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Aiming at the self-association feature of the Hopfield neural network, we can reduce the
need for extensive sensor training samples during human behavior recognition. For a
training algorithm to obtain a general activity feature template with only one time data
preprocessing, this work proposes a data preprocessing framework that is suitable for
neuromorphic computing. Based on the preprocessing method of the construction matrix
and feature extraction, we achieved simplification and improvement in the classification of
output of the Hopfield neuromorphic algorithm. We assigned different samples to neurons
by constructing a feature matrix, which changed the weights of different categories to
classify sensor data. Meanwhile, the preprocessing realizes the sensor data fusion
process, which helps improve the classification accuracy and avoids falling into the
local optimal value caused by single sensor data. Experimental results show that the
framework has high classification accuracy with necessary robustness. Using the
proposed method, the classification and recognition accuracy of the Hopfield
neuromorphic algorithm on the three classes of human activities is 96.3%. Compared
with traditional machine learning algorithms, the proposed framework only requires
learning samples once to get the feature matrix for human activities, complementing
the limited sample databases while improving the classification accuracy.

Keywords: sensor fusion, neuromorphic computing, Hopfield neural network, singular value decomposition, human
activity recognition

1 INTRODUCTION

Human activities are movement postures with various features that human beings do while at study,
work, production, and other situations (Grossi, 2019), including regular or irregular movement
patterns and states such as running, walking, standing, sitting, and lying (Guiry et al., 2014). As
society is consistently changing, science and technology are advancing rapidly, while artificial
intelligence is becoming more and more popular. Research methods for human activity recognition
are continually evolving, and it has become the primary technology for many applications such as
health care (Liu et al., 2018; Yang et al., 2018), human–computer interaction (Zhang et al., 2017), and
robotic control (Schmucker et al., 2018). Meanwhile, with the development of mobile computing and
sensing technology, wearable sensor signals have become common data (Banaee et al., 2013). When
an object stays in a different position, performs different activities, or performs different gestures, it
will have different effects on the signal characteristics of surrounding sensors (Hussain et al., 2019).
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At present, the human activity recognition of wearable devices
has strong applicability and use value. For instance, the intelligent
nursing scene system for the elderly detects and analyses the
actions in real time using portable sensors. It can determine
whether the elderly has eaten, medicated, or carried out the
minimum exercise. To ensure the health and safety of the
elderly, information around the amount of exercise and
detection of abnormal actions such as falling (Ojetola, 2013) is
vital. For the human–computer interaction system, through the
recognition of human activity, timely and accurate responses are
highly vital for the different actions (Kumar et al., 2012). For the
robotic control, rehabilitation training within hospitals by
identifying the degree of standardization of movement
behavior, and the recovery can be evaluated to provide better
rehabilitation guidance (Lambercy et al., 2016).

Compared with the activity monitoring of external means such
as radar (Zhu et al., 2018) and cameras (Ke et al., 2013), the
advantages of wearable sensors are more concentrated in open-
scene applications. The user is not limited to a specificmonitoring
area, can freely enter and exit places, and carry on behavior
without the obstacles of blind spot recording and capturing (Shah
et al., 2016). Therefore, human activity recognition based on
wearable sensor signals overcomes the drawbacks of traditional
methods and has become a promising technology for future
mobile computing applications. It will play an essential role in
intelligent applications such as smart health (Suzuki et al., 2013),
smart space (Shelke and Aksanli, 2019), and behavioral analysis
(Munoz-Organero, 2019).

Currently, machine learning methods, especially deep
learning algorithms, have been widely used for human
activity recognition (HAR). However, existing machine
learning, especially convolutional neural network (CNN)
models, induces overwhelming training data collection
overhead. The problems caused by massive samples’
algorithm requirement to learning for the feature are not
suitable for small datasets, which greatly reduced machine
learning algorithm practicability, for example, Ayman et al.
(2019) realized multi-activity recognition by a support vector
machine (SVM) algorithm, with preprocessed activity data, and
Chavarriaga et al. (2013) used cluster recognition activities by
naive Bayes (NB) and K-nearest neighbors (KNN) algorithm.
However, these are all traditional machine learning algorithms.
Its algorithm capability limits its robustness, and since it focuses
on a single operation, it lacks consistency and shows poor
recognition effect in complicated and diverse human
movement scenes. Recently, there has been a growing trend
in improving recognition accuracy and applicability by deep
learning. For example, Terry et al. (Um et al., 2017) proposed a
CNN model that can better classify to the non-linear model to
avoid the hysteresis and time-varying behaviors in sensors with
higher frequency strain rate. Francisco et al. (Ordóñez and
Roggen, 2016) uses the LSTM algorithm to improve the CNN
structure and introduces the concept of time series of activity
sensor data. This implementation is a deep learning framework
composed of convolutional layers and long short-term memory
(LSTM) recursive layers, which can automatically learn feature
representations and build time dependencies between activity

