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Multiple-input multiple-output (MIMO) technology is employed to improve the
reliability and capacity of wireless communication systems. However, thewireless
communication environment creates vulnerabilities to spoofing attacks.
Furthermore, the authentication challenges posed by the heterogeneous
characteristics of wireless applications increase as diverse technologies
facilitate the growing number of Internet of Things (IoT) devices. To address
these challenges, adaptive physical-layer authentication (PLA) leveraging the
inherent antenna diversity in MIMO systems is examined, and an information-
theoretic perspective on PLA in MIMO systems is given. The real and imaginary
components of the received reference signals are used as attributes with a single-
class classification support vector machine (SCC-SVM). It is shown that the
authentication performance improves with the number of antennas, and the
proposed scheme provides robust authentication.
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1 Introduction

The number of wireless devices has increased significantly as a result of Internet of
Things (IoT) development. However, the limited bandwidth for applications and limited
device capabilities make it challenging to deliver reliable services in wireless networks.
Multiple-input multiple-output (MIMO) technology can improve the effectiveness and
capacity of wireless communication networks without increasing bandwidth resources
(Zhang et al., 2020).

Information-theoretic security metrics for secrecy, privacy, authentication, stealth, and
covertness have been developed and fundamental limits derived (Liang et al., 2008; Bloch
et al., 2021). Shannon (1949) presented the first information-theoretic study of a
cryptography model. Cryptography is the science of securing communications. It
involves the transformation of plaintext into ciphertext, which can be intercepted by an
attacker. A key K is a secret parameter used in conjunction with an algorithm to encrypt or
decrypt data. The messageM represents the data that need to be protected. For encryption,
K is used to transformM into a ciphertext E. The goal is to maximize the secret information
rate between legitimate users. Wyner (1975) presented information-theoretic security limits
for a discrete memoryless wiretap channel. It was shown that security is possible if the
capacity Cm between legitimate users is higher than the wiretap channel capacity Cw

between the transmitter and attacker. Abdi et al. (2001) extended the model proposed by
Wyner (1975) to a Gaussian wiretap channel. It was shown that secure communication can
be achieved if Cs = Cm − Cw > 0. However, Cs is degraded by wireless channels due to factors
such as fading (Zou et al., 2016).

The model proposed by Wyner (1975) was extended to MIMO systems (Khisti and
Wornell, 2010a), and this was improved by Khisti and Wornell (2010b). It was shown that
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increasing the number of antennas can improve Cs. Bloch et al.
(2008) considered quasi-static fading. The outage probability Pout
was shown to depend on the user location and path loss, where Pout
= P(Cs < Rs) and Rs is the secrecy rate. Information-theoretic security
for MIMO systems was considered by Oggier and Hassibi (2011),
but the channel state information (CSI) was assumed to be known.
Security without knowledge about the attacker CSI was considered
by He et al. (2011).

A MIMO scheme for practical physical-layer security was
presented by Ishikawa et al. (2021). It employs chaos-based
unitary matrices to eliminate the need for channel estimation.
Unlike conventional approaches, an imperfect key agreement in
high-mobility scenarios was considered, and an algorithm for
reconciling chaotic sequences between legitimate parties was
given. Simulation results were presented which show that the
performance is superior to that with conventional chaos-based
MIMO schemes assuming perfect CSI.

Downlink security in cell-free massive MIMO systems with
imperfect channel estimation was investigated by Tubail et al.
(2023). Two power allocation algorithms using artificial noise were
introduced to combat passive eavesdropping. Imperfect channel
estimation was considered as it leads to artificial noise leakage
which impacts performance. The results show that the proposed
algorithm improves the security through robust authentication.

In this paper, physical-layer authentication (PLA) for MIMO
systems is examined from an information-theoretic perspective. The
authentication boundary is determined using machine learning
(ML). For training, a single-class classification support vector
machine (SCC-SVM) is used with only legitimate user data. The
real and imaginary components of the received reference signals are
employed as attributes. These attributes vary slowly over time as a
result of factors such as mobility (Hou et al., 2014; Ferrante et al.,
2015; Wang et al., 2015; Wang et al., 2016; Fang et al., 2020). As a
result, the SCC-SVM authentication boundary is updated to ensure
reliable authentication. The authentication rate (AR) is shown to
improve with antenna diversity. The contributions of this paper are
as follows.

