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End-to-end learning of the communication system regards the transmitter, channel, and
receiver as a neural network-based autoencoder. This approach enables joint optimization
of both the transmitter and receiver and can learn to communicate more efficiently than
model-based ones. Despite the achieved success, high complexity is the major
disadvantage that hinders its further development, while low-precision compression
such as one-bit quantization is an effective solution. This study proposed an
autoencoder communication system composed of binary neural networks (BNNs),
which is based on bit operations and has a great potential to be applied to hardware
platforms with very limited computing resources such as FPGAs. Several modifications are
explored to further improve the performance. Experiments showed that the proposed
BNN-based system can achieve a performance similar to that of the existing neural
network-based autoencoder systems while largely reducing the storage and computation
complexities.
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1 INTRODUCTION

An autoencoder-based communication system regards the entire physical layer, i.e., “transmitter-
channel-receiver,” as an end-to-end data reconstruction task (O’Shea and Hoydis, 2017; Zhu et al.,
2019; Ye et al., 2020). Specifically, the transmitter learns to encode the input data into a signal for
channel transmission, while the receiver learns to restore the source data, according to the received
signal. By comparing the source data and the recovered data, the model parameters of the entire
neural network are trained end-to-end in a supervised learning manner. By this means, modules in
the traditional transmission system can be integrated into one and optimized together, and a better
overall performance can be obtained (Stark et al., 2019; Cammerer et al., 2020).

Despite the current success of autoencoder-based communication systems, one major
disadvantage that hinders its implementation is the high complexity. Theoretically, the data-
driven transmission technology can achieve better energy efficiency than traditional methods on
dedicated hardware (Vanhoucke et al., 2011; Chen et al., 2017). However, the computation and
storage complexities of current autoencoder-based communication systems are still much higher
than those of traditional model-based systems. In particular, the device transmission rate is expected
to increase by an order of magnitude in the future beyond the 5G or 6G eras, making the transmission
system even more complex. In order to achieve miniaturization and productization, low-complexity
autoencoder-based communication technologies need to be studied.

Deep learning systems can be accelerated at the hardware layer by using custom chips, at the
framework layer such as compilation optimization, as well as at the algorithmic layer. Low-precision
quantization is an effective way to achieve model compression and acceleration at the algorithmic
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level and thus reduces the computation and storage complexity
(Han et al., 2015). The most extreme quantization is binary
quantization, and the resulting model is called the binary
neural network (BNN) (Qin et al., 2020). In BNNs, heavy
floating-point multiplication and addition operations can be
replaced by bitwise operations. Therefore, the BNN can greatly
reduce the storage and computational complexity on the mobile
end and has been widely used in tasks such as object recognition
and image classification (Kung et al., 2018).

In this study, we proposed low-complexity autoencoder-based
communication systems based on the BNN. Modifications are
made to existing BNN techniques to further improve the
performance. For example, we found that the exclusion of the
shifting operation is trivial, while the scaling vector is critical for
the performance. Experimental results showed that the proposed
BNN-based autoencoder system can achieve similar performance
to existing ones based on convolutional neural networks (CNNs)
and dense networks while reducing the storage complexity to
one-seventh and the computation complexity to one-fifth. This
result verified the feasibility and effectiveness of the proposed
BNN-based autoencoder communication systems.

2 TECHNICAL BACKGROUND

2.1 Deep Learning Basic
The basic problem in communication is to find the representation
of information and then recover that information at the other
end. Since the coding and modulation method applied in the
receiver and transmitter are so massive to optimize every block
integrally in the same manner that enables the whole system to
achieve overall performance improvement, a method of neural
network training transmitter and receiver is proposed.

Recently, DL has become more advanced to be used in many
fields, especially in communication such as in modulation (Felix
et al., 2018), signal detection (Samuel et al., 2017), and channel
decoding (Jiang et al., 2019). It takes advantage to learn and
optimize the target system or the environment without depending
on the waveform design, constellation, and reference signals.
Under this circumstance, it is able to fit in nearly all the
receiver and transmitter hardware and complex channels and
make full use of wireless channel resources.

