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Theory of point processes, in particular Palm calculus within the stationary framework,
plays a fundamental role in the analysis of spatial stochastic models of wireless
communication networks. Neveu’s exchange formula, which connects the respective
Palm distributions for two jointly stationary point processes, is known as one of the most
important results in the Palm calculus. However, its use in the analysis of wireless networks
seems to be limited so far and one reason for this may be that the formula in a well-known
form is based upon the Voronoi tessellation. In this paper, we present an alternative form of
Neveu’s exchange formula, which does not rely on the Voronoi tessellation but includes the
one as a special case. We then demonstrate that our new form of the exchange formula is
useful for the analysis of wireless networks with hotspot clusters modeled using cluster
point processes.
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1 INTRODUCTION

Spatial stochastic models have been widely accepted in the literature as mathematical models for the
analysis of wireless communication networks, where irregular locations of wireless nodes, such as
base stations (BSs) and user devices, are modeled using spatial point processes on the Euclidean plane
(see, e.g., (Baccelli and Błaszczyszyn, 2009a; Baccelli and Błaszczyszyn, 2009b; Haenggi and Ganti,
2009; Haenggi, 2013; Mukherjee, 2014; Błaszczyszyn et al., 2018) for monographs and (Andrews
et al., 2016; ElSawy et al., 2017; Hmamouche et al., 2021; Lu et al., 2021) for recent survey and tutorial
articles). In such analysis of wireless networks, the theory of point processes, in particular Palm
calculus within the stationary framework, plays a fundamental role. Neveu’s exchange formula,
which connects the respective Palm distributions for two jointly stationary point processes, is known
as one of the most important results in the Palm calculus. However, its use in the analysis of wireless
networks seems to be limited so far and one reason for this may be that the formula in a well-known
form is based upon the Voronoi tessellation [see, e.g., (Baccelli et al., 2020, Section 6.3)]. In this paper,
we present an alternative form of Neveu’s exchange formula, which does not rely on the Voronoi
tessellation but includes the one as a special case, and then demonstrate that it is useful for the
analysis of spatial stochastic models based on cluster point processes.

A cluster point process represents a state such that there exist a large number of clusters consisting
of multiple points and is used to model the locations of wireless nodes in an (urban) area with a
number of hotspots. Indeed, many researchers have adopted the cluster point processes in their
models of various wireless networks such as ad hoc networks (Ganti and Haenggi, 2009),
heterogeneous networks (Chun et al., 2015; Suryaprakash et al., 2015; Saha et al., 2017, 2018;
Afshang and Dhillon, 2018; Saha et al., 2019; Yang et al., 2021), device-to-device (D2D) networks
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(Afshang et al., 2016), wireless powered networks (Chen et al.,
2017), unmanned aerial vehicle assisted networks (Turgut and
Gursoy, 2018), and so on. In this paper, we focus on so-called
stationary Poisson-Poisson cluster processes (PPCPs) [see, e.g.,
(Błaszczyszyn and Yogeshwaran, 2009; Miyoshi, 2019)] and apply
the new form of the exchange formula to the analysis of stochastic
models based on them.

We first use the exchange formula for the Palm
characterization, where we derive the intensity measure, the
generating functional and the nearest-neighbor distance
distribution for a stationary PPCP under its Palm distribution.
Although these results are known in the literature [see, e.g.,
(Baudin, 1981; Ganti and Haenggi, 2009)], we here give them
simple and unified proofs using the new form of the exchange
formula. We next consider some applications to wireless
networks modeled using stationary PPCPs, where we examine
the problems of coverage and device discovery in a D2D network.
The coverage analysis of a D2D network model based on a cluster
point process was considered in (Afshang et al., 2016), where a
device communicates with another device in the same cluster. In
contrast to this, we assume here that a device receives messages
from the nearest transmitting device, which is possibly in a
different cluster because clusters may overlap in space. For
this model, we derive the coverage probability using the
exchange formula. On the other hand, in the problem of
device discovery, transmitting devices transmit broadcast
messages and a receiving device can detect the transmitters if
it can successfully decode the broadcast messages. Such a problem
was studied in (Hamida et al., 2008; Baccelli et al., 2012; Kwon
and Choi, 2014) when the devices are located according to a
homogeneous Poisson point process (PPP) and in (Kwon et al.,
2020) when the devices are located according to a Ginibre point
process [see, e.g., (Miyoshi and Shirai, 2014, 2016), for the
Ginibre point process and its applications to wireless
networks]. We consider the case where the devices are located
according to a stationary PPCP and derive the expected number
of transmitting devices discovered by a receiving device. We
should note that Neveu’s exchange formula is also introduced in a
more general form in (Last and Thorisson, 2009; Last, 2010;
Gentner and Last, 2011), so that the form presented in the paper
may be within its scope. Nevertheless, we see in the rest of the
paper that our new form would be valuable and could spread the
application fields of the exchange formula.

The rest of the paper is organized as follows. The new form of
Neveu’s exchange formula is derived in the next section, where
the relations with the existing forms are also discussed. In Section
3, the exchange formula is applied to the Palm characterization of
a stationary PPCP, where alternative proofs of the intensity
measure, the generating functional and the nearest-neighbor
distance distribution under the Palm distribution are given. In
Section 4, some applications to wireless network models are
examined, where for a D2D network model based on a stationary
PPCP, the coverage probability and the expected number of
discovered devices are derived using the exchange formula.
The results of numerical experiments are also presented there.
Concluding remarks are provided in Section 5.

2 NEVEU’S EXCHANGE FORMULA

In this section, we discuss point processes on the d-dimensional
Euclidean space Rd within the stationary framework (see, e.g.,
(Baccelli et al., 2020, Chapter 6) for details on the stationary
framework). In what follows, B(Rd) denotes the Borel σ-field
on Rd and δx denotes the Dirac measure with mass at x ∈ Rd.
Let (Ω,F ,P) denote a probability space. On (Ω,F ), a flow
{θt}t∈Rd is defined such that θt: Ω → Ω is F -measurable and
bijective satisfying θt◦θu = θt+u for t, u ∈ Rd, where θ0 is the
identity for 0 � (0, 0, . . . , 0) ∈ Rd; so that θ−1t � θ−t for t ∈ Rd.
We assume that the probability measure P is invariant to the
flow {θt}t∈Rd (in other words, {θt}t∈Rd preserves P) in the sense
that P◦θ−1t � P for any t ∈ Rd, where θ−1t (A) �
{ω ∈ Ω: θt(ω) ∈ A} for A ∈ F . A point process Φ � ∑∞

n�1δXn

on Rd is said to be compatible with the flow {θt}t∈Rd if it holds
that Φ(B)◦θt = Φ(θt(ω), B) = Φ(ω, B + t) = Φ(B + t) for ω ∈ Ω,
B ∈ B(Rd) and t ∈ Rd, where B + t � {x + t ∈ Rd: x ∈ B}; that
is, for t ∈ Rd and n ∈ N � {1, 2, . . .}, there exists an n′ ∈ N such
that Xn◦θt = Xn’ − t. Under the assumption of the
{θt}t∈Rd-invariance of P, a point process Φ compatible with
{θt}t∈Rd is stationary in P and furthermore, two point processes
Φ and Ψ, both of which are compatible with {θt}t∈Rd, are jointly
stationary in P.

