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The maritime domain is a major driver of economic growth with emerging
services, comprising intelligent transportation systems (ITSs), smart ports,
security and safety, and ocean monitoring systems. Sixth generation (6G)
mobile networks will offer various technologies, paving the way for reliable
and autonomous maritime communication networks (MCNs), supporting
these novel maritime services. This review presents the main enabling
technologies for future MCNs and relevant use cases, including ITSs with
reduced carbon footprint, ports and maritime infrastructure security, as well
as fault detection and predictive maintenance. Moreover, the current trends in
integrated satellite-aerial-terrestrial-maritime network architectures are
discussed together with the different network segments and communication
technologies, and machine learning integration aspects.
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1 Introduction

Maritime activities hold the key for economic development at a global scale. Relevant
figures highlight that shipping transports around 90% of goods while the deployment of
offshorewind energy has been increasingwith Europe alone targeting at least 42.5% renewable
energy by 2030, requiring a massive increase in installed wind capacity from 204 GW in
2022 to more than 500 GW in 2030 (Commission, 2024). Currently, the maritime industry,
which encompasses shipping and logistics, fishing, offshore energy, tourism and underwater
applications, is experiencing unprecedented expansion, as countries across the globe look to
exploit their maritime resources and strengthen their trade connections.

In this context, maritime communication networks (MCNs) support services related to
maritime transportation, smart ports, ocean monitoring, tourism, as well as search and rescue
(SAR) operations (Guan et al., 2021; Haidine et al., 2021). This service mixture is based on
heterogeneous networks nodes, including satellites, unmanned aerial vehicles (UAVs), shore
base stations (BSs), buoys, platforms, ships, unmanned surface vehicles (USVs), unmanned
underwater vehicles (UUVs), sensors, and actuators (Wang et al., 2021). Furthermore, maritime
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applications have varying QoS requirements, as, for example, services
for cruise ships demand broadband connectivity, SAR operations are
based on transmitting real-time video, while maritime IoT traffic must
adhere to ultra-reliable and ultra-low latency (URLLC) constraints
(Alqurashi et al., 2022). Towards this end, novel communications
algorithms should satisfy reliability and latency requirements by
design (Nomikos et al., 2018). Current maritime networking
architectures fall short of supporting the increasing number of
vessels, USVs, UUVs, sensors and novel maritime services, due to
unreliable connectivity, low data rates, insufficient spectrum, and
increased delays. Even though various industrial initiatives have been
deployed to offer broadband satellite coverage and long-distance shore-
to-vessel communications (Seo et al., 2017; Huo et al., 2020; SpaceX,
2021), further research on flexible and smart MCNs is needed.

Another critical factor for the success of MCNs in the 6G era is
their deep integration with machine learning (ML). In maritime
environments with geographically dispersed nodes, ML training
relies on data collection and processing from distributed sources,
experiencing varying propagation conditions. Thus, conventional
centralized ML might not be feasible, especially for URLLC
services. Likewise, proper data manipulation is needed to mitigate
the impact of diverse propagation conditions. Finally, in several cases,
training data might include sensitive information, that should be
stored locally and not transmitted to centralized premises (Trakadas
et al., 2022). Thus, to deal with these issues, decentralized learning
solutions have recently emerged to accelerateML execution times and
ensure data gravity (Aledhari et al., 2020; Wahab et al., 2021). Here,
federated learning (FL) is a popular solution where maritime nodes
exploit shared models, trained from excessive amounts of data,
without the need to centrally store it. Moreover, to enable edge
maritime nodes to participate in the ML process, over-the-air/
coded computing (AirComp)-based schemes have been proposed,
supporting communication and computation procedures via the
multiple-access channels’ superposition property (Yang et al., 2020a).

As it is evident, the maritime domain will continue growing and
the current communication infrastructure cannot cope with future
service requirements. In this review, we present the different MCN
architecture segments and communication technologies that are
currently proposed by academic and industrial stakeholders.
Moreover, we discuss enabling 6G technologies for enhanced
MCN deployments. In this context, various challenges that must
be addressed are highlighted and a discussion on key opportunities
for MCNs to support novel maritime use cases is included.