models. However, the costs of training samples for deep
learning methods are not friendly to small datasets, and it
depends on a wide variety of training datasets to achieve
correct activity recognition. The aforementioned factors
cause uncertainties, resulting in high computational
complexity for training and large dataset requirements for
datasets. With limited sample datasets, the classification
accuracy cannot meet the requirements (O’Mahony et al.,
2019). Researchers have also implemented the unsupervised
learning method to clustering analysis limited datasets;
however, the idea of learning transfer approaches complex
algorithms, soft labeling examples increases which also leads
to the design missing feature calculations (Sucholutsky and
Schonlau, 2020). Following our previous study (Yu et al.,
2020a), reducing the need for training data without losing
classification accuracy has been a significant problem for
researchers in the science community.

In this study, we present a novel framework based on the
Hopfield neural network for wearable multisensor data
knowledge fusion preprocessing and classification. The
Hopfield neural network can be used for a single task, such as
human fall recognition, as seen in earlier studies (Yu et al.,
2020b). To extend the research on the data fusion of multiple
sensors with the Hopfield neural network to a series of human
movements, we built a dimensionality reduction matrix and
placed it in the singular value decomposition (SVD) algorithm
for feature extraction, also termed as data preprocessing method.
Then we follow the Hebbian learning method for training the
Hopfield neural network based on the corresponded human
activity feature matrix. Finally, we achieve multiple human
activities recognition result output by similarity calculation.
Rather than considering separate single activity data in
isolation, we studied the comprehensive data of three activities
for comparative output to obtain significantly different feature
templates for each human activity. It ensures the Hopfield
algorithm can learn the related activities through the
corresponding feature templates. Hence, reducing the number
of training samples required while maintaining high classification
accuracy.

The rest of this article is organized as follows: Section 2
presents data collection, preprocessing, and feature extraction
method. Section 3 shows the implementation, evaluation, and
results. Section 4 discusses and compares the project with others.
Finally, Section 5 focuses on conclusions and future work.

2 DATA PREPROCESSING AND FEATURE
EXTRACTION

The dataset used in this work was from Li et al (Li et al., 2018a)
who works at the University of Glasgow. It collects multiple
activities of 20 volunteers aged between 22 and 32 years, where
each activity is repeated three times. Although the sample of this
dataset is limited, it is still in the top 3% in terms of the number of
subjects compared with other wearable human motion analysis
works (Li et al., 2017; Li et al., 2018a; Li et al., 2018b). All activities
are collected by inertial measurement unit (IMU) sensors worn
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on the wrist. In this work, the dataset is 60 data for each activity
and only requests one data in training as one-shot learning.

Ortiz (Ortiz, 2015) defines how to divide human activities.
Short event activities generally refer to fast transitions between
human body postures and behaviors. The basic activity lasts
longer than short event activities and is usually the most
frequently occurring episodes in daily human life, such as
sitting, standing, running, and other behaviors. Meanwhile,
these are also further divided into static activity and dynamic
activity, according to the state of the human body. Moreover,
there are two ways for complex activity: one is a combined activity
that is aggregated through a variety of basic activities, and the
other includes multiple users participating during the activity.
Therefore, complex behaviors are usually divided into two further
strains, that is, multi-activity and multiuser. Table 1 shows the
details of selected activities based on the activity principles of
duration, complexity, type, etc., the work selects three classes and
activities data for experimentation which includes fall, carry, and
bending to tie shoelaces. These activities have been purposefully
selected into different types and include a potential class that can
be misclassified as falls, such as the complex activity of bending to
tie shoelaces; it involves changing the position of the bow and the
complex motion of the hand. This helps test the robustness of
neuromorphic computing classification. Falls cause a severe
impact on the health of the elderly or the disabled; it is
incredibly essential to achieve reliable recognition of low false-
positive alarms and low missed detections.

Inertial measurement unit (IMU) sensors contain three
specific sensors: gyroscope, accelerometer, and magnetometer.
The gyroscope sensor measures the angular velocity, that is, the
speed at which the object rotates. It multiplies the speed and time
to get the angle that the object rotates in a particular period. It
captures the angle between the vertical axes of the gyro rotor with
the device in the three-dimensional coordinate system and then
calculates the angular velocity. Finally, it judges the movement
state of the object in the three-dimensional space (X, Y, Z axes)
through the included angle and angular velocity.