Let Φ � ∑∞
n�1δXn and Ψ � ∑∞

m�1δYm denote point processes on
Rd, which are both simple, compatible with {θt}t∈Rd and have
positive and finite intensities λΦ and λΨ, respectively. Thus,Φ and
Ψ are jointly stationary in probability P and the respective Palm
probabilities P0

Φ and P0
Ψ are well-defined. Note that

P0
Φ(Φ({0}) � 1) � P0

Ψ(Ψ({0}) � 1) � 1. In this paper, when we
consider the event {Φ({0}) � 1} ∈ F , we assign index 0 to the
point at the origin; that is, X0 = 0 on {Φ({0}) = 1}, and this is also
the case for Ψ; that is, Y0 = 0 on {Ψ({0}) = 1}. To present an
alternative form of Neveu’s exchange formula, we introduce a
family of shift operators St, t ∈ Rd, on the set of measures η on
(Rd,B(Rd)) by Stη(B) = η(B + t) for B ∈ B(Rd). For example,
operating St on the point process Ψ � ∑∞

m�1δYm, we have
StΨ � ∑∞

m�1δYm−t � Ψ◦θt. The shift operators St, t ∈ Rd, also
work on a function h on Rd such as Sth(x) = h(x + t) for
x ∈ Rd.
Theorem 1. For the two jointly stationary point processes Φ �∑∞

n�1δXn and Ψ � ∑∞
m�1δYm described above, we assume that a

family of point processes Ψn � ∑κn
k�1δYn,k, n ∈ N, can be

constructed such that

1) S−XnΨn � ∑κn
k�1δXn+Yn,k, n ∈ N, form a partition of Ψ; that

is, Ψ � ∑∞
n�1S−XnΨn.

2) ~Φ � ∑∞
n�1δ(Xn,Ψn) is a stationary marked point process with the

set of counting measures on Rd as its mark space.

Then, for any nonnegative random variable W defined
on (Ω,F ),

λΨ E
0
Ψ W[ ] � λΦ E0

Φ ∫
Rd
W◦θy Ψ0 dy( )[ ] � λΦ E0

Φ ∑κ0
k�1

W◦θY0,k
⎡⎣ ⎤⎦,

(1)
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where E0
Φ and E0

Ψ denote the expectations with respect to the
Palm probabilities P0

Φ and P0
Ψ, respectively, and Ψ0 � ∑κ0

k�1δY0,k

denotes the mark associated with the point X0 = 0 on {Φ({0}) = 1}.

Proof. As with the proof of the exchange formula in (Baccelli
et al., 2020, Theorem 6.3.7), we start our proof with the mass
transport formula [see, e.g., (Baccelli et al., 2020, Theorem
6.1.34)]; that is, for any measurable function ξ: Ω × Rd → �R+,

λΦ E0
Φ ∫

Rd
ξ y( )Ψ dy( )[ ] � λΨ E

0
Ψ ∫

Rd
ξ −x( )◦θx Φ dx( )[ ]. (2)

Let ξ(y) =W◦θy Ψ0({y}) on {Φ({0}) = 1}. Then, the left-hand side
of Eq. 2 becomes

λΦ E0
Φ ∫

Rd
W◦θy Ψ0 y{ }( )Ψ dy( )[ ]

� λΦ E0
Φ ∫

Rd
W◦θy Ψ0 dy( )[ ].

On the other hand, the right-hand side of Eq. 2 is reduced to

λΨ E
0
Ψ ∫

Rd
W◦θ−x Ψ0 −x{ }( )( )◦θx Φ dx( )[ ]

� λΨ E
0
Ψ W∑∞

n�1
S−XnΨn 0{ }( )⎡⎣ ⎤⎦ � λΨ E

0
Ψ W[ ],

where the first equality follows from Ψ0◦θXn � Ψn for n ∈ N and
the fact that the point ofΨ at the origin on a sample ω ∈ {Ψ({0}) =
1} is shifted to location − x on the shifted sample θx(ω) for x ∈ Rd,
and the last equality follows since there exists exactly one point,
sayXn, ofΦ such that its markΨn � ∑κn

k�1δYn,k has a point, say Yn,k,
satisfying Xn + Yn,k = 0 on {Ψ({0}) = 1}. The proof is completed.

Remark 1: Let W ≡ 1 in (Eq. 1). Then, we have E0
Φ[κ0] � λΨ/λΦ

and therefore, eachΨn in Theorem 1 has finite points. In the form
of the exchange formula in (Baccelli et al., 2020, Theorems 6.3.7
and 6.3.19), the point process Ψ is partitioned by the Voronoi
tessellation for Φ, which corresponds to a special case of (Eq. 1)
such that S−XnΨn(·) � Ψ(·∩ VΦ(Xn)) for n ∈ N, where VΦ(Xn)
denotes the Voronoi cell of point Xn of Φ. The condition in
(Baccelli et al., 2020) such that there are no points of Ψ on the
boundaries of Voronoi cells VΦ(Xn), n ∈ N, is covered by our
Condition 1 in Theorem 1, where S−XnΨn, n ∈ N, form a partition
of Ψ and have no common points. On the other hand, our
Theorem 1 considers only the case where the point process Φ is
simple unlike (Baccelli et al., 2020, Theorem 6.3.7). However, this
would be enough for applications to wireless networks and, if
necessary, it could be extended to the non-simple case. Another
typical example of Ψ and Φ in Theorem 1 is a cluster point
process and its parent process. Although we focus on a PPCP in
the following sections, more general cluster point processes
inherently fulfill the conditions of the theorem [see, e.g.,
(Baccelli et al., 2020, Section 2.3.3)]. It should also be noted
that, in (Last and Thorisson, 2009; Last, 2010; Gentner and Last,
2011), a more general formula is introduced under the name of
Neveu’s exchange formula, from which the mass transport
formula (Eq. 2) is derived. In that sense, our form (Eq. 1)

may be within its scope. Nevertheless, we can see in the
following sections that Theorem 1 is valuable in the sense that
it is tractable and can spread the application fields of the exchange
formula.

3 APPLICATIONS TO CLUSTER POINT
PROCESSES

In this section, we demonstrate that Neveu’s exchange formula
(Eq. 1) in Theorem 1 is useful to characterize the Palm
distribution of stationary cluster point processes. A cluster
point process is, roughly speaking, constructed by placing
point processes (usually with finite points), called offspring
processes, around respective points of another point process,
called a parent process, and is used to represent a state such that
there exist a large number of clusters consisting of multiple points
(see Figure 1). In particular, we focus here on a stationary PPCP
described next.

3.1 Poisson-Poisson Cluster Processes
LetΦ � ∑∞

n�1δXn denote a homogeneous PPP onRd, which works
as the parent process, and let Ψn � ∑κn

k�1δYn,k, n ∈ N, denote a
family of finite (therefore inhomogeneous) and mutually
independent PPPs on Rd, which are also independent of Φ
and work as the offspring processes. Then, PPCP Ψ �∑∞

m�1δYm is given as

Ψ � ∑∞
n�1

S−XnΨn � ∑∞
n�1

∑κn
k�1

δXn+Yn,k
. (3)

FIGURE 1 | A sample of a 2-dimensional cluster point process
( represents the points of the cluster point process and represents the
points of the parent process).
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The PPCP Ψ constructed as above is stationary since the parent
process Φ is stationary and the offspring processes Ψn, n ∈ N, are
independent and identically distributed [see, e.g., (Baccelli et al.,
2020, Example 2.3.18)]. We assume that Φ has a positive and
finite intensity λΦ, and Ψn, n ∈ N, have an identical intensity
measure Λo = μ Q, where μ is a positive constant and Q is a
probability distribution on (Rd,B(Rd)). Thus, the number of
points in each offspring process follows a Poisson distribution
with mean μ, so that the intensity of Ψ is equal to λΨ = λΦμ, and
offspring points are scattered on Rd according to Q
independently of each other. We further assume that Q is
diffuse; that is, Q({x}) = 0 for any x ∈ Rd, to make Ψ simple.
We refer to S−XnΨn in (Eq. 3) as the cluster associated with Xn for
n ∈ N. Two main examples of the PPCPs are the (modified)
Thomas point process and the Matérn cluster process [see, e.g.,
(Chiu et al., 2013, Example 5.5)]. When Q is an isotropic normal
distribution, then the obtained PPCP is called the Thomas point
process. On the other hand, when Q is the uniform distribution
on a fixed ball centered at the origin, then the result is called the
Matérn cluster process. Note that the PPCP Ψ and its parent
process Φ fulfill the conditions of Theorem 1.