2 Maritime communication networks

MCNs have evolved from topologies mainly supported by
satellite constellations and shore BSs to heterogeneous networks,
where numerous UAVs UUVs, USVs, sea vessels, buoys, platforms,
and sensors cooperate to enable reliable communications in
challenging and volatile environments.

2.1 MCN segments

Figure 1 depicts four main segments in the MCN architecture.
More specifically, a maritime segment supporting underwater and

sea surface activities, a shore segment, an aerial segment and a
space segment.

2.1.1 Maritime segment
In this segment, edge MCN nodes are present, allowing for

surface and underwater data acquisition, data transmission with
multiple communication technologies, and edge computing tasks.

2.1.1.1 Underwater
The underwater segment includes sensors, underwater buoys

and UUVs, enabling data acquisition and forwarding to other MCN
nodes, such as UUVs, ships or UAVs. Here, electromagnetic waves
suffer from high attenuation in seawater when signals propagate
over longer distances, and acoustic communications might
be preferred.

2.1.1.2 Sea surface
On the sea surface, ships, USVs, and buoys exist, facilitating

intelligent maritime transportation, environmental observation,
data exchange with the other segments, and maritime SAR. Also,
novel networking solutions include giant cells, in the form of
seaborne floating towers, in the form of semi-submersible steel
reinforced concrete platforms (Guan et al., 2021).

2.1.2 Shore segment
The shore segment mainly host BSs, providing connectivity to

nearby maritime nodes and UAVs, using cellular standards.
Moreover, ground stations communicating with the space
segment exist. Other MCN elements include control centers and
cloud infrastructure to enable the processing of more demanding
computing tasks.

2.1.3 Aerial segment
Shore BSs and satellites provide extended coverage in MCNs

but they might hinder the performance of URLLC or broadband
services (Li et al., 2021). Thus, UAV-aided MCNs have
emerged, including aerial segments, offering dynamic radio-
resource provisioning to remote areas, reduced-latency
compared to satellite links and increased reliability (Ait Allal
et al., 2022; Nomikos et al., 2023). In addition to UAVs, the
aerial segment can employ high-altitude platforms (HAPs) at
the stratosphere.

2.1.4 Space segment
The space segment hosts various satellite systems, such as

geostationary earth orbit (GEO)-based INMARSAT and low-
earth orbit (LEO) constellations, such as Starlink. Apart from
wide coverage across MCNs, this segment is also employed as a
back-up when shore BSs andUAVs/HAPs fail to provide coverage to
MCN nodes.

2.2 Communication technologies

A number of different communication technologies are
employed in MCNs to adjust to varying environmental and
propagation conditions. This heterogeneous networking
paradigm should seamlessly exploit the capabilities of its
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different segments, in terms of radio- and computing resources to
go beyond current 5G capabilities, also offering in-network cloud
and edge AI.

2.2.1 Radio frequency (RF) communications
In traditional maritime communication systems, RF

transmissions operate on the very high frequency (VHF) band
between 156 and 174 MHz, offering radio services and SAR
support. In 6G, the use of the sub-6 GHz (Frequency Range
1–FR1) band will be adopted, following its use in terrestrial
deployments. Moreover, other spectrum bands, employed in
terrestrial networks will be considered, including the
millimeter wave band (FR2) between 24.25 GHz and 52.6 GHz
and the upper-mid band (FR3) between 7.125 and 24.25 GHz,
providing broadband communication and highly complementary
radio characteristics among the three bands.

2.2.2 Free space optical (FSO) communications
The desire for high-throughput services, low-cost set-up and

operation, increased security, and license-free use has motivated
researchers to introduce free space optical (FSO) communication,
under LoS conditions (Kaushal and Kaddoum, 2017). On the
downside, FSO transmissions are affected by atmospheric effects,
i.e., absorption, scattering, and turbulence (Lionis et al., 2021).