The accelerometer measures the gravitational acceleration of
the object. It can sense acceleration in any direction, expressed in
the three axes (X, Y, and Z axes)—acceleration, magnitude, and
direction. The magnetometer is used to record the strength and
direction of the magnetic field, subsequently locating the
orientation (heading direction) of the device. The principle of
the magnetometer is similar to the compass, which can measure
the included angle between the current device and the four
directions of the south, east, north, and west. Finally, the
gyroscope sensor records the rotation of the device itself, the
accelerometer sensor records the force exerted on the device, and

the magnetometer positions the device’s orientation. All the
activities will get 9-axis data by each sensor of X, Y, and Z axes.

2.1 Sensor Fusion by Quaternion and Euler
Angle
The accelerometer sensor’s data provide an absolute reference for
the horizontal position but cannot provide the azimuth reference.
The angle is not accurately measured by the accelerometer sensor
alone, which can be addressed by data fusion with a gyroscope
sensor. While the magnetic field information is in a stable
environment, the sensor achieves the same magnetic field
intensity in each activity. However, it can help correct the
gyroscope angular velocity parameter. Therefore, the
appropriate algorithm can fuse the data from various sensors
to make up for the shortage of a single sensor in calculating the
accurate position and direction, thereby achieving high-precision
activity recognition. Meanwhile, to reduce the computational
complexity of multidimensional data, the signal processing
needs to consider dimensionality reduction to simplify the
calculation. Here, the quaternion (Kuipers, 1999) and Euler
angle (Madgwick, 2010) computing are used for the sensor
data fusion. Depending on the accelerometer, magnetometer,
and gyroscope sensors’ data, we update the quaternion output
and then convert it to the Euler angle. Finally, the 9-axis data of
three sensors are fused and reduced to a 3-dimensional dataset.

Following the raw nine-axis data calculated into the
coordinate system from the three sensors, the respective three
components of the gravity vector and the magnetic field vector in
the world coordinate system can be obtained. Subsequently, the
accelerometer achieves the three components of the gravity vector
in the sensor coordinate system. Finally, the magnetometer
measures the magnetic field vector in the sensor coordinate
system. Let dE � [0,dex, dey, dez] be the vector coordinates in
the world coordinate system. Let q be the sensor attitude. So that
it can be used as q−1 to transform dE into the vector coordinate dS
� [0,dsx, dsy, dsz] in the sensor coordinate system. The gyroscope
sensor data achieve the angular velocity (ω) by integrated
computation and then follow the accelerometer and
magnetometer attitude (dS) to update q as quaternion at each
sampling interval by Eq 1:

dS � q−1 pdE p q, (1)

where f is the device attitude fitting error, which can be calculated
from the current attitude q and the attitude dS. These are
according to Eq. 2 to achieve Eq. 3 as an integrated
calculation as follows, where 1

2qt pωΔt is obtained by angular
velocity, and ▽f

‖▽f‖ is obtained by accelerometer andmagnetometer

TABLE 1 | Activity selected and details.

Duration complexity Activity type Activity Detail Activity times
(seconds)

Collected count
(times)

Short events Transitions Fall Fall over while walking 5 60
Basic activities (BAs) Dynamic Carry Walking while carrying an object 10 60
Complex activities (CAs) Multi-activity Bending to tie shoelaces Stand first, then bending to tie shoelaces 5 60
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computing. The weight β represents the error of the angular
velocity.

⎧⎪⎨⎪⎩
qt+1 � qt + 1

2
qt pωΔt

qt+1 � qt − μ
▽f

▽f
���� ����,

(2)

qt+1 � qt + 1
2
qt pωΔt − β

▽f

▽f
���� ����Δt. (3)

Since combined rotation and vector transformation are
frequently used in attitude calculation, the quaternion can
simplify the calculation and smoothen interpolation.
Quaternion parametrization (of the rotation) only needs a

four-dimensional quaternion to express arbitrary rotation,
which is more efficient than the matrix method (Ben–Ari, 2014).

The Euler angle is used to define the rotation of the device in
space. It rotates as a fixed angle to sequence around the
coordinate system of Z, Y, and X axes. The roll angle (ϕ),
pitch angle (θ), and yaw angle (ψ) were used to represent the
rotation angle around X, Y, and Z axes on the coordinate system
of the object (Janota et al., 2015). The attitude matrix determined
by the Euler angle is the product of the cubic coordinate
transformation matrix.

For the sensor fusion, this work first converts the
accelerometer and magnetometer sensor’s data to the
coordinate system and then calculates the deviation with the
corresponding reference gravity vector and magnetic field vector.

FIGURE 1 | Activity calculated from the IMU raw sensor data to the Euler angle feature: (A) IMU 9-axis sensor data. (B) Euler angle feature.
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This deviation is used to correct the output of the gyroscope; after
that, we use the gyroscope data to update the quaternion to the 4-
dimensional feature expression of activity. Finally, we follow the
Euler angle computing to convert the quaternion. Figure 1 shows
9-axis sensor’s raw data (Figure 1A) which are dimensionally
fused and given to the 3-dimensional Euler angle feature
(Figure 1B), without affecting the expression of the
corresponding action.