3.2 Characterization of Palm Distribution
For a stationary point process Ψ, let Ψ!≔Ψ − δ0 on the event
{Ψ({0}) = 1}, which is referred to as the reduced Palm version
of Ψ.
Lemma 1. For the stationary PPCPΨ described in Section 3.1, the
intensity measure of the reduced Palm version Ψ! (with respect to
the Palm distribution) is given by

Λ0
Ψ B( ) ≔ E0

Ψ Ψ! B( )[ ] � λΦ μ |B|
+ μ∫

Rd
Q B − y( )Q− dy( ), B ∈ B Rd( ),

(4)
where |·| denotes the Lebesgue measure on (Rd,B(Rd)) and
Q−(B) = Q(−B) with − B = { − x: x ∈ B} for B ∈ B(Rd).

Proof. Since the offspring processes Ψn, n ∈ N, are PPPs, the
PPCP Ψ is a Cox point process; that is, once the parent process
Φ � ∑∞

n�1δXn is given, Ψ is conditionally an inhomogeneous PPP
with a conditional intensity measure μ∑∞

n�1S−XnQ [see, e.g.,
(Baccelli et al., 2020, Example 2.3.13)]. Since the reduced Palm
version of a PPP is identical in distribution to its original version
(not conditioned on {Ψ({0}) = 1}) by Slivnyak’s theorem [see, e.g.,
(Daley and Vere-Jones, 2008, Proposition 13.1.VII) or (Baccelli
et al., 2020, Theorem 3.2.4)], we have

E0
Ψ Ψ! B( ) | Φ[ ] � E Ψ B( ) | Φ[ ] � μ∑∞

n�1
Q B −Xn( ), B ∈ B Rd( ).

Taking the expectation with respect to P0
Ψ and then applying

Theorem 1, we obtain

E0
Ψ Ψ! B( )[ ] � μE0

Ψ ∑∞
n�1

Q B −Xn( )⎡⎣ ⎤⎦ � E0
Φ ∫

Rd
∑∞
n�1

Q B −Xn( )⎛⎝ ⎞⎠◦θy Ψ0 dy( )⎡⎢⎢⎣ ⎤⎥⎥⎦

� E0
Φ ∫

Rd
∑∞
n�0

Q B −Xn + y( )Ψ0 dy( )⎡⎣ ⎤⎦� μ∫
Rd

Q B + y( ) + E0
Φ ∑∞

n�1
Q B −Xn + y( )⎡⎣ ⎤⎦⎛⎝ ⎞⎠Q dy( ),

where λΨ = λΦμ is used in the second equality, the third equality
follows because, for any n ∈ N and y ∈ Rd, there exists an
n′ ∈ N ∪ {0} such that Xn◦θy = Xn’ − y on {Φ({0}) = 1}, and in
the last equality, we apply Campbell’s formula [see, e.g., (Last and
Penrose, 2017, Proposition 2.7) or (Baccelli et al., 2020, Theorem
1.2.5)] for Ψ0. For the expectation in the last expression above,
Slivnyak’s theorem, Campbell’s formula for Φ and then Fubini’s
theorem yield

E0
Φ ∑∞

n�1
Q B −Xn + y( )⎡⎣ ⎤⎦ � λΦ∫

Rd
Q B − x( ) dx � λΦ∫

Rd
∫

B−x
Q dz( ) dx

� λΦ∫
Rd

∫
B−z

dxQ dz( ) � λΦ |B|,

which completes the proof.
Remark 2. The second term on the right-hand side of (Eq. 4) is
of course equal to μ∫Q(B + y) Q(dy). We adopt the form in
Lemma 1 due to its interpretability. Since Q is the distribution
for the position of an offspring point viewed from its parent,
Q− represents the distribution for the location of the parent of
the offspring point at the origin on the event {Ψ({0}) = 1}. On
the other hand, μ Q(B − y) gives the expected number of
offspring points falling in B ∈ B(Rd) among a cluster whose
parent is shifted to y ∈ Rd. In other words, the second term on
the right-hand side of (Eq. 4) represents the expected number
of offspring points falling in B among the cluster which is
given to have one point at the origin. Since the first term on
the right-hand side of (Eq. 4) is equal to ΛΨ(B) � E[Ψ(B)],
Lemma 1 states that the intensity measure for the reduced
Palm version of a stationary PPCP is given as the sum of the
intensity measure of the stationary version and that of a
cluster which has one point at the origin. Lemma 1 is also
a slight generalization of the result in (Tanaka et al., 2008,
Section 2.2).

The observation in Remark 2 is further enhanced by the
following proposition.
Proposition 1. For the stationary PPCPΨ � ∑∞

m�1δYm described in
Section 3.1, the generating functional of the reduced Palm
version Ψ! (with respect to the Palm distribution) is given by

G0
Ψ h( ) ≔ E0

Ψ ∏∞
m�1

h Ym( )⎡⎣ ⎤⎦ � GΨ h( )∫
Rd

~h z( )Q− dz( ), (5)

for any measurable function h: Rd → [0, 1], where GΨ is the
generating functional of the stationary version of Ψ given as

GΨ h( ) ≔ E ∑∞
m�1

h Ym( )⎡⎣ ⎤⎦ � GΦ ~h( )
� exp −λΦ∫

Rd
1 − ~h x( )[ ] dx( ), (6)
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and ~h(x) denotes the generating functional of an offspring
process Ψ1 whose parent is shifted to x ∈ Rd;

~h x( ) � GΨ1 Sxh( ) � exp −μ∫
Rd

1 − h x + y( )[ ]Q dy( )( ). (7)

Note that in Proposition 1 above, GΦ is the generating
functional of the parent process Φ. The relation GΨ(h) �
GΦ(~h) with ~h(x) � GΨ1(Sxh) in Eqs 6, 7 is known to hold for
more general cluster point processes [see, e.g., (Daley and Vere-
Jones, 2003, Example 6.3(a)] or [Baccelli et al., 2020, Proposition
2.3.12 and Lemma 2.3.20)], whereas the last equalities in Eqs 6, 7
follow because Φ and Ψ1 are PPPs, respectively (see, e.g., (Last
and Penrose, 2017, Exercise 3.6), or [Baccelli et al., 2020,
Corollary 2.1.5)]. The relation (Eq. 5) is derived in (Ganti and
Haenggi, 2009, Lemma 1), to which we give another proof using
the exchange formula in Theorem 1.