2.2 Autoencoder
Considering the feasibility of the autoencoder described in
Hinton and Salakhutdinov (2006), the transmitter and receiver
are capable of being optimized together at one end (Wu et al.,
2019; Zhu et al., 2019). By assuming the channel model to be well
known, the receiver and transmitter can be trained offline, and
the parameters can also be determined beforehand. Furthermore,
after the neural network has been trained for the simple channel,
it only needs a change in parameters for the complex channel to
expand the method in other situations.

2.3 Binary Neural Networks
Although the CNN saves a large amount of complexity compared
to the densely connected network, there still exists a huge need to

further reduce the model complexity. Facing with this urgent
need, the BNN appears to be one reasonable solution. Compared
to full-precision neural networks, the BNN saves a lot of memory
and computation despite the binary operation of weights and
activations and will greatly facilitate the model deployment on
resource-constrained devices. Under these advantages, the
traditional operation techniques of data could, therefore, be
replaced by other methods like XNOR that in this way, it
could largely save energy and reduce the computational cost.
Specifically, the matrix multiplication applied in the system could
be ideally replaced by the XNOR operation as follows:

xb pwb � popcount XNOR xb, wb( )( ), (1)
Where Wb and xb represent binarized weights and activations,
respectively, and can be further applied in all of the parameters
inside networks. Depending on the basic method on binarization,
the weight and activations used in the network can be binarized as
follows:

xb � Sign xr( ) � +1, if xr ≥ 0,
−1, if xr ≤ 0,

{ (2)

wb � ‖Wr‖l1
n

Sign wr( ) �
+‖Wr‖l1

n
, if wr ≥ 0,

−‖Wr‖l1
n

, if wr ≤ 0,

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (3)

Where b denotes the binary value and ‖Wr‖l1
n is the average value of

absolute weights. The sign function helps in transforming weights
and activations in to its binary form (Liu et al., 2020). There are
various activation functions, and here, we mainly discussed tanh
and elu. The tanh function lays its range between +1 and −1,
which has soft saturation regions and with large positive and
negative numbers as inputs, and the gradient goes to zero when
the input absolute value is large, making neurons basically unable
to renew. Being a zero-centered function, it could be described as
follows, and its graph is shown in Figure 1.

tanhx � sinh x

cosh x
� ex − e−x

ex + e−x
. (4)

As for the elu function, it is unsaturated in positive numbers and
hardly saturated in negative numbers.

It should be noted that elu is less computationally intensive
than tanh, so it converges faster, and the output mean value is
close to zero. It has negative saturation regions and is, thus, more
robust to noise. It is showed in Figure 1, and its function is
described as follows:

f x( ) � x if x> 0,
α ex − 1( ), if x< 1.{ (5)

To solve the binarization of activations, these activation
functions are reshaped and shifted as follows:

xi
b � h xi

r( ) � +1, if xr > αi,
−1, if xr < αi,

{ (6)

f xi( ) � xi − γi + ζ i, if xi > γi,
βi xi − γi( ) + ζ i, if xi < γi,

{ (7)
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Where xi
r denotes the real-value input of function h, xi

b is the
output for binarized computation, αi is the threshold, xi donates the
input, γi and ζi are the shift values, while βi is the slope in the
function. As discussed in Liu et al. (2020), a positively shifted input
value performs well with higher accuracy compared to original real-
valued input that enhances the for forman for the BNN.

There is another drawback for BNN, i.e., the fading of
gradients at back propagation is hard to calculate. This affects
accuracy to a large extent, and therefore, skip connect is
proposed. The output is expressed as the linear superposition
of the input and a nonlinear transformation of input, thus solving

the training problem of the deep network. Liu et al. (2018) takes
the shortcut idea of residual networks and applied it to the
network architecture of XNOR-Net.

3 SYSTEM MODEL AND NETWORK
STRUCTURE

3.1 BNN-Based Model Based on ReActNet
Training in the structure of the autoencoder, the encoder and
decoder are optimized simultaneously. As for our CNN training

FIGURE 1 | Graphs for tanh and elu.