2.2 Feature Extraction by SVD: Singular
Value Decomposition
When performing dimensionality reduction processing on a
high-dimensional vector space model, there are usually two
methods that are feature selection and feature extraction.
Feature extraction has changed the original feature space,
which is created and refines new features on the basis of the
original features. It converts the original data into a set of
apparent physical features, or kernel features. Feature selection
only filters the original features that are selecting a set of
statistically significant features from a set of predefined
features, and hence, it can also be called feature subset
selection. Therefore, feature extraction is different from feature
selection solution. It extracts the abstract features contained in the
original features according to a specific algorithm.

The simple way to obtain a low-dimensional feature subspace
expression is to perform a linear transformation on the original
high-dimensional feature space. Here, the study chooses the
singular value decomposition (SVD) (Klema and Laub, 1980)
to extract features of different human activities. It is crucial
matrix decomposition in linear algebra, which is based on the
singular value decomposition method to calculate the feature
spaces and feature vectors of the matrix, so that low-dimensional
features can represent the original data. SVD decomposes the
original matrix data into three submatricesU, Σ, andVT following
Eq. 4:

Ampn � UmpmΣmpnV
T
npn, (4)

whereU is an m×mmatrix, Σ is an m×n matrix, and VT is an n×n
matrix, which is the conjugate transpose of V, an n×n matrix. U
and VT are two sets of orthogonal vectors, which means we get
two sets of the orthogonal basis. The A matrix as original data,
which rotates a vector from orthogonal basis vector space ofVT to
the orthogonal basis vector space ofU, with certain scaling in each
direction. Then we achieve the scaling factor as singular values of
Σ. Σ being a diagonal matrix, we sort the diagonal values in
descending order. It is corresponding to the singular values of the
original data, and the matrix values are all 0, except the values on
the main diagonal, where each element on the main diagonal is
called a singular value.

The singular value can be used as a feature to express a
rectangular matrix or a singular matrix, which can be regarded
as mapping from one feature space to another feature space,
whereby the project completes the feature extraction of the Euler
angle feature to each activity matrix pattern. Figure 2 shows the
Euler angle data through 3 times SVD computing for dimension
reduction and feature extraction that is scaled to a 5 × 5 feature

matrix to distinguish different human activities. Figure 2A is a
construction matrix from Euler angle value, and the matrix size is
the product of time and frequency (where sensor’s sampling
frequency is 50 Hz). The roll angle (ϕ) data are loaded in the first
row, the pitch angle (θ) data are put into the first column, and the
yaw angle (ψ) data on the diagonal of the construction matrix.
Then, Figures 2B–D are following the SVD processing for
dimension reduction and feature extraction on the
construction matrix. Carrying out matrix decomposition
through SVD computing, the large matrix can be decomposed
into a product of three small matrices. The middle Σmatrix of the
upper left corner is the most important feature value, which
represents the main component of the matrix decomposition. At
this point, we keep the upper-left data as a new matrix, and the
rest of the positions are regarded as zero for data dimension
reduction. It still retains the significant features of the data. After
three times SVD computing, Figure 2E shows the use of Hankel
computing to compress matrix into 5 × 5 by Eq. 5 (Drmac, 2015).
This further specifies that the first column is the first n values of
the diagonal on the matrix, and the last row is the last m values of
the diagonal on the matrix (n×m � final matrix size). All other
elements in the Hankel matrix are equal to the adjacent position
of the lower-left corner. Finally, Figure 2F converts the Hankel
matrix into a binary pattern by the threshold value, which is
significant to distinguish the three activities as different feature
matrices.

H i, j( ) � H i + 1, j − 1( ). (5)

The achieved feature matrix of each human activity can
improve the accuracy of recognition, construct a faster and
less expensive classification model, and give a better
understanding and interpretation of the model than Euler
angle. Meanwhile, the binarized pattern is convenient for
further transmission to the Hopfield neural network to a
training classification model.

2.3 Hopfield Neural Network: Binary Pattern
The Hopfield neural network is a recurrent feedback neural
network, which is a fully connected structure of network
feedback from the input to output to achieve associative
memory. The discrete Hopfield neural network (DHNN)
(Hopfield, 1982) is one of the binary neural networks. The
activation function of each neuron is a step function. The
input and output of the neuron are binary values of -1 and 1.
Eq. 6 shows discrete values 1 and -1, indicating that the neuron xj
is in an activated state or an inhibited state, respectively.

xj � sgn netj( ) � 1 netj > � 0( )
−1 netj < 0( )

⎧⎨⎩ ⎫⎬⎭. (6)