• PLA for MIMO systems is examined from an information-
theoretic perspective.

• The real and imaginary components of the received signals are
used as attributes to improve PLA performance.

• A practical approach is presented to extract attributes from
cellular network reference signals.

• The effectiveness of the proposed PLA scheme is evaluated
and validated in urban environments.

The remainder of this paper is organized as follows: the system
model is presented in Section 2; Section 3 introduces SCC-SVM and
the proposed PLA scheme; the performance evaluation metrics are
given in Section 4; Section 5 provides the simulation results; and
Section 6 provides some concluding remarks.

2 System model

The system model for the proposed authentication scheme is
shown in Figure 1. In this scheme, Alice (A) represents a user

requiring authentication from Bob (B), while the spoofer (S) is an
attacker attempting to impersonate A. B must ascertain the
legitimacy of A and also reject S. Consequently, B must decide
between the two hypotheses

H0: A is transmitting
H1: S is transmitting.

{
Thus, H0 indicates that the signal originates from A, while H1

indicates that it is from S. Both A and S are assumed to be mobile,
while B is stationary. A and S have either one or M transmit
antennas, and B has N receive antennas.

Reference signals are transmitted in cellular networks to
facilitate CSI estimation. In particular, sounding reference signals
are repeated every 28 symbols or 56 symbols (GPP, version 15.2.0,
2018). The received signal at B can be expressed as

Y � Hx +W,

where x is the transmitted reference signals,H is the channel matrix,
andW is independent additive white Gaussian noise (AWGN). The
channel matrix for the M × N MIMO system can be partitioned
according to the transmit and receive antennas as follows:

H �
h11 h12 . . . h1M
h21 h22 . . . h2M

..

.

hN1 hN2 . . . hNM,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where hnm represents the channel from themth transmit antenna to
the nth receive antenna. H can be estimated from Y corresponding
to the known reference signals (Schindler and Mellein, 2011;
Germain et al., 2020). Y is used to obtain the data for SCC-SVM
training and testing.

The proposed scheme is implemented in the uplink and has an
initial phase (T1), followed by subsequent phases (T2, T3, . . . , Tn).
During the initial phase, upper-layer authentication (ULA) is
conducted, and SCC-SVM training is performed at B using the
received reference signals from A. The real and imaginary
components of these signals for each transmit–receive antenna pair
are obtained to provide 2 ×M attributes per antenna for a total of 2 ×
M × N attributes. In subsequent phases, SCC-SVM testing is
conducted at B to validate the legitimacy of the received signals,
which may originate from either A or a spoofer S. Hence, the received
signals during these phases are treated as being from an unknown user
U. If successful, the attributes are updated, and SCC-SVM training is
repeated. Conversely, if testing fails, the connection is terminated.

SCC-SVM training is used in the initial phase to establish an
authentication boundary. In subsequent phases, SCC-SVM testing is
used to determine whether the received signal attributes fall within
this boundary. In this case, the test is successful, and authentication
continues. The received signal is rejected if the attributes fall outside
the boundary. The proposed scheme leverages the spatial
independence of A and S as the physical-layer attributes for
authentication are independent. Furthermore, transmit and
receive antenna diversity is exploited to generate a large number
of attributes. These attributes vary slowly over time due to factors
such as mobility (Hou et al., 2014; Ferrante et al., 2015; Wang et al.,
2015; Wang et al., 2016; Fang et al., 2020). Consequently, the SCC-
SVM authentication boundary is dynamically updated in each
subsequent phase to ensure reliable authentication.
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3 The proposed scheme

3.1 Single-class classification support
vector machine

SCC is a machine learning technique that can be employed to
distinguish between A and S using training data from A. The goal is to

find the optimal authentication boundary that surrounds most of the
training data fromA (Tax andDuin, 2004). In this paper, the SCC-SVM
algorithm proposed by Schölkopf et al. (2001) is employed. SCC-SVM
computes a decision function f which encompasses the majority of the
training data [Senigagliesi et al. (2020); Abdrabou and Gulliver (2022c);
Abdrabou and Gulliver, 2022a; Abdrabou and Gulliver, 2023]. First, the
following optimization problem is solved (Hoang et al., 2021);
(Schölkopf et al., 2001):