FIGURE 2 | Structure for the encoder and decoder.
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method, every layer is in convolutional form, and it performs
symmetrically both in the transmitter end and receiver end. The
whole autoencoder is depicted in Figure 2. It can be speculated
from the graph that the input for this network is a B*M*k one-hot
data for symbol-based input while the input is a B*(M*k) 01 data
for bit ones, and this input is further operated to be constellation
map which matches the requirements. B is the batch size,M is the
transmission size, and k represents the modulation order. The
symbol representation is written in blue, while bit representation
is shown in red.

The input first enters the network through an input terminal
and then goes through three successive convolutional layers to
achieve the function of parameter training. The three same
convolutional layers have different parameters to enhance the
training ability of the network. In each convolution layer, there is
a normal layer to limit the maximum and minimum values of
input vectors to the limit range of the hidden layer and output

layer functions. This is followed by a binary linear layer. At this
point, the input signal has been perfectly processed into
information that can enter the channel. After that, the
processed information will first be transformed into the form
of constellation map to intuitively reflect the modulation
capability of our network. In the channel output end followed
by the decoder part, this part of the processing and encoder is just

FIGURE 3 | Structure for the BNN layer as pure shifting and with the scaling vector.

FIGURE 4 | Performance comparison when transmitting symbols.

FIGURE 5 | Learned constellation maps when transmitting symbols.
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the opposite so as to ensure that the signal channel can be restored
to its original form.

The decoder structure is also composed of three convolution
layers, in which the parameters are consistent with the encoder. A
binary linear layer is also added before the final output. In this
way, the whole autoencoder is described completely. It should be
noted that the autoencoder model can also be built with dense
neural networks, which is achieved by replacing the convolutional
layer in our model with the dense layer.

With the autoencoder structure, we binarized the three
separate convolutional layers in both the encoder and decoder
and kept other structures unchanged. The convolutional layer is
replaced by the basic structure diagrammarked by the gray box in
Figure 2 without the scaling vector shown in red. In this way, the
intrinsic autoencoder functionality is not changed, and only the
representation of the data is altered, resulting in a significant
reduction in computational complexity. First of all, in every single
convolutional layer, the data are treated by skip connect. The
input of the convolutional layer is separately processed by a single
binary convolution and three series of binary operations. The
outputs of these two operations will then be combined together to
get rid of the effect of residues. The three binary operations are
activation, binary convolution, and binary normalization. In the
most basic structure for the BNN, the scaling vector in binary
convolution is not applied. At last, the combined value is further
processed with activation and end up here. The other layers that
appear in our autoencoder are in the same form except for layer
parameters.

Beyond the existing BNN techniques described earlier, we
made three modifications empirically and achieved a better
performance. First, we added scaling vector in the binary
convolutional layer. It is clearly shown in Figure 2 that the
only difference we placed is the addition of the scaling vector
compared to our fundamental BNN structure. Likewise, this
structure is applied in every convolutional layer in our
autoencoder. Second, based on the fundamental BNN
structure, we added shifting layers into the network, which is

shown in Figure 3. In this modification, the scaling vector is not
added at first to ensure a clear comparison between the basic
structure and the structure with a single change of shifting. At this
stage, the input should be shifted before proceeding with the three
series binary layers. There is another shifting that appears at
activations. The activation experiences shifting before processing
with the prepared binary data. After the activation, the last
shifting layer appears and then, the data of this convolution
layer are output. The other layers both in the encoder and decoder
are adjusted as well, and this is the network structure taking the
idea of activation shifting and reshaping. Third, we combined
both the method of shifting and addition of the scaling vector as a
whole, and results in the structure are depicted in Figure 3. Under
this modified structure, the binary convolution is added with the
scaling vector, and the three-shifting described in the second
modification are also included.

