Table 3.

These results can be observed also in Figure 7 which shows the
good performance in terms of high TH and EC achieved by the

Q-learning (subfigure (A) and (B)) as a function of the number of
users as well the good results in terms of reduction of the delivery
time in the case of subfigures (C) and (D).

We can also notice that by keeping the number UAVs constant, it
seems that they perform better as the number of users increases in a
reasonable way (with respect to the number of used drones): this can
be obviously explained considering that UAVs can easily interfere
with each other when serving a small number of users distributed in
the same area. Finally, the reason why the AoI is equal to zero inmost
of the Q-learning cases is due to the fact that UAVs learn to place
themselves in the users’ area before users start to ask for a DG service.

7 CONCLUSION AND FUTURE WORK

In this article, we presented a new framework to simulate multi-UAV
service providers, including a simulator and a reinforcement learning
environment. In particular, we studied the task of deploying multiple
UAVs to serve augmented reality users during a time window of
30min. We presented a reward function that aims at optimizing
different aspects: battery, throughput, waiting time, and age of
information. We built a plausible model of requests over 24 h and
also a novel model of an AR user, addressing different types of
necessities.We trainedUAVswithin two different kinds of areas: rural
and urban environments.

As shown by the experimental results, UAVs learned how to
reach users faster and without failing. We studied the condition
allowing UAVs to be the only internet providers with an adequate
quality of experience: several scenarios including different numbers
of UAVs and users have been tested.We also showed how easy is to
adjust bandwidth by adding or subtracting a service drone from the

FIGURE 7 |Comparative representation (see also Table 3) between Q-learning and greedy algorithm performance considering (A) THmetric, (B) ECmetric, (C) TH
Delivery Time, and (D) EC Delivery Time.
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considered UAVs system, allowing to provide internet and other
resources in a scalable and dynamic way.

As a further step of this work, it could be very interesting to
investigate UAV’s speed impact on the system performance; also
fairness metrics like Jain’s fairness could be considered to improve the
performance evaluation. Futureworksmay also include improving the
simulator with additional features to increase the realism of the
operational scenarios. Finally, the proposed framework can be
extended to study other multi-UAV service providers and can be
used for the comparative analysis of different approaches.
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