Proof.As stated in the proof of Lemma 1, once the parent process
Φ � ∑∞

n�1δXn is given, the PPCP Ψ is conditionally an
inhomogeneous PPP with the conditional intensity measure
μ∑∞

n�1S−XnQ. Since the reduced Palm version of a PPP is
identical in distribution to its original (not conditioned)
version, we have

E0
Ψ ∏∞

m�1
h Ym( ) |Φ⎡⎣ ⎤⎦ � E ∏∞

m�1
h Ym( ) |Φ[ ]

� exp −μ∑∞
n�1

∫
Rd

1 − h y( )( )Q dy −Xn( )⎛⎝ ⎞⎠ � ∏∞
n�1

~h Xn( ),

where the generating functional of a PPP is applied in the second
equality. Taking the expectation with respect to P0

Ψ and then
applying Theorem 1, we obtain

G0
Ψ h( ) � E0

Ψ ∏∞
n�1

~h Xn( )⎡⎣ ⎤⎦ � 1
μ
E0

Φ ∫
Rd

∏∞
n�0

~h Xn − z( )Ψ0 dz( )⎡⎣ ⎤⎦
� ∫

Rd

~h −z( )E0
Φ ∏∞

n�1
~h Xn − z( )⎡⎣ ⎤⎦Q dz( ),

where Campbell’s formula for Ψ0 is applied in the last equality. By
Slivnyak’s theorem and the stationarity for Φ, we have
E0
Φ[∏∞

n�1~h(Xn − z)] � E[∏∞
n�1~h(Xn)] � GΦ(~h), which completes

the proof.
Remark 3. The right-hand side of (Eq. 5) is given as the
generating functional GΨ(h) of the stationary version of Ψ
multiplied by the integral term ∫ ~h(z)Q−(dz). Since ~h(z)
represents the generating functional of an offspring process
whose parent is shifted to z ∈ Rd and Q− is the distribution of
the location of the parent point of the offspring at the origin
on the event {Ψ({0}) = 1}, this integral term represents the
generating functional of the cluster which is given to have a
point at the origin. In other words, Proposition 1 implies
that, for a stationary PPCP, its Palm version is obtained by
the superposition of the original stationary version and an
additional independent offspring process whose parent is
placed such that it has an offspring point at the origin. This

observation is already found in, e.g., (Saha et al., 2019) and is
also interpreted such that a point z ∈ Rd is first sampled from
the distribution Q− and the Palm version of Φ at z is then
obtained as Φ + δz by Slivnyak’s theorem, which works as a
parent process of the Palm version of Ψ. Proposition 1
indeed supports this interpretation.

3.3 Nearest-Neighbor Distance
Distributions
For a stationary point process Ψ on Rd, let Ψ! � ∑∞

m�1δYm be its
reduced Palm version on {Ψ({0}) = 1} and let Y* denote the
nearest point of Ψ! from the origin. Then, the nearest-neighbor
distance distribution for Ψ is defined as the probability
distribution for ‖Y*‖ with respect to P0

Ψ, where ‖ ·‖ denotes the
Euclidean distance. We show below that the nearest-neighbor
distance distribution for a stationary PPCP is obtained in a
similar way to Proposition 1.
Proposition 2. For the stationary PPCP Ψ described in Section
3.1, the complementary nearest-neighbor distance distribution is
given by

P0
Ψ ‖Yp‖> r( ) � GΦ hr*( )∫ hpr t( )Q− dt( ), r≥ 0, (8)

where hpr(x) � e−μQ(b0(r)−x) and b0(r) denotes a d-dimensional
ball centered at the origin with radius r.

Proof. As with the proof of Proposition 1, we consider the
conditional probability given the parent process Φ � ∑∞

n�1δXn

and obtain

P0
Ψ ‖Y*‖> r | Φ( ) � P0

Ψ Ψ! b0 r( )( ) � 0 | Φ( ) � P Ψ b0 r( )( ) � 0 | Φ( )

� ∏∞
n�1

e−μQ b0 r( )−Xn( ) � ∏∞
n�1

hpr Xn( ), (9)

where the second equality follows from Slivnyak’s theorem
and the third does because Ψ! is conditionally an
inhomogeneous PPP with the intensity measure
μ∑∞

n�1S−XnQ when Φ is given. The rest of the proof is
similar to that of Proposition 1.
Remark 4. In (Eq. 8), the term GΦ(hr*) is the complementary
contact distance distribution and that is obtained by taking
the expectation of (Eq. 9) with respect to P, instead of P0

Ψ [see,
e.g., (Miyoshi, 2019)]. The result of Proposition 2 is
consistent with the existing ones in, e.g., (Baudin, 1981;
Afshang et al., 2017a,b; Pandey et al., 2020) and gives a
unified approach to derive the nearest-neighbor distance
distributions for stationary PPCPs.

4 APPLICATIONS TO WIRELESS
NETWORKS WITH HOTSPOT CLUSTERS

In this section, we apply Theorem 1 to the analysis of a D2D
network with hotspot clusters modeled using a stationary PPCP.
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We here suppose d = 2, but unless otherwise specified, the
discussion holds for d ≥ 2 theoretically.

4.1 Model of a Device-To-Device Network
Wireless devices are distributed on Rd according to a stationary
point process Ψ � ∑∞

m�1δYm. At each time slot, each device is in
transmission mode with probability p ∈ (0, 1) or in receiving
mode with probability 1 − p independently of the others (half
duplex with random access). Devices in the transmission mode
transmit signals but can not receive ones, whereas the devices in
the receiving mode can receive signals but can not transmit ones.
We assume that all transmitting devices transmit signals with
identical transmission power (normalized to one) and share a
common frequency spectrum. The path-loss function
representing attenuation of signals with distance is given by ℓ

satisfying ℓ(r) ≥ 0, r > 0, and ∫∞

ϵ ℓ(r) rd−1 dr<∞ for ϵ > 0. We
further assume that all wireless links receive Rayleigh fading
effects while we ignore shadowing effects. We focus on the device
at the origin, referred to as the typical device, under the condition
of {Ψ({0}) = 1} and examine whether the typical device can
decode messages from other transmitting devices. Let ΨTx �∑∞

m�1δYm′ denote the sub-process of Ψ representing the
locations of devices in the transmission mode and for each
m ∈ N, let Hm denote a random variable representing the
fading effect on signals transmitted from the device at Ym′ ,
where Hm, m ∈ N, are mutually independent, independent of
ΨTx and exponentially distributed with unit mean due to the
Rayleigh fading. With this setup, the received signal power by the
typical device amounts to Hm ℓ‖Y′_m‖ when it receives signals
from the device at Ym′ . Hence, if the typical device is in the
receiving mode and communicates with the transmitting device
at Ym′ , the signal-to-interference-plus-noise ratio (SINR) is
given as

SINRm � Hm ℓ ‖Ym′ ‖( )∑∞

j�1
j≠m

Hj ℓ ‖Yj′‖( ) +N
, (10)

where N denotes a constant representing noise at the origin. We
suppose that the typical device can successfully decode a message
from the device atYm′ if the typical device is in the receiving mode
and SINRm in (Eq. 10) exceeds a predefined threshold θ > 0.

4.2 Coverage Analysis
We here suppose that a device in the receiving mode
communicates with the nearest device in transmission mode.
The probability that the typical device can successfully decode a
message from its partner is called the coverage probability and is
given by

CP θ( ) � 1 − p( ) ∑∞
m�1

P0
Ψ SINRm > θ, ‖Ym′ ‖≤ ‖Yj′‖, j ∈ N( ), (11)

where 1 − p on the right-hand side indicates that the typical
device must be in the receiving mode and the sum over m ∈ N

represents the probability that the SINR from the nearest
transmitting device exceeds the threshold θ. We now suppose

that the point process Ψ representing the locations of devices is
given as a stationary PPCP studied in Section 3. Then, ΨTx �∑∞

m�1δYm′ representing the locations of devices in the transmission
mode is also a stationary PPCP, where the parent process remains
the same as the homogeneous PPP Φ with intensity λΦ, whereas
the offspring processesΨn′ � ∑κn′

k�1δYn,k′ , n ∈ N, are finite PPPs with
the intensity measure pμQ.
Theorem 2. For the model of a D2D network described in Section
4.1 with the devices deployed according to a stationary PPCP in
Section 3.1, the coverage probability is given by