4 SIMULATION RESULTS

4.1 Setting
The transmission size M is set to be 400, and the modulation
order k is 64. In other words, the system takes 400 symbols as
input for every time, where each symbol contains 6-bit
information. The kernel size and stride in the convolution
layer are both 1. The batch size B is 32 for training with a
single run of 30 epochs. Our learning rate is 1 × 10−3 and is
effectively fixed, and our optimizer uses Adam. The loss function
uses binary cross entropy and multi-class cross entropy, which
are used for end-to-end training. These parameters are consistent
with all the structures ranging from dense, CNN to BNN.

We constructed a data set using the randomly generated
original symbol informationX ∈ 0, 1, 2 . . . 63{ }M. The data set
is distributed independently and will represent the encoder’s
input with a one-hot code Xone−hot ∈ 0, 1{ }M×k. Each iteration
produces a new set of data, whichmakes our networkmore stable.
The proposed BNN structure is verified in both the symbol and
bit information transmission scenarios. Different activation
functions are used for the two scenarios, which is elu for the
symbol transmission and tanh for the bit transmission.

As for our structure, the parameters of three convolutional
layers and the linear layer in the encoder are trainable, while the
normalization layer does not encounter a trainable parameter.
This is also true for a decoder as well. Moreover, parameters in
shifting, binary convolution, and scaling vector are able to be
trained in the BNN structure, and the remaining parameters
are not.

4.2 Simulation Results Under the AWGN and
Rayleigh Channels
At first, we compared three different network structures: dense,
CNN, and BNN for the bit and symbol transmission scenarios.
Second, based on the results under the different network
structures in the BNN, the proposed modification of the BNN
structure is conducted. The two different forms of dense, CNN,
and BNN, respectively, used full connection layer, convolution,

FIGURE 6 | Performance comparison under bit.
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and binary convolution, while their network structure is the same
under the same transmission mode. The network structure based
on bit and symbol is basically similar, except that the first
convolution of the encoder is changed. The convolution kernel
size and slide of the former are 2K and K, respectively, while the
latter are both one.

The performance comparison for the symbol transmission is
shown in Figure 4. It can be found that the performance based on
the three different structures is basically the same and better than
the standard 64QAM, indicating that the BNN structure with
lower parameters and complexity can achieve the same
performance as the dense and CNN models when transmitting
symbols. The corresponding constellation map at this time is
shown in Figure 5. In comparison with the four constellations, we
found that dense and CNN constellations were basically the same,
which were closer to the regular hexagon, while the BNN was
closer to the regular heptagon.

Figure 6 shows the performance comparison for the bit
transmission. The performance based on the CNN and BNN is

FIGURE 7 | Constellation map under bit.

FIGURE 8 | The performance of four different network structures under
Rayleigh channel.
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similar and better than that under dense. This is because dense
has no convolution operation and cannot use the first
convolution in the encoder to process the correlation
between adjacent information like the CNN and BNN. In
addition, the constellation map comparison in the bit
scenario is shown in Figure 7, which is consistent with
SER’s conclusion that the constellation map of the CNN

and BNN is basically the same, while certain constellation
points of dense are not aligned, which further leads to its
performance degradation.

To further test the performance of our network structure in
another situation, a Rayleigh channel has been invoked. Figure 8
indicates the performance of four different network structures
under the Rayleigh channel. It can be concluded that the structure
of the BNN, CNN, and dense show better performance than the
standard 64QAM under symbol. The constellation maps of these
structures shown in Figure 9 are coherent with the symbol error
examination, indicating that our network structure enjoys an
excellent generalization ability.

The performance of our structures under bit is pretty much the
same as standard 64QAM so that renderings are not designed to
be shown here for the reasons of space.

4.3 Simulation Results With Different
Network Structures in the BNN
Next, we used the same training parameters to conduct experiments
for different BNN structures and compared them with the standard
64QAM. All BNN constructs are updated end-to-end based on two-
step training.We usedReActNet as the baseline to illustrate the effect
of our modification, including removing the scaling vector and
shifting part in the BNN structure. In addition, we removed all the
changes, leaving only the original BNN structure, and used it to
demonstrate the performance change that comes with the
binarization of network parameters directly.