There areN neuron node structures of the DHNN in Figure 3,
and it shows the output of each neuron is connected to the input
of other neurons, without self-feedback. The green circle means
neurons, and the blue circle represents each connection between
neurons. However, due to the neurons without self-feedback,
each self-connection point will be empty that is shown as a yellow
circle. Each node can be in an activated state 1) or an inhibited
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FIGURE 2 | Euler angle value calculated by SVD to achieve 5 × 5 feature matrix of activity binary pattern. (A) construction matrix from Euler angle value. (B), (C), (D)
following the SVD processing for dimension reduction and feature extraction on the construction matrix. (E) Hankel computing. (F)Hankel matrix into a binary pattern by
the threshold value.
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state (-1), when the activation of the neuron exceeds its threshold.
The connect weight of any two neurons is Wij, and there are
symmetrical interconnections between each neuron given by Wij

� Wji. The output of each neuron is the input to all of the other
neurons, whichmeans the input of each neuron comes from other
neurons output. Therefore, the neuron output signal eventually is
fed back to itself through other neurons.

In this feedback process, the input generates excitation, and
then the output corresponds to product continuous state changes.
At this point, the neuron computing the object pattern is to be
memorized. When the Hopfield neural network converges, the
neuron state no longer changes; hence, the feedback and iterative
process slows down. Finally, the neuron completes memory
learning and establishes an attractor pattern of a final stable
state, which is when the energy function of the neural network
approaches the minimum. In a dynamic system of the Hopfield
neural network, the attractor of a stable state can be represented as
the energy function of the system which continuously decreases
during operation, and finally approaches the minimum value. The
energy function Eq. 7 is given as follows, whereWij is the connect
weight of the neuron i and neuron j, Xi,j is the value of the neuron i
and neuron j, and θj is the threshold of the neuron j:

E � −1
2

( )∑n
i�1

wijxixj + θjxj. (7)

The DHNN follows the Hebb learning method, which is a
neural network learning rule proposed by Donald Hebb (Hebb,
2005). It is used to describe the behavior of the connection
relationship between neurons. Such as two connected neurons
where both are activated; it can be considered that the

relationship between the two neurons should be relatively
close. Hence, the weight of the connection between these two
neurons is increased. On the contrary, when one of the two
neurons is activated and the other one is inhibited, the weight
between the two neurons should decrease. The weight update
between neurons can be represented in Eq. 8:

Wij t + 1( ) � Wij + αxixj. (8)

The connection weights of neurons Xi and Xj are determined
by their outputs, where α is a constant learning rate for the
learning step size. After converting to DHNN, it can be simply
expressed as in Eq. 9 (Rojas, 1996):

Wij � ∑n
s�1

2Vs
i − 1( ) 2Vs

j − 1( ). (9)

When the DHNN is used for associating memory to patterns, it
is constrained by the memory capacity and the sample difference,
which is proportional to the storage capacity. This is the number of
neurons required for each sample memory capacity. When the
memory capacity exceeds the neuron storage capacity, the system
will confuse the stored samples. It appears as errors in the neurons’

FIGURE 3 | Neuron node structure of DHNN.

FIGURE 4 | Discrete Hopfield neural network neuron and weight trained
by three activities. (A) one Hopfield neural network state-space neuron. (B)
entire DHNN weight output.
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signal output. Relative to the steady state of the correct memorized
pattern, spurious states will also be generated during the learning
process of associative memory in the Hopfield network. When the
pattern samples of learning and memory do not meet the
orthogonality condition, the dynamic update of the energy
function may produce a false minimum. It will cause the neural
network to return wrong or incomplete learning results. Therefore,
the associative memory will be wrong on the neuron; the result
corresponds to the local minimum of energy and is called spurious
attractors. The current configuration of the neural network is
projected into the subspace spanned by the pattern vector with
a learning rule. We ensure that the memory pattern computing
meets the maximum pattern memory capacity (Pmax) of a learning
rule. It can avoid the Hopfield neural network–generated spurious
states of the pattern learning, which means the local minimum
value in the energy function can be reduced. Following the
principle of neuron training, the storage capacity proportional
follows the relationship of neuronsN and patternsK by Eq. 10. The
storage capacity proportion is approximately 0.14 N, which is the
maximum number of memorized patterns.

K≤
N

2lnN
� Pmax. (10)

The Hopfield neural network training phase is illustrated in
Figure 4 with the three activities. Figure 4A depicts one
Hopfield neural network state–space neuron that processes
training. The weight of the DHNN is calculated using a feature
matrix (5 × 5 feature pattern of human activity) and the
constructed Hebbian learning law, and it indicates that the
neuron has reached a stable state after the 5 steps of training.
Figure 4B displays the entire DHNN weight output after the
algorithm trained the three preprocessed binary patterns of
activities. Since the DHNN has the smallest space, it
memorizes three patterns: 5 × 5 � 25 (storage capacity
equal to 0.14 N) (Ramsauer et al., 2020) neurons; hence, the
above data preprocessing stage is used to obtain the 5 × 5
feature matrix as the behavior pattern.