2.2.3 Visible-light communications (VLC)
Another attractive MCN technology is VLC, using light-

emitting diodes (LEDs) for data transmission, avoiding
impairments of the RF band, such as interference and signal

leakage. In maritime environments, VLC is especially useful in
underwater communications (Huang et al., 2020).

2.2.4 Acoustic communications
In underwater communications, long-range transmission can be

achieved through acoustic waves. In various works on underwater
channel characteristics, the main challenges include poor quality
and highly dynamic nature of acoustic channels, smaller channel
capacity over RF channels, multi-path-rich environment, and larger
propagation delay (Bouvet and Auffret, 2020; Cao et al., 2021).

3 Enabling 6G technologies and key
challenges

This section provides an overview of enabling technologies
for 6G MCNs.

3.1 Cooperative communications with relays
and RISs

The use of cooperative communications is critical in enhancing
MCNs, as the heterogeneous network nodes should work in tandem
to satisfy service requirements, also exploiting all the available
duplexing modes of the relays (Nomikos et al., 2014).
Nonetheless, the development of robust cooperative algorithms,
exploiting the heterogeneous MCN segments requires that
coordination and signalling overheads will be taken into

FIGURE 1
The different segments of a maritime communication network adapted from (Nomikos et al., 2023).
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consideration. Cooperative communications can support high data
rates, URLLC, and enhanced security, which are essential for 6G
MCNs. Here, UAVs play a significant role by serving as BSs or
relays, offering coverage extension and improving wireless
connectivity for nodes positioned on or below the sea surface. In
greater detail, UAVs can provide multi-hop transmissions to other
UAVs, and establish connectivity between underwater sensor nodes,
sea surface sink nodes, and shore BSs. Recent studies highlight the
advantages of UAV-assisted communications in maritime contexts.
For instance, the work in (Chen et al., 2020) demonstrated that
UAVs, acting as relay nodes, can significantly enhance theminimum
throughput of ocean surface drifting buoys. Another study,
(Nomikos et al., 2024), explored the role of opportunistic
relaying with UAV swarms in MCNs, revealing that deployments
with multiple UAVs can better support MCN services, compared to
conventional communication with shore BSs. Furthermore, in
integrated satellite-aerial-maritime communication networks, low
earth orbit (LEO) satellites can cooperate with UAVs to provide
reliable backhauling and increased data rates without significantly
degrading the latency performance. This ensures the robust support
of heterogeneous services, including augmented and virtual reality,
and telemedicine. In this way, data can reach other parts of theMCN
or shore-based infrastructure to support cloud and edge AI services.
Another technology with tremendous potential in cooperative
communications settings is reflecting intelligent surfaces (RIS).
RISs consist of multiple antenna patches that actively or passively
control the redirection of electromagnetic waves incident on them,
adapting their phase and amplitude to enhance signal strength and
reduce fading effects (Ramezani et al., 2022). Integrating RISs with
UAVs and satellites enhances data rates and reliability, efficiently
supporting IoT and smart shipping applications. Themain challenge
in this area corresponds to the development of robust cooperative
algorithms with minimized coordination and signaling overheads.

3.2 Machine learning-aided MCN
optimization

In the majority of related works on ML-aided MCN
optimization and performance evaluation, simple network
topologies have been considered (i.e., with reduced number of
UAVs, USVs, UUVs, etc.) in order to reduce the computational
complexity of the proposed optimization approaches. To address the
complexity of practical scenarios, advanced ML techniques must be
employed to handle large-scale deployments and the diverse
requirements of IoT devices, UAVs, and vessels. Likewise, how to
jointly address different sub-problems of MCNs, such as data
relaying, end-to-end communication among satellites/UAVs/
USVs/UUVs, and edge AI maritime service requirements have
not been investigated. In such large-scale deployments,
employing a realistic number of active IoT devices, UAVs and
vessels, efficient ML-aided MCN optimization is necessary. Thus,
as a result of the multi-parameter MCN aspects, advanced ML
algorithms, such as DRL can be very efficient, due to their ability to
adapt to various network conditions and provide appropriate
modifications (Lei et al., 2021). Another important enabler for
6G MCNs is distributed ML optimization, since MCN operation
is threatened by excessive communication and energy costs, as well