The performance comparison of different BNN structures is
shown in Figure 10. By observing the image, it is not difficult to
find that the symbol error rates of the two network structures without
scaling vector are close to 1, showing that the network cannot
distinguish any information at all. This indicates that direct
binarization of the network results in the loss of information, and
removing the scaling vector will have a devastating impact on network
performance. It is due to the existence of the scaling vector that the
network retains as much information as possible while ensuring
binarization and provides favorable conditions for subsequent
gradient propagation. Furthermore, we found that the performance
of the structure in removing shifting part is slightly better than the
standard ReActNet, and this conclusion can also be obtained when
the original BNN structure is compared with the ReActNet structure
when the scaling vector is removed. The conclusion of this experiment
may be related to the different information transmitted through the
network. Since BNN transmits 64QAM-based signals rather than the
complex images transmitted by ReActNet, the conclusion that the
addition of the shifting part to images favors further information
retention is no longer tenable.

A comparison of constellations under different BNN
structures is shown in Figure 11. The constellation points
learned by the two network structures excluding the scaling
vector cluster together, and thus, the constellation diagrams
obviously did not show any regularity, which are consistent
with their experimental results that SER was close to one. On
the other hand, the constellation map of the standard ReActNet
and the shifting part removed network are very similar, both
approximating a regular polygon, which results in the maximum

FIGURE 9 | Constellation diagrams over Rayleigh under symbol.

FIGURE 10 | Performance comparison of different BNN structures.
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Euclidean distance between adjacent constellation points and
thus exhibiting a good performance.

4.4 Complexity Analysis
Based on the two different information transmission experiments
in symbol and bit, the parameters of three network structures in
dense, CNN, and BNN are shown in Table 1. In the case of bit
transmission, the parameters of dense are similar to those of the

CNN at both the transmitter and the receiver end. With CNN as
the baseline, the parameters of the entire system based on BNN
are 14.42% of the CNN with the same network structure. In the
symbol-based transmission method, the parameters of dense are
the same as CNN, which is 4.72 times of the BNN. Considering
that binarized data occupy only 1 bit while one float in full
precision network takes up 16 bits, it can be concluded that
the proposed BNN model saves the storage complexity largely.

The floating-point operations (FLOPs) of different
information transmission models are shown in Table 2. In
the case of bit, the FLOPs of dense networks are slightly less
than those of the CNN, while those of the BNN are only 14.06%
with the same structure which has the same result in network
parameters. When transmitting the symbol, the FLOPs of
dense and CNN are same, which is about five times that of
the BNN. It should be noted that the complexity of the bit
operation is one-sixteenth of that of the floating-point
operation. Hence, the BNN structure can greatly reduce the
computation complexity of the data transmission model.

5 CONCLUSION

In this study, we proposed a BNN-based autoencoder
communication network structure and made modifications to
further improve its performance. Experimental results showed
that the modulation and demodulation system based on the BNN
proposed in this study can achieve the same effect as the CNN
while effectively reducing the complexity, in both the bit and
symbol transmission scenarios. In addition, the scaling vector is

FIGURE 11 | Comparison of constellations under different BNN structures based on ReActNet.

TABLE 1 | Parameter size being updated in networks.

Bit Network structures

Dense CNN BNN

Binary parameter 0 0 658.94 K
Float parameter 338.18 K 338.95 K 7.69 K
Parameter 338.18K 338.95K 48.87K

Symbol Network structures

Dense CNN BNN

Binary parameter 0 0 672.25 K
Float parameter 375.36 K 375.36 K 37.42 K
Parameter 375.36K 375.36K 79.46K

TABLE 2 | Computational complexity of networks.

Network structure Dense (M) CNN (M) BNN (M)

FLOPs Bit 267.69 268.30 37.73
Symbol 297.51 297.51 62.89
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necessary for network binarization, and removing the shifting
part is beneficial for the data transmission. Furthermore, the
proposed BNN structure can be integrated into the existing
neural communication models beyond modulation and
demodulation and can achieve better performance than
model-based techniques.
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