min
w,s,ρ

1
2
‖w‖2 + 1

ηℓ
∑ℓ
i�1

si − ρ,

subject to w · Φ gi( )≥ ρ − si, si ≥ 0,

(1)

where w is the weight vector, ρ is the distance from the origin to the
boundary, Φ is a feature mapping determined based on the kernel
employed, gi is the ith feature vector used for SCC-SVM training, si
is the corresponding slack variable, ℓ is the number of training
samples, and η is the percentage of data considered as outliers
(Senigagliesi et al., 2020). SCC-SVM maps data to a feature space
using kernels and then separates the features using a boundary. The
optimization problem in Eq. 1 providesw and ρwhich determine the
boundary used in the decision function Eq. 3. Using Lagrange
multipliers pi, qi ≥ 0 yields (Schölkopf et al., 2001)

L w, s, p, q, ρ( ) � 1
2
‖w‖2 + 1

ηℓ
∑ℓ
i�1

si − ρ

−∑ℓ
i�1

pi w · Φ gi( ) − ρ + si( ) −∑ℓ
i�1

qisi.

Setting the derivatives with respect to w, s, and ρ as zero yields
(Schölkopf et al. 2001)

w � ∑ℓ
i�1

piΦ gi( ), (2)

FIGURE 1
System model.

FIGURE 2
Authentication scheme flowchart.
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pi � 1
ηℓ

− qi ≤
1
ηℓ
, ∑ℓ

i�1
pi � 1.

The decision function used to test a new sample t is
expressed as follows (Senigagliesi et al. 2020); (Hoang
et al. 2021):

f t( ) � sgn w · Φ t( ) − ρ( ), (3)
and substituting w from Eq. 2 yields

f t( ) � sgn ∑
i

piΦ gi( ) · Φ t( ) − ρ⎛⎝ ⎞⎠.

FIGURE 3
Sliding window for attribute updates.
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FIGURE 4
Single-user scenario.

FIGURE 5
Multiple-user scenario.
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The kernel expansion is defined as (Schölkopf et al. 2001)

k gi, t( ) � Φ gi( ) ·Φ t( ),
so the decision function is

f t( ) � sgn ∑
i

pik gi, t( ) − ρ⎛⎝ ⎞⎠. (4)

A test sample t is accepted if f(t) > 0, which indicates that it is within
the authentication boundary (Senigagliesi et al., 2020).

3.2 Proposed scheme

The proposed scheme employs SCC-SVM with antenna
diversity. The received signal at the nth receive antenna from the
mth transmit antenna is

ynm � xmhnm + nnm,

where xm is the transmitted reference symbol and hnm and nnm are
the corresponding channel coefficients and AWGN, respectively.
TheWINNER II channel model for non-line-of-sight (NLOS) urban
environments (Kyösti et al., 2007) is considered here. The received
MIMO signals can be expressed as

Y �
y11 y12 . . . y1M

y21 y22 . . . y2M

..

.

yN1 yN2 . . . yNM

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

This matrix is employed to obtain features for SCC-SVM training
and testing. Binary phase-shift keying (BPSK) modulation is
assumed, so the transmitted signal is (Chatzidiamantis et al., 2011)

x t( ) � ∑
k

g t − kTs( )cos 2πfst + φk( ),
where g(t) is the pulse shaping function, 0 ≤ t ≤ Ts, Ts is the symbol
time, fs is the carrier frequency, and φk ∈ [0, π] is the phase of the kth
symbol. The real (R) and imaginary (I) components are used as
attributes so that

Y �
R I[ ]11 R I[ ]12 . . . R I[ ]1M
R I[ ]21 R I[ ]22 . . . R I[ ]2M

..

.

R I[ ]N1 R I[ ]N2 . . . R I[ ]NM

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

TABLE 1 Simulation parameters.