as latency and privacy requirements that cannot be supported by
centralized ML. Towards this end, transfer learning and FL
correspond to promising solutions to address these issues (Qu
et al., 2021), especially in edge AI scenarios. Transfer learning
initially extracts features, that, for example, in content caching
scenarios can correspond to file popularity on a base network,
relying on a generalized dataset. Then, these features are
leveraged by DRL agents on edge UAVs to derive the optimal
caching policy, thus reducing their energy consumption.
Moreover, FL exploits observations from multiple DRL agents at
different edge nodes to train a shared model. The main advantage of
FL in MCNs is communication cost reduction, as model updates are
only computed to update the global shared model at a coordinating
node and explicit data sharing is avoided. In this manner, privacy is
ensured, since sensitive information remains at the edge nodes.
Here, the main challenges are related to the computational
complexity of ML optimization for large-scale deployments,
ensuring data privacy in distributed ML frameworks.

3.3 Edge AI with over-the-air computation

The vessel-to-shore communications in an MCN using cellular
standards involves multiple transceivers mounted on heterogeneous
nodes that require simultaneous spectrum access. The propagation
conditions of maritime wireless channels often experience severe
signal degradation, resulting in an increased rate of transmission
errors and underutilized channels. Although the increase of the
transmission power in these channels minimizes the errors and the
frequency of re-transmission, it further compromises the spectrum
efficiency of the overall system due to co-channel interference, while
also escalating the energy demands of the nodes (Wang et al., 2018).
To this end, multiple access techniques that provide enhanced
spectrum utilization and energy efficiency are expected to play a
vital role in the 6G-enabled MCN architecture that consist of
multiple heterogeneous nodes (Zetas et al., 2024). In this context,
Over-the-Air Computation (AirComp) emerges as the most
promising technique for integrated 6G networks within a
heterogeneous IoT ecosystem, optimizing both energy efficiency
and spectrum utilization (Liu et al., 2020). AirComp leverages the
temporal superposition of multiple signals from diverse sources,
enhancing communication efficiency and data privacy. In an
AirComp system, communication nodes within the network
transmit their data simultaneously over a common Multiple
Access Channel (MAC). The pre-processed signals from all
transmitters are transmitted through the individual channels and
superposed in the receiver in the time domain. The receiver gathers
the aggregated signal (each individual signal is scaled by the
transmission power and the channel state information) and post-
processes it using a nomographic function (Yang et al., 2020b;
Tsinos et al., 2023). Therefore, AirComp encompasses both
spectrum and energy efficiency principles, since it is based on
non-orthogonal multiple access techniques and the transmission
power of the nodes are optimized to comply with strict power budget
limitations (Cao et al., 2020). In conclusion, AirComp can be useful
for environmental monitoring, sustainability, and advanced
maritime services such as real-time data analysis and emergency
response. Still, managing signal degradation in maritime channels
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and optimizing power allocation to reduce co-channel interference
remains an open issue.

4 Discussion

In this section, the role of MCNs in important maritime service
domains are discussed.