CP θ( ) � 1 − p( )pμ∫
Rd

I1,θ t( ) + I2,θ t( )( )Q− dt( ), (12)

where Q− is given in Lemma 1 and

I1,θ t( ) � ∫
Rd
e−θN/ℓ ‖y‖( ) Cθ y, t( )Eθ y( )Q dy − t( ),

I2,θ t( ) � λΦ∫
Rd

∫
Rd
e−θN/ℓ ‖y‖( ) Cθ y, t( )Cθ y, x( )Eθ y( )Q dy − x( ) dx,

Eθ y( ) � exp −λΦ∫
Rd

1 − Cθ y,w( )[ ] dw( ),
Cθ y, x( ) � exp −pμ 1 − ∫

‖z‖>‖y‖
1 + θ

ℓ ‖z‖( )
ℓ ‖y‖( )( )−1

Q dz − x( )[ ]( ).
(13)

Before proceeding on the proof of Theorem 2, we give an
intuitive interpretation to the result of it. First, as stated in the
preceding section, Q− denotes the distribution for the location of
the parent point of the typical device at the origin. Thus, pμI1,θ(t)
and pμI2,θ(t) in (Eq. 12) represent the cases where the typical
device, whose parent is located at t ∈ Rd, communicates with the
transmitting device in the same cluster and in a different cluster,
respectively; that is, the location of the communication partner is
sampled from a finite PPP with the intensity measure pμQ(dy − t)
in I1,θ(t) and is from one with pμQ(dy − x) in I2,θ(t), where x is also
sampled from a homogeneous PPP with intensity λΦ. Moreover,
Eθ(y) represents the effect from other clusters which are neither
the one having the typical device nor the one having its
communication partner at y. Finally, Cθ(y, x) represents the
effect of the cluster with the parent point at x ∈ Rd when the
typical device communicates with the transmitting device at y.

Proof. Similar to the proof of Proposition 1, once the parent
process Φ � ∑∞

n�1δXn is given, the point process ΨTx representing
the locations of devices in the transmission mode is conditionally
an inhomogeneous PPP with the conditional intensity measure
pμ∑∞

n�1S−XnQ. Thus, we can use the corresponding approach to
that obtaining the coverage probability for a cellular network with
BSs deployed according to a PPP [see, e.g., (Andrews et al., 2011)
or (Błaszczyszyn et al., 2018, Section 5.2)]. Since Hm, m ∈ N, are
mutually independent, exponentially distributed, and also
independent of Φ, we have from (Eq. 11),

P0
Ψ SINRm > θ, ‖Ym′ ‖≤ ‖Yj′‖, j ∈ N( ∣∣∣∣Φ)

� P0
Ψ Hm > θ

ℓ ‖Ym′ ‖( ) ∑∞
j�1
j≠m

Hj ℓ ‖Yj′‖( ) +N
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, ‖Ym′ ‖≤ ‖Yj′‖, j ∈ N

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Φ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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� E0
Ψ e−θN/ℓ ‖Ym′ ‖( ) ∏∞

j�1
j≠m

1 + θ
ℓ ‖Yj′‖( )
ℓ ‖Ym′ ‖( )⎛⎝ ⎞⎠−1

1 ‖Yj′‖> ‖Ym′ ‖{ }
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Φ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

where 1A denotes the indicator function for set A and we use
P(Hm > a) � e−a for a ≥ 0 and E[e−sHj ] � (1 + s)−1 in the last
equality. Summing the above expression over m ∈ N, we have
from Slivnyak’s Theorem for Ψ conditioned onΦ and the refined
Campbell formula [see, e.g., (Daley and Vere-Jones, 2008,
Theorem 13.2. III), (Last and Penrose, 2017, Theorem 9.1) or
(Baccelli et al., 2020, Theorem 3.1.9)],

∑∞
m�1

P0
Ψ
⎛⎝SINRm > θ, ‖Ym′ ‖≤ ‖Yj′‖, j ∈ N

∣∣∣∣Φ⎞⎠
� pμ∑∞

n�1
∫

Rd
e−θN/ℓ ‖y‖( ) E ∏∞

j�1
1 + θ

ℓ ‖Yj′‖( )
ℓ ‖y‖( )⎛⎝ ⎞⎠−1

1 ‖Yj′‖> ‖y‖{ }⎡⎢⎢⎢⎣
∣∣∣∣∣∣∣∣∣∣∣Φ⎤⎥⎥⎥⎦

Q dy −Xn( ).
(14)

Furthermore, the generating functional of a PPP applying to the
above expectation yields

E ∏∞
j�1

1 + θ
ℓ ‖Yj′‖( )
ℓ ‖y‖( )⎛⎝ ⎞⎠−1

1 ‖Yj′‖> ‖y‖{ }⎡⎢⎢⎢⎣
∣∣∣∣∣∣∣∣∣∣∣Φ⎤⎥⎥⎥⎦

� exp −pμ∑∞
i�1

∫
Rd

1 − 1 + θ
ℓ ‖z‖( )
ℓ ‖y‖( )( )−1

1 ‖z‖>‖y‖{ }[ ]Q dz −Xi( )⎛⎝ ⎞⎠
� ∏∞

i�1
exp −pμ 1 − ∫

‖z‖>‖y‖
1 + θ

ℓ ‖z‖( )
ℓ ‖y‖( )( )−1

Q dz −Xi( )[ ]( ) � ∏∞
i�1

Cθ y,Xi( ).

Plugging this into (Eq. 14), taking the expectation with respect to P0
Ψ

and then applying Neveu’s exchange formula in Theorem 1, we have

CP θ( ) � 1 − p( )pμE0
Ψ ∑∞

n�1
∫

Rd
e−θN/ℓ ‖y‖( ) ∏∞

i�1
Cθ y,Xi( )Q dy −Xn( )⎡⎣ ⎤⎦

� 1 − p( )pE0
Φ ∫

Rd
∑∞
n�0

∫
Rd
e−θN/ℓ ‖y‖( ) ∏∞

i�0
Cθ y,Xi − t( )Q dy −Xn + t( )Ψ0 dt( )⎡⎣ ⎤⎦

� 1 − p( )pμ∫
Rd
E0

Φ ∑∞
n�0

∫
Rd
e−θN/ℓ ‖y‖( ) ∏∞

i�0
Cθ y,Xi − t( )Q dy − Xn + t( )⎡⎣ ⎤⎦Q dt( ),

(15)

where we note the existence of X0 = 0 on {Φ({0}) = 1} in the
second equality and apply Campbell’s formula in the third
equality. Noting that X0 = 0 on {Φ({0}) = 1}, we separate the
expectation in (Eq. 15) into

E0
Φ ∑∞

n�0
∫

Rd
e−θN/ℓ ‖y‖( ) ∏∞

i�0
Cθ y,Xi − t( )Q dy −Xn + t( )⎡⎣ ⎤⎦

� ∫
Rd
e−θN/ℓ ‖y‖( ) Cθ y,−t( )E0

Φ ∏∞
i�1

Cθ y,Xi − t( )⎡⎣ ⎤⎦Q dy + t( )
+ E0

Φ ∑∞
n�1

∫
Rd
e−θN/ℓ ‖y‖( ) Cθ y,−t( )Cθ y,Xn − t( )⎡⎣

∏∞
i�1
i≠n

Cθ y,Xi − t( )Q dy −Xn + t( )], (16)

and consider the two terms on the right-hand side of (Eq. 16) one by
one. For the first term, the generating functional of a PPP yields

(1st term of (Eq. 16))

� ∫
Rd
e−θN/ℓ ‖y‖( ) Cθ y,−t( ) exp −λΦ∫

Rd
1 − Cθ y,w( )[ ] dw( )

Q dy + t( ) � I1,θ −t( ). (17)
On the other hand, applying Campbell’s formula and the
generating functional for Φ to the second term on the right-
hand side of (Eq. 16), we have

(2nd term of (Eq. 16))

� λΦ∫
Rd

∫
Rd
e−θN/ℓ ‖y‖( ) Cθ y,−t( )Cθ y, x( )E0

Φ ∏∞
i�1

Cθ y,Xi − t( )⎡⎣ ⎤⎦
Q dy − x( ) dx
� λΦ∫

Rd
∫

Rd
e−θN/ℓ ‖y‖( ) Cθ y,−t( )Cθ y, x( )

exp −λΦ∫
Rd

1 − Cθ y, w( )[ ] dw( )Q dy − x( ) dx
� I2,θ −t( ). (18)
Finally, plugging (Eqs 17, 18) into (Eq. 16), and then into (Eq.
15), we have (Eq. 12) and the proof is completed.