Parameter Value

Sampling rate 20 MHz

Urban model frequency band 2–6 GHz

Carrier frequency 5 GHz

Shadow fading standard deviation 4 dB

Number of transmit antennas for Alice/spoofer 1, 2, and 4

Number of receive antennas for Bob 1, 4, and 8

Antenna height for Alice/spoofer 1 m

Velocity 0.4 km/h

Signal-to-noise ratio (SNR) 8 dB

Position of Bob 1,000 m and 1,000 m

Reference signal interval 28 symbols

Alice 1 initial position 1,500 m and 1,200 m

Alice 2 initial position 500 m and 900 m

Alice 3 initial position 1,000 m and 600 m

Spoofer 1 initial position 1,400 m and 700 m

Spoofer 2 initial position 600 m and 1,250 m

Spoofer 3 initial position 500 m and 500 m

FIGURE 6
MDR, FAR, and AR versus the number of receive antennas for the
single-user scenario with a signal-to-noise ratio (SNR) of 8 dB,
velocity of 0.4 km/h, and 1, 4, and 8 receive antennas.
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Figure 2 illustrates the proposed scheme. In the initial phase T1
followingULA authentication, data are obtained from the legitimate user
(A) for SCC-SVM training. In subsequent phases, reference signal data
fromU are utilized by B for testing and training. If testing is successful in
a given phase, the corresponding data are employed to update the
attributes for training. A sliding window is used so the oldest data are
discarded. Conversely, if testing fails, the connection is terminated.

The initial authentication is performed in phase T1 with A
through ULA. Then, the reference signal data from A are used to
construct the training sample vector di. The ith data sample is then

di � R I[ ]11, . . . , R I[ ]1M, R I[ ]21, . . . ,[
R I[ ]N1, . . . , R I[ ]NM].

SCC-SVM training is performed using the vectors di, where i = 1, 2,
. . . , ℓ, to obtain the authentication boundary. In subsequent phases,
SCC-SVM is utilized to test new samples t, as shown in Eq. 4,

originating from U, where U could be A or S. If testing is successful,
U is accepted and the attributes are updated, followed by SCC-SVM
training. Otherwise, the connection is terminated.

The ℓ training samples from A in the initial phase are

di � Ri Ii[ ]11, . . . , Ri Ii[ ]1M, Ri Ii[ ]21, . . . ,[
Ri Ii[ ]N1, . . . , Ri Ii[ ]NM], i � 1, 2, . . . , ℓ,

(5)

and the testing sample from U is

t � R I[ ]11U , . . . , R I[ ]1MU , R I[ ]21U , . . . ,[
R I[ ]N1

U , . . . , R I[ ]NM
U ], (6)

Figure 3 illustrates the sliding window update process for the
attributes. In phase T1, the training data from A consist of ℓ matrices Y,
where each matrix is represented by a vector as shown in Eq. 5.
Subsequently, in phase T2 a new data vector t is tested (following
scaling), and if accepted, the data matrix is updated by discarding the

FIGURE 7
C, PPV, FDR, and PPV − FDR versus the number of receive
antennas for the single-user scenario with an SNR of 8 dB, velocity of
0.4 km/h, and 1, 4, and 8 receive antennas.

FIGURE 8
MDR, FAR, and AR versus the number of receive antennas with an
SNR of 8 dB, velocity of 0.4 km/h, and 1 transmit antenna for the
single- and multiple-user scenarios.
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first row d1 and adding the new data vector as row ℓ + 1. Consequently,
if the first e new data vectors are accepted, the training data matrix is

Me �
d1+e
d2+e

..

.

dℓ+e

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

so ℓ vectors are used for training.
Each attribute undergoes separate minimum–maximum scaling

mr � m1,r m2,r . . . mℓ,r[ ]T, r � 1, 2, . . . , 2MN,

to obtain

gr � g1,r g2,r . . . gℓ,r[ ]T, r � 1, 2, . . . , 2MN,

where

gi,r � mi,r −mmin,r

mmax,r −mmin,r
,

and mmin,r is the minimum value in mr and mmax,r is the maximum
value in mr. The feature matrix for training is then

G � g1 g2 . . . g3MN[ ],
and the elements of t are scaled using mmin,r and mmax,r from the
training data as follows:

tr � br −mmin,r

mmax,r −mmin,r

to form the test vector t. The proposed scheme is summarized in
Algorithm 1.

ULA for A.

Obtain the received reference signals from

each antenna.

Extract the real (R) and imaginary (I) components from

the received reference signals.

Construct the training samples di using Eq. 5.

Train SCC-SVM to establish the

authentication boundary.

Test SCC-SVM with the sample t as in Eq. 6.

if (f(t) > 0) then

Accept the user.

Update the attributes.

Retrain SCC-SVM.

else if (f(t) ≤ 0) then

Terminate the connection.

end if

Algorithm 1. Proposed scheme.