4.1 Sustainable maritime transportation and
supply chain

Sustainable maritime transportation is a critical aspect of
addressing global environmental challenges. The sector has been
increasingly adopting innovative technologies to reduce its
carbon footprint and enhance operational efficiency
(Giannopoulos et al., 2023). In this domain, efficient FL
operation towards reduced green house gas emissions and
optimized supply chain operation must be supported. FL
facilitates the training of ML models across multiple
decentralized devices or servers without requiring the
exchange of raw data (Skianis et al., 2023). In the maritime
sector, FL is particularly useful for optimizing routes,
predicting maintenance needs, and enhancing fuel efficiency
while ensuring data privacy and security (Giannopoulos et al.,
2024). By leveraging data from various ships and ports, FL
enables the development of robust predictive models that can
significantly reduce greenhouse gas emissions. Studies have
shown that FL can effectively enhance the performance of
predictive maintenance systems and optimize fuel
consumption, contributing to more sustainable operations
(Zhang et al., 2021; Angelopoulos et al., 2024). Additionally,
digital twin (DT) technologies can be useful for investigating how
adjustments to MCNs can impact their performance and
improving maritime services. DTs create virtual replicas of
physical assets, allowing real-time monitoring and predictive
maintenance. In maritime transportation, DTs can simulate
and predict ship performance under various conditions,
optimizing routes and improving fuel efficiency, thereby
reducing emissions (Madusanka et al., 2023).

4.2 Fault detection and predictive
maintenance

The maritime industry currently employs two main
maintenance strategies, namely, reactive and preventive
maintenance. Reactive maintenance entails the direct response to
machinery failures, leading to costly unplanned downtime events
(Swanson, 2001). In contrast, preventive maintenance, is a schedule-
based intervention strategy, relying on manufacturer-defined
projections of component usage, aiming to minimize unexpected
downtime events. However, despite its goal to minimize the non-
operational vessel periods, it may still result in significant costs due
to unnecessary and excessive repairs (Basri et al., 2017).

The introduction of predictive maintenance offers maritime
organizations a proactive approach to identify potential

machinery issues (Kalafatelis et al., 2023). Extensive research in
the literature focuses on real-time failure detection and proactive
prediction for machinery maintenance in maritime environments
(Berghout et al., 2021; Gribbestad et al., 2021; Liu et al., 2022).
However, real-world applications of predictive maintenance in
maritime settings are heavily relied on effective MCNs, as vessels
often operate in remote areas, far from terrestrial communication
infrastructures, necessitating global coverage. Aligned with the
Shipping 4.0 paradigm, predictive maintenance requires
continuous monitoring of key vessel components, enabling
maritime organizations, such as vessel owners or operators to
perform accurate and timely interventions, preventing costly
breakdowns and enhancing operational efficiency. MCNs are
crucial the secure transmission of real-time data supporting
centralized aggregations to onshore centers as well as
decentralized workflows such as FL, including, peer-to-peer,
hierarchical, asynchronous, and cross-silo communication models
(Han and Yang, 2021; Giannopoulos et al., 2024).

4.3 Increased security of ports and maritime
infrastructure

In order to guarantee uninterrupted maritime activities, MCNs
must provide reliable networking towards open and secure seas,
allowing free trade, transport, energy security and tourism by
protecting maritime infrastructure, offshore wind farms, and sea
harbours (Bueger and Liebetrau, 2023). Nonetheless, various
security challenges, stemming from advanced threats in the sea
surface and underwater domain have been identified, including,
sabotages, terrorist attacks, drug trafficking and smuggling. In this
area, MCNs must support reliable operation of remote inspection
and patrolling procedures. For example, ship hull anomaly detection
is required for vessel screening in port areas, often in regions where
the volume of shipping is large. These hull inspections are typically
executed with divers, or in some cases ROVs, using manual visual
inspection methods for navigation, imaging and assessment. These
manual processes are time-consuming and are often not very robust,
due to the turbidity of the operational environments (Lin and Dong,
2023). MCNs can enable automated inspection by ensuring timely
data collection and computations which in-turn reduces the time to
perform underwater inspections.

5 Conclusion

This review presented important communication and
networking technologies that will drive the development of 6G
MCNs. Also, various MCN-related challenges for providing
highly demanding and distributed maritime services were
identified. Finally, key domains where MCNs have the
opportunity to thrive, including maritime transportation and
supply chains with reduced carbon footprint, ports and maritime
infrastructure security, and fault detection and predictive
maintenance were discussed. Overall, the potential of MCNs to
accelerate the growth of the maritime domain is tremendous and
exciting opportunities arise for interested stakeholders to develop
6G innovations.
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