2.4 Cosine Similarity Work for Recognition
When the Hopfield algorithm is used for associative memory, it
only needs to give part of the information of the input mode, and
then the algorithm can associate itself to the complete output
mode. At this point, it is fault-tolerant, which is conducive to the
input of the sensor data at different time frames into the
algorithm. Finally, we obtain a usable matrix output while
reducing the time sensitivity of the algorithm with data. After
the output, the matrix is obtained by the Hopfield algorithm;
furthermore, the vectors representing each matrix feature can be
calculated by the cosine of the angle of the inner product space.
This measures the similarity between the matrices and achieves
the classification of the data. Cosine similarity (Nguyen and Bai,
2010) is based on cosine distance computing, which is a measure
of the difference between two individual matrix data. It uses the
cosine of the angle calculation between two vectors in the vector
space. When the cosine value is closer to 1, it implies that the
angle is closer to 0°, meaning there is a relatively higher level of

similarity between the vectors. This calculation method of cosine
distance is suitable for n-dimensional vectors. Following Eq. 11,
A and B are two n-dimensional vectors, and the cosine of the
angle θ between A and B can be calculated as follows.

cos θ( ) � A · B
A‖ ‖ · B‖ ‖

� ∑n

i�1Ai × Bi���������∑n

i�1 Ai( )2
√

×
��������∑n

i�1 Bi( )2
√ . (11)

In this regard, all sensor signals will undergo the previous feature
extraction to output different feature patterns. In the subsequent
neural network, except for the trained 3 activity models, any other
data cannot activate the neurons. Then the output of the Hopfield
neural network linked to the cosine similarity achieves human
activity recognition. Three trained activities will get a high
probability of similarity output, and other data signals will output
low cosine similarity since the neurons are not activated. Finally, a
classifier based on neuromorphic computing achieves effective
human activity recognition as elaborated in the following Results
Evaluation Section.

3 RESULTS EVALUATION

Figure 5 is the workflow of the algorithm framework, which shows
eachworking step from the sensor’s raw data into the algorithmuntil
the final output of the classification result. According to the profile
report of the pie chart in Figure 5, it depicts the relative importance
of each function in the entire system and explains how to distribute
work and coordinate with one another. The system’s primary focus
is on the Hopfield neural network, which explains that the
recognition work is the most essential and complex calculation in
the system. At this point, the first challenge is how tomake a suitable
feature map input as a training template on the Hopfield neural
network. The system’s second challenging task is SVD processing,
which mainly depends on the discrete Hopfield neural network
input requirement. Since the neural network uses binary information
instead of raw data, the SVD algorithm can perform data
preprocessing for feature extraction, resulting in a binary feature
map with activities. It requests feature extraction computing to raw
sensor data and then converts it into a binary feature matrix
controlled by a threshold value. The following are additional details:

Sensor fusion: The purpose of this step is to fuse the raw data of
the sensors. Using the Euler angle, we reduce the 9-axis data of the
three sensors with increasing data differentiation of activities.

Construction matrix: Based on the Hopfield neural network
for memory storage of three activities, the processing on 25
neurons of 5 × 5 binarized matrix input becomes the optimal
design. The fused data can then be constructed as a matrix to
achieve feature extraction and binarization pattern. The feature
matrix is output to the template of different activities to suitable
Hopfield neural network processing.

SVD algorithm: Depending on the three times singular value
decomposition, it is mainly working for dimension reduction and
feature extraction. After computing, there are three activities that
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can achieve totally different feature matrices on the 5 × 5 size.
This can then be efficiently input into the Hopfield neural
network training.

Hopfield neural network: This step is to obtain the advantages
of neuromorphic computing by loading the designed binarized
feature matrix into the Hopfield algorithm. The neural network
weight is calculated by standardized activity data without the
massive training samples, and the three activities memories are
stored in neurons.

Classification function: During the test, all the input signals
work with the data preprocessing is fed into the Hopfield
algorithm achieving our desired output. At this point, we
calculate cosine similarity between the output signal of the
neural network and standardized feature matrix. The Hopfield
algorithm acts as a filter blocking the data outside the memory
and only outputs the activity data that satisfy the memory.
Through the threshold of cosine similarity, the accuracy
confusion matrix can then be obtained to complete the human
activity recognition.