3.3 Information-theoretic PLA

The authentication performance can be improved with antenna
diversity (Abdrabou and Gulliver, 2022b; 2024). This is indicated by the

FIGURE 9
MDR, FAR, and AR versus the number of receive antenna with an SNR of 8 dB, velocity of 0.4 km/h, and 1 transmit antenna for the single-user
scenario and η = 0.2 and 0.8.
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mutual information between the training and testing attributes from A
I(TrA; TeA), which is greater than the mutual information between the
training attributes from A and testing attributes from S I(TrA; TeS). The
mutual information authentication rate IAR can be defined as

IAR � I TrA;TeA( ) − I TrA;TeS( ).
First, a single-input multiple-output system (SIMO) and independent
channels based on user location and mobility are considered. The
mutual information that characterizes the legitimacy of A at the
receiver is a function of the wireless link at two consecutive time
instances (training and testing). The mutual information between the
transmit antenna and receive antennas is

ISIMO
i �

I Tx;Rx1( )
I Tx;Rx2( )

..

.

I Tx;RxN( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, i ∈ A, S{ }.

Each element of thismatrix characterizes the received reference signal at
times t − 1 (training) and t (testing), so it can be reformulated as

ISIMO
i �

I1 y1 t( );y1 t − 1( )( )
I2 y2 t( );y2 t − 1( )( )

..

.

IN yN t( );yN t − 1( )( )
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,

where yi (t − 1) is the training data fromA and yi(t) is the testing data
from U, so then,

ISIMO
AR � ISIMO

A − ISIMO
S .

Now, a MIMO system is considered. The mutual information
between the transmit antennas and receive antennas can be
expressed as

IMIMO
i �

I Tx1;Rx1( ), . . . , I TxM;Rx1( )
I Tx1;Rx2( ), . . . , I TxM;Rx2( )
I Tx1;Rx3( ), . . . , I TxM;Rx3( )

..

.

I Tx1;RxN( ), . . . , I TxM;RxN( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, i ∈ A, S{ }.

Each element of this matrix characterizes the received reference
signal at times t − 1 and t, so

IMIMO
i �

I11 y11 t( );y11 t − 1( )( ), . . . , I1M y1M t( );y1M t − 1( )( )
I21 y21 t( );y21 t − 1( )( ), . . . , I2M y2M t( );y2M t − 1( )( )
I31 y31 t( );y31 t − 1( )( ), . . . , I3M y3M t( );y3M t − 1( )( )

..

.

IN1 yN1 t( );yN1 t − 1( )( ), . . . , INM yNM t( );yNM t − 1( )( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

where y*(t − 1) is the training data from A and y*(t) is the testing
data from U, and therefore,

FIGURE 10
AR versus velocity with an SNR of 8 dB, 1 transmit antenna, and 4 receive antennas using the real and imaginary components of the received signals
as features (proposed scheme) and using only the magnitude, as in Pei et al. (2014).
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IMIMO
AR � IMIMO

A − IMIMO
S .

Since mutual information is greater than or equal to zero [Cover
and Thomas, 2006, (2.90)],

Iji ≥ 0, i ∈ A, S{ }, j ∈ SIMO,MIMO{ }.
The joint mutual information for independent channels in a SIMO
system can be formulated as

I Tx1;Rx1Rx2( ) � I Tx1;Rx1( ) + I Tx1;Rx2( ),
..
.

I Tx1;Rx1 . . .RxN( ) � I Tx1;Rx1( ) + . . . + I Tx1;RxN( ),
so

I Tx1;Rx1( )
≤ I Tx1;Rx1Rx2( )
≤ I Tx1;Rx1Rx2Rx3( )

..

.

≤ I Tx1;Rx1 . . .RxN−1( )
≤ I Tx1;Rx1 . . .RxN( ).

For a MIMO system, this is

I Tx1Tx2;Rx1Rx1( ) �
I Tx1;Rx1( ) + I Tx2;Rx1( )+
I Tx1;Rx2( ) + I Tx2;Rx2( ),

..

.

I Tx1 . . .TxM;Rxj . . .RxN( ) �
I Tx1;Rx1( ) + . . . + I TxM;Rx1( )+
I Tx1;Rx2( ) + . . . + I TxM;Rx2( )

..

.