When d = 2 and the distribution Q for the locations of
offspring points depends only on the distance; that is, Q(dy) =
fo(‖y‖) dy for y ∈ R2, we obtain a numerically computable form of
the coverage probability.
Corollary 1. When d = 2 and Q(dy) = fo(‖y‖) dy, y ∈ R2, the
coverage probability in Theorem 2 is reduced to

CP θ( ) � 2π 1 − p( )pμ∫ ∞

0
∫ ∞

0
e−θN/ℓ s( ) Êθ s( ) Ĉθ s, u( ) Îθ s, u( ) ds fo u( ) u du,

(19)
where

Îθ s, u( ) � g s | u( ) + 2πλΦ∫ ∞

0
Ĉθ s, r( )g s | r( ) r dr,

Êθ s( ) � exp −2πλΦ∫ ∞

0
1 − Ĉθ s, v( )[ ] v dv( ),

Ĉθ s, r( ) � exp −pμ 1 − ∫ ∞

s
1 + θ

ℓ q( )
ℓ s( )( )−1

g q | r( ) dq[ ]( ),
g s | r( ) � 2s∫ π

0
fo

$$$$$$$$$$$$$$$
s2 + r2 − 2 sr cosφ

√( ) dφ.

(20)
Proof. Since the distribution Q depends only on the distance, it
holds that Q−(dt) = Q(dt) = fo(‖t‖) dt, t ∈ R2, and (Eq. 12) is
reduced to

Frontiers in Communications and Networks | www.frontiersin.org June 2022 | Volume 3 | Article 8857497

Miyoshi Neveu’s Exchange Formula for Wireless Networks

https://www.frontiersin.org/journals/communications-and-networks
www.frontiersin.org
https://www.frontiersin.org/journals/communications-and-networks#articles


CP θ( ) � 1 − p( )pμ∫
R2

I1,θ t( ) + I2,θ t( )( )fo ‖t‖( ) dt
� 2π 1 − p( )pμ∫ ∞

0
Î1,θ u( ) + Î2,θ u( )( )fo u( ) u du,

(21)

where the polar coordinate conversion is applied in the second
equality and

Î1,θ u( ) � ∫ ∞

0
e−θN/ℓ s( ) Ĉθ s, u( ) Êθ s( )g s | u( ) ds,

Î2,θ u( ) � 2πλΦ∫ ∞

0
∫ ∞

0
e−θN/ℓ s( ) Ĉθ s, u( ) Ĉθ s, r( ) Êθ s( )g s | r( ) ds r dr.

Therefore, we have

Î1,θ u( ) + Î2,θ u( ) � ∫ ∞

0
e−θN/ℓ s( ) Ĉθ s, u( ) Êθ s( ) Îθ s, u( ) ds.

Plugging this into (Eq. 21), we have (Eq. 19) and the proof is
completed.

4.3 Device Discovery
We next consider the problem of device discovery. Devices in the
transmission mode transmit broadcast messages, whereas a
device in the receiving mode can discover the transmitters if it
can successfully decode the broadcast messages. When a device in
the receiving mode receives the signal from one transmitting
device, the signals from all other transmitting devices work as
interference. Then, the expected number of transmitting devices
discovered by the typical device is represented by

N θ( ) � 1 − p( )E0
Ψ ∑∞

m�1
1 SINRm > θ{ }⎡⎣ ⎤⎦. (22)

Proposition 3. Consider the D2D network model described in
Section 4.1 with the devices deployed according to a stationary
PPCP given in Section 3.1. Then, the expected number N (θ) of
transmitting devices discovered by the typical device is obtained
by (Eq. 12) in Theorem 2 replacing the integral range ‖z‖ > ‖y‖ in
(Eq. 13) by Rd. Moreover, when d = 2 and Q(dy) = fo(‖y‖) dy for
y ∈ R2, N (θ) is reduced to (Eq. 19) in Corollary 1 replacing the
integral range (s, ∞) in (Eq. 20) by (0, ∞).

Proof. Since E0
Ψ[∑∞

m�11{SINRm > θ}] � ∑∞
m�1P

0
Ψ(SINRm > θ), the

difference between (Eq. 11) and (Eq. 22) is only the event
{‖Ym′ ‖≤ ‖Yj′‖, j ∈ N}. This leads to the difference of the integral
ranges in Cθ(y, x) in (Eq. 13) and in Ĉθ(s, r) in (Eq. 20). Remark 5.
Since P0

Ψ(⋃∞
m�1{SINRm > θ})≤∑∞

m�1P
0
Ψ(SINRm > θ) � N (θ),

Proposition 3 also gives an upper bound for the coverage probability
with the max-SINR association policy, where a device in the receiving
mode receives a message with the strongest SINR. This upper bound is
known to be exact for θ > 1 since ∑∞

m�11{SINRm > θ}≤ 1 + θ−1 almost
surely [see (Dhillon et al., 2012) or (Błaszczyszyn et al., 2018,
Lemma 5.1.2)].

4.4 Numerical Experiments
We present the results of numerical experiments for the analytical
results obtained in Sections 4.2, 4.3. We set d = 2 and the distribution
Q for the location of the offspring points as Q(dy) = fo(‖y‖) dy and
fo(s) � e−s2/(2σ2)/(2πσ2), s ≥ 0; that is, Q is the isotropic normal

distribution with variance σ2, so that the resulting PPCP Ψ is the
Thomas point process. Furthermore, the path-loss function is set as
ℓ(r) = r−β, r > 0, with β > 2.

The numerical results for the coverage probability are given
in Figure 2, where the values of CP(θ) with different values of θ
and σ2 are plotted. The other parameters are fixed at λΦ = π−1, μ
= 10, p = 0.5, β = 4 and N = 0. For comparison, the values when
the devices are located according to a homogeneous PPP are also
displayed in the figure with the label “σ2 → ∞.” From Figure 2,
we can see that, as the value of σ2 increases, the coverage
probability decreases and is closer to that for the
homogeneous PPP. This is contrary to the case of cellular
networks, where the coverage probability increases and is
closer to that for the homogeneous PPP from below as the
variance of the locations of offspring points increases [see

FIGURE 2 | Coverage probability as a function of SINR threshold (λΦ =
π−1, μ = 10, p = 0.5, β = 4 and N = 0).

FIGURE 3 | Expected number of discovered devices as a function of
SINR threshold (λΦ = π−1, μ = 10, p = 0.5, β = 4 and N = 0).
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(Miyoshi, 2019)]. This difference is thought to be due to the fact
that the locations of a receiving device and its communication
partner are near to each other in the PPCP-deployed D2D
network since they are both points of the same PPCP,
whereas the location of a receiver is likely far from that of
the associated BS in the PPCP-deployed cellular network since
their locations are independent of each other.