In the algorithm, feature extraction determines the input of the
network, which is one of the most critical aspects of the
framework. The extracted features must reflect the category
differences of the object data. It needs excellent tolerance to
the randomness and noise of sensor data. Meanwhile, it should be
convenient to add new categories as a flexible framework.
Depending on the specific project, it can include steps such as
removing unique attributes, processing missing values, attribute
encoding, data normalization, feature selection, and principal
component analysis. The data for this project are processed using

coarse grid feature extraction and binarization, which is suitable
for the DHNN algorithm training.

The two confusion matrices representing the algorithm’s
classification present the results for the three classes of human
activities. The confusion matrix summarizes the results of the
dataset in the matrix form by the real category and the predicted
category. The columns of the matrix represent the true values,
and the rows of the matrix represent the predicted values. Table 2
is the precision results of the algorithm classification, which
indicates the percentage of samples that are classified to be
positive. That is calculated by True Positive (TP)/(True

FIGURE 5 | Workflow for sensor data to achieve human activity recognition.

TABLE 2 | Confusion matrix of classification precision.

% Target class

Fall Carry Tie

Output class Fall 94.4% 0 5.3%
Carry 5.6% 100% 0
Tie 0 0 94.7%

TABLE 3 | Confusion matrix of classification recall.

% Target class

Fall Carry Tie

Output class Fall 94.4% 0 5.6%
Carry 5.6% 94.4% 0
Tie 0 0 100%

Frontiers in Communications and Networks | www.frontiersin.org January 2022 | Volume 2 | Article 8202489

Yu et al. Sensing-Based Hopfield Neuromorphic Computing

https://www.frontiersin.org/journals/communications-and-networks
www.frontiersin.org
https://www.frontiersin.org/journals/communications-and-networks#articles


Positive (TP) + False Positive (FP)). Among the three human
activities, the classification of “carry” activity is correct, which
indicates the algorithm’s classification has the highest success rate
for “carry” activity, and it will not misidentify other activities as
“carry.” Table 3 is the recall rate of the classification, which
represents the percentage of correctly classified positive samples
in the truly positive sample and is calculated by True Positive
(TP)/(True Positive (TP) + False Negative (FN)). The result
shows that the algorithm is most sensitive to shoelace tie
activity. Finally, the algorithm classification accuracy calculated
as (True positive (TP) + True negative (TN))/(True positive (TP)
+ False positive (FP) + True negative (TN) + False negative (FN)),
for the three human activities comes to be 96.3%.

Table 4 shows a comparison against traditional machine learning
algorithms and proves that better results are achieved through the
proposed neuromorphic algorithm under a suitable feature
extraction model. As discussed earlier, this depends on the
associative memory function of the Hopfield neural network and
generates activity weights after learning the one training sample,
based on the SVD and computation of the feature matrix. Li et al.
(2018a) based on traditionalmachine learning algorithmsworked on
the same dataset, which achieved classification result by a support
vector machine (SVM) and artificial neural network (ANN).
Although existing machine learning has a good recognition effect,
there is overwhelming training data collection overhead. Spiros et al.
(2020) proposed a method from a change detection algorithm along
with deep learning, which is wide generalization by operation upon a
raw sensor accelerometer signal and then used it as an activity feature
input to the CNN algorithm to achieve fall recognition. Ashry et al.
(2020) followed the long short-term memory (Bi-LSTM) algorithm
to input autocorrelation, median, entropy, and instantaneous
frequency as stream features that achieves IMU sensing human
activity recognition. However, as existing machine learning,

especially deep learning, a good recognition effect has been
obtained, which induces overwhelming training data collection
overhead. Taylor et al. (2020) tried some neural network
methods on the same activities for recognition. Meanwhile, they
used the fast Fourier transform (FFT) method to improve the
classification accuracy of limited datasets, which is based on
orthogonal frequency division multiplexing (OFDM) for 64
points of FFT producing 64 frequency carriers. However, these
use Universal Software Radio Peripheral (USRP) radar signal
data, and the method cannot extend to sensor data. Comparing
their work, we believe that the recognition findings are preferable,
demonstrating that neuromorphic computation is effective in
recognizing human behavior. Furthermore, our proposed
framework has greater robustness and can adapt to more
different types of matrix data. Meanwhile, the Hopfield neural
network benefits from only one training sample to achieve good
classification accuracy, which addresses the limited dataset problems.

4 DISCUSSION

Simple feature maps of different classes are realized by feature
extraction for sensor data, while a discrete Hopfield neural
network is utilized to compensate similar data that achieve
robustness in human activity features. For example, some drift
in the angle calculations of the IMU sensor sometimes makes it
impossible to have error-free data of acquiring activities.
Traditional deep learning has weak learning ability and
often requires massive data and repeated training to
generalize sufficient accuracy. Such deep neural networks
are usually good at learning features from high-dimensional
data; however, they require training with a large sample
dataset.

TABLE 4 | Comparison table with other machine learning methods.