I Tx1;RxN( ) + . . . + I TxM;RxN( ),
so

I Tx1;Rx1 . . .RxN( )
≤ I Tx1Tx2;Rx1 . . .RxN( )
≤ I Tx1Tx2Tx3;Rx1 . . .RxN( )

..

.

≤ I Tx1Tx2Tx3 . . .TxM−1;Rx1 . . .RxN( )
≤ I Tx1Tx2Tx3 . . .TxM;Rx1 . . .RxN( ),

.

These results show that the authentication performance improves
with the number of receive and transmit antennas so that

IuvAR ≥ IpqAR, u≥p, v≥ q,

where u and p are the number of receive antennas and v and q are the
number of transmit antennas.

3.4 Channel capacity for PLA

The channel capacity C is defined as the maximum mutual
information (Cover and Thomas, 2006),

C � max
P xi( )

I X;Y( ).

The capacity of a MIMO system depends on several factors such as
the signal-to-noise ratio (SNR). It can be obtained using singular

value decomposition (SVD) to decompose the channel matrixH and
obtain the singular values and unitary matrices for the transmitter
and receiver as (Golub and Van Loan, 2013)

H � UΣVH,

whereU is the unitary matrix corresponding to the transmitter, Σ is a
diagonal matrix containing the singular values, and VH is the
conjugate transpose of the unitary matrix corresponding to the
receiver. The singular values are

Λ � λ1, λ2, . . . , λn[ ],
and the corresponding channel capacity is (Tse and
Viswanath, 2005)

C � ∑n
i�1

log2 1 + SNR · λ2i( ),
where n is the number of singular values and λi is the ith singular
value of the channel matrix.

4 Performance evaluation

The performance is evaluated using the confusion matrix which
includes true positive (TP), the acceptance of A, true negative (TN),
the rejection of S, false negative (FN), the erroneous rejection of A,
and false positive (FP), the erroneous acceptance of S. The evaluation
metrics are the missed detection rate (MDR), false alarm rate (FAR),
precision or positive predictive value (PPV), false discovery rate
(FDR), and authentication rate (AR) (Senigagliesi et al., 2020;
Abdrabou and Gulliver, 2022b):

MDR � FP

FP + TN
,

FAR � FN

FN + TP
,

PPV � TP

TP + FP
,

FDR � FP

TP + FP
,

AR � TP + γ × TN

TP + FN( ) + γ × TN + FP( ),

where γ is used to balance between A and S and is given by

γ � TP + FN

TN + FP
.

The AR improves with the number of antenna (Abdrabou and
Gulliver, 2022b), and the corresponding PPV increases, so

IA ∝PPV,

and the FDR decreases, so

IS ∝FDR,

and therefore,

IAR ∝PPV − FDR.
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5 Simulation results

In this section, the performance of the proposed scheme is
evaluated in multipath fading channels via Monte Carlo
simulation. BPSK modulation is employed with the WINNER
II channel model for NLOS urban environments (Kyösti et al.,
2007). The single-user scenario has one Alice and three spoofers,
while the multiple-user scenario has three Alice and three
spoofers, as shown in Figures 4, 5, respectively. In these
scenarios, Bob is stationary, while Alice and spoofers move
arbitrarily and independently. SCC-SVM is implemented using
the scikit-learn library in Python. For the single-user scenario,
γ � 1

3, and for the multiple-user scenario, γ = 1. The simulation
parameters are given in Table 1.

Figure 6 presents the MDR, FAR, and AR for the single-user
scenario with an SNR of 8 dB, velocity of 0.4 km/h, and 1, 4,
and 8 receive antennas. This shows that MDR, FAR, and AR
improve with an increase in the number of antennas. For
instance, with a single transmit antenna, the MDR decreases
from 26.0% with 1 receive antenna to 17.8% with four receive
antennas and 2.9% with eight receive antennas. Similarly, with
four receive antennas, the MDR decreases from 17.8% with one
transmit antenna to 4.0% with two transmit antennas and 1.7%
with four transmit antennas. The FAR with a single transmit
antenna decreases from 11.9% with one receive antenna to 1.9%
with four receive antennas and 0.3% with eight receive
antennas. In the case of four receive antennas, the FAR
decreases from 1.9% with one transmit antenna to 0.2% with
two transmit antennas and only 0.1% with four transmit
antennas. The AR increases with an increase in the number
of antennas. For example, with four receive antennas, the AR
increases from 90.2% with one transmit antenna to 97.9% with
two transmit antennas and 99.1% with four transmit antennas.
These results illustrate the impact of antenna diversity on
performance.