The results of the device discovery is given in Figure 3, where
we know that the closed form expression of the expected number
of discovered devices is obtained as N (PPP)(θ) �
(1 − p)(β/2π) sin(2π/β) θ−2/β for the case of the homogeneous
PPP withN ≡ 0 [see, e.g., (Hamida et al., 2008)]. The figure shows
similar features to the coverage probability.

5 CONCLUSION

In this paper, we have presented an alternative form of Neveu’s
exchange formula for jointly stationary point processes onRd and
then demonstrated that it is useful for the analysis of spatial
stochastic models given based on stationary PPCPs. We have first
applied it to the Palm characterization for a stationary PPCP and
then to the analysis of a D2D network modeled using a stationary

PPCP. Although we have only considered some fundamental
problems, we expect that the new form of the exchange formula
will be utilized for the analysis of more sophisticated models leading
up to the development of 5G and beyond networks.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/supplementary material, further inquiries can be
directed to the corresponding author.

AUTHOR CONTRIBUTIONS

The author confirms being the sole contributor of this work and
has approved it for publication.

FUNDING

This work was supported by the Japan Society for the Promotion of
Science (JSPS) Grant-in-Aid for Scientific Research (C) 19K11838.

REFERENCES

Afshang, M., Dhillon, H. S., and Chong, P. H. J. (2016). Modeling and Performance
Analysis of Clustered Device-To-Device Networks. IEEE Trans. Wirel.
Commun. 15, 4957–4972. doi:10.1109/twc.2016.2550024

Afshang, M., and Dhillon, H. S. (2018). Poisson Cluster Process Based Analysis of
HetNets with Correlated User and Base Station Locations. IEEE Trans. Wirel.
Commun. 17, 2417–2431. doi:10.1109/twc.2018.2794983

Afshang, M., Saha, C., and Dhillon, H. S. (2017a). Nearest-Neighbor and Contact
Distance Distributions for Matérn Cluster Process. IEEE Commun. Lett. 21,
2686–2689. doi:10.1109/lcomm.2017.2747510

Afshang, M., Saha, C., and Dhillon, H. S. (2017b). Nearest-neighbor and Contact
Distance Distributions for Thomas Cluster Process. IEEEWirel. Commun. Lett.
6, 130–133.

Andrews, J. G., Gupta, A. K., and Dhillon, H. S. (2016). A Primer on Cellular
Network Analysis Using Stochastic Geometry. ArXiv:1604.03183 [cs.IT].
doi:10.48550/arXiv.1604.03183

Andrews, J. G., Baccelli, F., and Ganti, R. K. (2011). A Tractable Approach to
Coverage and Rate in Cellular Networks. IEEE Trans. Commun. 59, 3122–3134.
doi:10.1109/tcomm.2011.100411.100541

Baccelli, F., Błaszczyszyn, B., and Karray, M. (2020). Random Measures, Point
Processes, and Stochastic Geometry. Available at: https://hal.inria.fr/hal-
02460214.

Baccelli, F., and Błaszczyszyn, B. (2009a). Stochastic Geometry and Wireless
Networks: Volume I Theory. FNT Netw. 3, 249–449. doi:10.1561/1300000006

Baccelli, F., and Błaszczyszyn, B. (2009b). Stochastic Geometry andWireless Networks:
Volume II Applications. FNT Netw. 4, 1–312. doi:10.1561/1300000026

Baccelli, F., Khud, N., Laroia, R., Li, J., Richardson, T., Shakkottai, S., et al.
(2012). “On the Design of Device-To-Device Autonomous Discovery,” in
2012 Fourth International Conference on Communication Systems and
Networks (Bangalore, India: COMSNETS), 1–9. doi:10.1109/comsnets.
2012.6151335

Baudin, M. (1981). Likelihood and Nearest-Neighbor Distance Properties of
Multidimensional Poisson Cluster Processes. J. Appl. Probab. 18, 879–888.
doi:10.2307/3213062

Błaszczyszyn, B., Haenggi, M., Keeler, P., andMukherjee, S. (2018). Stochastic Geometry
Analysis of Cellular Networks. Cambridge: Cambridge University Press.

Błaszczyszyn, B., and Yogeshwaran, D. (2009). Directionally Convex Ordering of
Random Measures, Shot Noise Fields, and Some Applications to Wireless
Communications. Adv. Appl. Probab. 41, 623–646.

Chen, L., Wang, W., and Zhang, C. (2017). Stochastic Wireless Powered
Communication Networks with Truncated Cluster Point Process. IEEE
Trans. Veh. Technol. 66, 11286–11294. doi:10.1109/tvt.2017.2726003

Chiu, S. N., Stoyan, D., Kendall, W. S., and Mecke, J. (2013). Stochastic Geometry
and its Applications. 3rd edn. Wiley.

Chun, Y. J., Hasna, M. O., and Ghrayeb, A. (2015). Modeling Heterogeneous
Cellular Networks Interference Using Poisson Cluster Processes. IEEE J. Sel.
Areas Commun. 33, 2182–2195. doi:10.1109/jsac.2015.2435271

Daley, D. J., and Vere-Jones, D. (2003).An Introduction to the Theory of Point Processes:
Volume I: Elementary Theory and Methods. 2nd edn. Switzerland: Springer.

Daley, D. J., and Vere-Jones, D. (2008). An Introduction to the Theory of Point
Processes: Volume II: General Theory and Structure. 2nd edn. Switzerland:
Springer.

Dhillon, H. S., Ganti, R. K., Baccelli, F., and Andrews, J. G. (2012). Modeling and
Analysis of K-Tier Downlink Heterogeneous Cellular Networks. IEEE J. Sel.
Areas Commun. 30, 550–560. doi:10.1109/jsac.2012.120405

ElSawy, H., Sultan-Salem, A., Alouini, M.-S., andWin, M. Z. (2017). Modeling and
Analysis of Cellular Networks Using Stochastic Geometry: A Tutorial. IEEE
Commun. Surv. Tutorials 19, 167–203. doi:10.1109/comst.2016.2624939

Ganti, R. K., and Haenggi, M. (2009). Interference and Outage in Clustered
Wireless Ad Hoc Networks. IEEE Trans. Inf. Theory 55, 4067–4086. doi:10.
1109/tit.2009.2025543

Gentner, D., and Last, G. (2011). Palm Pairs and the General Mass-Transport
Principle. Math. Z. 267, 695–716. doi:10.1007/s00209-009-0642-4

Haenggi, M., and Ganti, R. K. (2009). Interference in Large Wireless Networks.
Found. Trends Netw. 3, 127–248.

Haenggi, M. (2013). Stochastic Geometry for Wireless Networks. Cambridge:
Cambridge University Press.

Hamida, E. B., Chelius, G., Busson, A., and Fleury, E. (2008). Neighbor Discovery
in Multi-Hop Wireless Networks: Evaluation and Dimensioning with
Interference Considerations. Discrete Math. Theor. Comput. Sci. 10, 87–114.