Project Algorithm Feature extraction Training method Accuracy
(%)

Our Work Hopfield neural
network

SVD preprocessing Euler angle data to achieve activity
binary pattern

1 Sensor sample to generate a standard pattern for
each activity

96.3

Li et al (Li et al.
(2018a))

Support vector
machine

Sequential feature selection (SFS) for 30 features of IMU
sensor data

Using a 70% sensor dataset as training data (20
volunteers * 3 repetitions * 70% � 42 training samples
for each activity)

92

Artificial neural
network

Sequential feature selection (SFS) for 30 features of IMU
sensor data, and 10 features for the radar data

Combine the sensor and radar dataset and then use
70% samples to training (20 volunteers * 3 repetitions
* 70% � 42 readings for each sensor and radar, there
are totally 84 training samples for each activity)

96

Spiros et al
(Spiros et al.
(2020))

Convolutional neural
network

Wide generalization by operation upon raw sensor
accelerometer signal

In the MSB dataset, the number of observations for
the raw data was 294,679, of which 8,516 were
labeled as falls

92

Ashry et al (Ashry
et al. (2020))

Bi-LSTM (long short-
term memory)

Stream features for autocorrelation, median, entropy,
and instantaneous frequency

The total number of streams in the dataset is 470
samples, and 70% of the data are randomly chosen
for training, while the remaining 30% is used for
testing

91

Taylor et al
(Taylor et al.
(2020))

K-nearest neighbors Used USRP radar to collect 30 samples of each activity,
which each contain 64 subcarriers by fast Fourier
transform (FFT)

70% USRP radio signal dataset training algorithm
(70% * 64 * 30 � 1,344 samples each activity)

90.71
Neural network mode 93.40
Ensemble classifier 93.83
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In contrast, when SVD preprocesses the new input data, the
calculated activity features are improved by the associative memory
function of the Hopfield neural network, which then disassociates
corrupted data and outputs correct activity feature information. This
makes it one-shot learning for different activities to achieve prior
knowledge and form a knowledge structure and is based on
associative memory to expand the data generalization processing.
The resulting associative memory helps in generalizing data to
quickly match the correct activity feature map and finally
accurately classify human activities. One-shot learning was
completed to implement HAR for limited datasets, and high-
precision results were obtained. Meanwhile, randomly selecting a
single training sample that verifies the robustness of the designed
algorithm is convenient to promote more datasets.

Based on the neuromorphic computing of the Hopfield neural
network to realize one-shot learning, the associative memory of data
works somewhat like the human brain; it aims to achieve feature
information about the object classes from one training sample and
randomly selects one data in the dataset as the training sample for the
Hopfield neural network and then the feature matrix obtained after
the feature extraction calculation, which can be mapped into the
feature template of the corresponding activity. The associative
memory function of the Hopfield neural network with the
similarity of the distance calculation, that is, composition, learns
the required elements once. These constitute one-shot learning
elements and are finally achieved HAR by the associative memory
function of the Hopfield neural network with the similarity of the
distance calculation. Of course, this method also has certain
limitations. For instance, the number of learning activities is
limited to the neurons. More activity classes require more neurons
to remember patterns to avoid spurious patterns in Hopfield neural
networks. The feature extraction process (achieves the memory
pattern to the Hopfield neural network) also has a significant
disadvantage. The SVD algorithm works with massive matrix data
and then reduces it to useful feature maps of each activity. It should
design an elaborate construction matrix to feature map for adapting
the Hopfield neural network memory learning, which then achieves
suitable binary patterns for different activities without interference.
Nevertheless, as the number of learned activity classes increases, the
task becomes more difficult. This is because the associative memory
function of the Hopfield neural network has the limitation of the
storage capacity proportion. Generally, it can only store 0.14 N data
(N is the number of neurons). When a large number of feature
templates are needed to be memorized, more neurons need to be
added into network to meet the demand.

5 CONCLUSION

In this study, we first use the quaternion and Euler angles to
fuse multiple sensors data, followed by extracting the features

against each human activity with the SVD algorithm. Finally,
following the designed activity feature matrix to train and test
on the Hopfield neural network achieves human activity
recognition. The proposed approach shows 96.3%
classification accuracy after one training sample of each
activity while improving performance and robustness
compared with traditional machine learning approaches.
Our research suggests that the Hopfield neural network can
avoid large training dataset requirements when preprocessing
is used for designing the activity feature matrix. The neural
network weight specified by the neural dynamics operation
follows the Hebbian learning method to train the Hopfield
algorithm. After obtaining one feature information, the
algorithm starts to associate memory and feedbacks the
output matrix information, making it much less dependent
on training samples of the dataset. Following the results, it is
verified that our proposed framework is suitable for general
datasets to reduce the training samples request, which is
limited datasets can also build a high-accuracy
recognition model.
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