Figure 7 presents C, PPV, FDR, and PPV − FDR versus the
number of receive antennas in the single-user scenario with an
SNR of 8 dB, velocity of 0.4 km/h, and 1, 4, and 8 receive
antennas. This shows that increasing the number of antennas
improves C and thus, the information authentication rate IAR.
With a single transmit antenna, C increases from 1.15 bps with
one receive antenna to 4.75 bps with four receive antennas and
5.95 bps with eight receive antennas. Furthermore, the PPV
increases, FDR decreases, and PPV − FDR increases with an
increase in the number of antennas. For instance, with one
transmit antenna, the PPV increases from 77.2% with one
receive antenna to 84.6% with four receive antennas and
97.2% with eight receive antennas, while with four receive
antennas, the PPV increases from 84.6% with one transmit
antenna to 96.2% with two transmit antennas and 98.3% with
four transmit antennas. In addition, with four receive antennas,
the FDR decreases from 15.4% with one transmit antenna to 3.8%
with two transmit antennas and 1.7% with four transmit
antennas. The PPV − FDR also improves with an increase in

the number of antennas as with four receive antennas, it increases
from 69.2% with one transmit antenna to 92.3% with two
transmit antennas and 96.6% with four transmit antennas.
These results further illustrate the impact of antenna diversity
on performance.

Figure 8 presents theMDR, FAR, and AR versus the number of
receive antennas with an SNR of 8 dB, velocity of 0.4 km/h, and
one transmit antenna for the single- and multiple-user
scenarios. This shows that the MDR, FAR, and AR increase
with the number of receive antennas in both scenarios. For
instance, in the multiple-user scenario, theMDR decreases from
44.9% with one receive antenna to 40.1% with four receive
antennas and 31.9% with eight receive antennas. The
corresponding FAR decreases from 17.7% with 1 receive
antenna to 3.7% with four receive antennas and 2.0% with
eight receive antennas, while the AR increases from 68.7%
with one receive antenna to 78.1% with four receive antennas
and 83.1% with eight receive antennas. These results also
indicate that the MDR, FAR, and AR are better in the single-
user scenario than in the multiple-user scenario. For instance,
with four receive antennas, the MDR for the single- and
multiple-user scenarios is 17.8% and 40.1%, respectively,
while the corresponding FAR and AR are 1.9% and 3.7%, and
90.2% and 78.1%, respectively.

Figure 9 presents theMDR, FAR, and AR versus the number of
receive antennas with an SNR of 8 dB, velocity of 0.4 km/h, and
one transmit antenna for the single-user scenario, and η = 0.2
and 0.8. An increase in η means that a higher percentage of the
data is treated as outliers, which decreases the MDR, so the
probability of accepting spoofers is reduced. For example, with
two receive antennas, the MDR is 26.6% for η = 0.2 and
decreases to 10.9% for η = 0.8. However, an increase in η

also results in a higher FAR, which increases the likelihood
of rejecting Alice. For instance, with one receive antenna, the
FAR is 8.7% for η = 0.2 and increases to 22.5% for η = 0.8. These
results indicate that an increase in η will increase the AR. For
example, with four receive antennas, the AR is 87.3% for η = 0.2
and increases to 92.0% for η = 0.8. Thus, η has a significant
impact on the authentication performance and, therefore,
should be chosen appropriately.

Figure 10 presents the AR versus the velocity with an SNR of
8 dB, 1 transmit antenna, and 4 receive antennas using the real and
imaginary components of the received signals as features (proposed
scheme) and using only the magnitude, as in Pei et al. (2014). This
shows that the AR with the proposed scheme is higher for all
velocities. For example, the AR at a velocity of 0.4 km/h using
the real and imaginary components of the signals as features is
89.2%, but it is only 56.7% using only the magnitude.

6 Conclusion

An adaptive PLA scheme was proposed that leverages ML and
the antenna diversity in MIMO communication systems.
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Authentication robustness is achieved via a sliding window to
continually update the attributes. Furthermore, an information-
theoretic perspective was given for PLA in MIMO systems. The
results presented illustrate the relationship between authentication
performance and the number of antennas; in particular, the mutual
information authentication rate IAR improves with the number
of antennas.
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