Hmamouche, Y., Benjillali, M., Saoudi, S., Yanikomeroglu, H., and Renzo, M. D.
(2021). New Trends in Stochastic Geometry for Wireless Networks: A
Tutorial and Survey. Proc. IEEE 109, 1200–1252. doi:10.1109/jproc.2021.
3061778

Frontiers in Communications and Networks | www.frontiersin.org June 2022 | Volume 3 | Article 8857499

Miyoshi Neveu’s Exchange Formula for Wireless Networks

https://doi.org/10.1109/twc.2016.2550024
https://doi.org/10.1109/twc.2018.2794983
https://doi.org/10.1109/lcomm.2017.2747510
https://doi.org/10.48550/arXiv.1604.03183
https://doi.org/10.1109/tcomm.2011.100411.100541
https://hal.inria.fr/hal-02460214
https://hal.inria.fr/hal-02460214
https://doi.org/10.1561/1300000006
https://doi.org/10.1561/1300000026
https://doi.org/10.1109/comsnets.2012.6151335
https://doi.org/10.1109/comsnets.2012.6151335
https://doi.org/10.2307/3213062
https://doi.org/10.1109/tvt.2017.2726003
https://doi.org/10.1109/jsac.2015.2435271
https://doi.org/10.1109/jsac.2012.120405
https://doi.org/10.1109/comst.2016.2624939
https://doi.org/10.1109/tit.2009.2025543
https://doi.org/10.1109/tit.2009.2025543
https://doi.org/10.1007/s00209-009-0642-4
https://doi.org/10.1109/jproc.2021.3061778
https://doi.org/10.1109/jproc.2021.3061778
https://www.frontiersin.org/journals/communications-and-networks
www.frontiersin.org
https://www.frontiersin.org/journals/communications-and-networks#articles


Kwon, T., and Choi, J.-W. (2014). Spatial Performance Analysis and Design
Principles for Wireless Peer Discovery. IEEE Trans. Wirel. Commun. 13,
4507–4519. doi:10.1109/twc.2014.2321142

Kwon, T., Ju, H., and Lee, H. (2020). Performance Study for Random Access-Based
Wireless Mutual Broadcast Networks with Ginibre Point Processes. IEEE
Commun. Lett. 24, 1581–1585. doi:10.1109/lcomm.2020.2987913

Last, G. (2010). “Modern RandomMeasures: Palm Theory and Related Models,” in
New Perspectives in Stochastic Geometry. Editors W. S. Kendall and
I. Molchanov (United Kingdom: Oxford University Press), 77–110.

Last, G., and Penrose, M. (2017). Lectures on the Poisson Process. Cambridge:
Cambridge University Press.

Last, G., and Thorisson, H. (2009). Invariant Transports of Stationary Random
Measures and Mass-Stationarity. Ann. Probab. 37, 790–813. doi:10.1214/08-
aop420

Lu, X., Salehi, M., Haenggi, M., Hossain, E., and Jiang, H. (2021). Stochastic
Geometry Analysis of Spatial-Temporal Performance in Wireless Networks: A
Tutorial. IEEE Commun. Surv. Tutorials 23, 2753–2801. doi:10.1109/comst.
2021.3104581

Miyoshi, N. (2019). Downlink Coverage Probability in Cellular Networks with
Poisson-Poisson Cluster Deployed Base Stations. IEEEWirel. Commun. Lett. 8,
5–8. doi:10.1109/lwc.2018.2845377

Miyoshi, N., and Shirai, T. (2014). A Cellular Network Model with Ginibre Configured
Base Stations. Adv. Appl. Probab. 46, 832–845. doi:10.1239/aap/1409319562

Miyoshi, N., and Shirai, T. (2016). Spatial Modeling and Analysis of Cellular
Networks Using the Ginibre Point Process: A Tutorial. IEICE Trans. Commun.
E99-B, 2247–2255. doi:10.1587/transcom.2016nei0001

Mukherjee, S. (2014). Analytical Modeling of Heterogeneous Cellular Networks:
Geometry, Coverage, and Capacity. Cambridge: Cambridge University Press.

Pandey, K., Dhillon, H. S., and Gupta, A. K. (2020). On the Contact and
Nearest-Neighbor Distance Distributions for the ${n}$ -Dimensional
Matérn Cluster Process. IEEE Wirel. Commun. Lett. 9, 394–397. doi:10.
1109/lwc.2019.2957221

Saha, C., Afshang, M., and Dhillon, H. S. (2018). 3GPP-inspired HetNet Model
Using Poisson Cluster Process: Sum-Product Functionals and Downlink
Coverage. IEEE Trans. Commun. 66, 2219–2234. doi:10.1109/tcomm.2017.
2782741

Saha, C., Afshang, M., and Dhillon, H. S. (2017). Enriched $K$ -Tier HetNet Model
to Enable the Analysis of User-Centric Small Cell Deployments. IEEE Trans.
Wirel. Commun. 16, 1593–1608. doi:10.1109/twc.2017.2649495

Saha, C., Dhillon, H. S., Miyoshi, N., and Andrews, J. G. (2019). Unified Analysis of
HetNets Using Poisson Cluster Processes under Max-Power Association. IEEE
Trans. Wirel. Commun. 18, 3797–3812. doi:10.1109/twc.2019.2917904

Suryaprakash, V., Moller, J., and Fettweis, G. (2015). On the Modeling and
Analysis of Heterogeneous Radio Access Networks Using a Poisson Cluster
Process. IEEE Trans. Wirel. Commun. 14, 1035–1047. doi:10.1109/twc.2014.
2363454

Tanaka, U., Ogata, Y., and Stoyan, D. (2008). Parameter Estimation and Model
Selection for Neyman-Scott Point Processes. Biom. J. 50, 43–57. doi:10.1002/
bimj.200610339

Turgut, E., and Gursoy, M. C. (2018). Downlink Analysis in Unmanned Aerial
Vehicle (UAV) Assisted Cellular Networks with Clustered Users. IEEE Access 6,
36313–36324. doi:10.1109/access.2018.2841655

Yang, L., Lim, T. J., Zhao, J., and Motani, M. (2021). Modeling and Analysis of
HetNets with Interference Management Using Poisson Cluster Process. IEEE
Trans. Veh. Technol. 70, 12039–12054. doi:10.1109/tvt.2021.3114739

Conflict of Interest: The author declares that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Miyoshi. This is an open-access article distributed under the terms
of the Creative Commons Attribution License (CC BY). The use, distribution or
reproduction in other forums is permitted, provided the original author(s) and the
copyright owner(s) are credited and that the original publication in this journal is
cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

Frontiers in Communications and Networks | www.frontiersin.org June 2022 | Volume 3 | Article 88574910

Miyoshi Neveu’s Exchange Formula for Wireless Networks

https://doi.org/10.1109/twc.2014.2321142
https://doi.org/10.1109/lcomm.2020.2987913
https://doi.org/10.1214/08-aop420
https://doi.org/10.1214/08-aop420
https://doi.org/10.1109/comst.2021.3104581
https://doi.org/10.1109/comst.2021.3104581
https://doi.org/10.1109/lwc.2018.2845377
https://doi.org/10.1239/aap/1409319562
https://doi.org/10.1587/transcom.2016nei0001
https://doi.org/10.1109/lwc.2019.2957221
https://doi.org/10.1109/lwc.2019.2957221
https://doi.org/10.1109/tcomm.2017.2782741
https://doi.org/10.1109/tcomm.2017.2782741
https://doi.org/10.1109/twc.2017.2649495
https://doi.org/10.1109/twc.2019.2917904
https://doi.org/10.1109/twc.2014.2363454
https://doi.org/10.1109/twc.2014.2363454
https://doi.org/10.1002/bimj.200610339
https://doi.org/10.1002/bimj.200610339
https://doi.org/10.1109/access.2018.2841655
https://doi.org/10.1109/tvt.2021.3114739
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/communications-and-networks
www.frontiersin.org
https://www.frontiersin.org/journals/communications-and-networks#articles

	Neveu’s Exchange Formula for Analysis of Wireless Networks With Hotspot Clusters
	1 Introduction
	2 Neveu’s Exchange Formula
	3 Applications to Cluster Point Processes
	3.1 Poisson-Poisson Cluster Processes
	3.2 Characterization of Palm Distribution
	3.3 Nearest-Neighbor Distance Distributions

	4 Applications to Wireless Networks With Hotspot Clusters
	4.1 Model of a Device-To-Device Network
	4.2 Coverage Analysis
	4.3 Device Discovery
	4.4 Numerical Experiments

	5 Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	References


