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In recent years, the increasing use of drones for both commercial and
recreational purposes has led to heightened concerns regarding airspace
safety. To address these issues, machine learning (ML) based drone detection
and classification have emerged. This study explores the potential of ML-based
drone classification, utilizing technologies like radar, visual, acoustic, and radio-
frequency sensing systems. It undertakes a comprehensive examination of the
existing literature in this domain, with a focus on various sensing modalities and
their respective technological implementations. The study indicates that ML-
based drone classification is promising, with numerous successful individual
contributions. It is crucial to note, however, that much of the research in this
field is experimental, making it difficult to compare results from various articles.
There is also a noteworthy lack of reference datasets to help in the evaluation of
different solutions.
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1 Introduction

Drones, or unmanned aerial vehicles (UAVs), are increasingly prevalent in various
fields such as agriculture, film-making, security, and disaster assistance. However, this
growth has also raised security concerns, such as terrorist attacks and illegal drone use. To
address these issues, reliable drone detection and classification systems have been
developed. The ability to efficiently recognize and categorize drones is crucial for
ensuring security and facilitating safe cohabitation between drones and people.
Consequently, the need for real-time accurate detection and classification of drones is
more urgent than ever as demonstrated in Azari et al. (2018a).

The increasing prevalence of amateur drones has raised significant concerns regarding
privacy and cybersecurity. These concerns have driven the development of advanced
detection methods utilizing deep learning technologies as presented in Al-lQubaydhi
et al. (2024). Drones can be detected using various sensors, including radars, acoustic
sensors, and visual cameras. These sensors help in identifying the presence of drones in
different environments. Once detected, it’s essential to classify the drones to assess whether
they pose a threat. Classification can be performed using either supervised or unsupervised
ML techniques. Supervised learning involves training a model on a labeled dataset, where
the input data (e.g., flying patterns, size, and other features) are already categorized. The
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model learns to map the input data to the corresponding labels,
allowing it to classify new, unseen data accurately. This method is
beneficial for scenarios where there is a clear distinction between
different types of drones and their behaviors. On the other hand,
unsupervised learning does not rely on labeled data. Instead, it
involves identifying patterns and structures within the input data to
group similar data points together. This method is useful
in situations where there is less prior knowledge about the data,
and the goal is to discover underlying structures without predefined
labels. Both supervised and unsupervised classification methods are
critical for distinguishing between benign and potentially harmful
drones, enabling appropriate responses to various UAV activities.
The classification can have two type: 1) Binary classification, which
distinguishes drones from other aircraft or birds, is often used; and
2) Multi-class classification is utilized to identify drone types and
specify their characteristics, such as the number of rotors or the
estimated payload. If a drone poses a threat, it must be neutralized
using methods such as signal jamming, taking control of the drone,
or even directly shooting it down. The type of neutralization
depends on the drone’s categorization and local anti-drone
system laws. Machine learning relies on the quality and quantity
of data used in training and testing to create powerful classification
models with low bias and variance. To reduce bias and prevent over-
fitting, data should cover a wide range of real-life situations. In drone
classification, researchers often generate their own data through
simulations, lab experiments, and outdoor measurements. Raw
sensor data requires pre-processing, such as filtering and feature
engineering, to ensure efficient learning and model generation.
Researchers use different features in time and frequency domains
depending on the modalities used. Deep learning, which learns
features inherently, omits feature extraction and selection but at the
cost of complexity and higher data demand.

This study provides an in-depth examination of the various
machine learning methods used for drone detection and
classification, with the goal of providing a better understanding
of their usefulness and limits. Numerous technical articles have
provided a succinct overview of drone detection and classification

research (Kaleem and Rehmani, 2018; Azari et al., 2018b; Guvenc
et al., 2018; Lu et al., 2019). However, as shown in Table 1, the
majority of these studies mainly focus on the functional aspects of
various technologies and give limited evaluations, comparing their
benefits and drawbacks. Our study provides a notable academic
contribution by conducting a comprehensive investigation into the
machine learning techniques utilized for drone detection and
classification. Rather than merely listing these ML methods, our
study focuses on critically evaluating their practical utility and
limitations. Through detailed analysis, we seek to enhance our
understanding of their effectiveness in real-world contexts,
considering factors such as scalability, robustness, and
adaptability. Additionally, our research aims to fill gaps in
existing literature by providing practical insights for researchers,
practitioners, and policymakers.

By highlighting both the strengths and weaknesses of different
machine learning approaches, our study contributes to advancing
this field and facilitates informed decision-making in the realm of
aerial security and surveillance. Indeed, we highlight fundamental
issues related to ML algorithms’ application and suggest future
research topics for further development in this field.

2 Machine learning algorithms

There are numerous algorithms based on machine learning that
may be used for drone detection and classification, depending on the
use case and available data. In the following, we present the concept
of the main ML algorithms employed to improve drone detection
and classification performances.

• Convolutional Neural Networks (CNN) Akter et al. (2021)
(Figure 1): are a machine learning technique that is frequently
used for image and video classification tasks. It learns a
hierarchy of features (colour, shape, size, texture, and
motion) from raw images recorded by cameras mounted on
drones or other sources and then classifies whether or not a

TABLE 1 Comparison of drone detection technologies.

Detection
technology

Approach Detection range Advantages Disadvantages

RF EM scattering of RF signals <1000 m Less influenced by obstacles
compared to other detection
methods

Ambient RF noise, multipath, non-line of
sight

Radar RF signal backscattering is used
to performDoppler tracking and
delay-based identification

Typically up to 3000 m, but varies
with radar type and environmental
conditions

Resistant to weather
conditions, long range

Detection Probability greatly dependent
on radar cross section, fly with low speed
at low altitude

Acoustic Sound generated by drones is
used to identify them

40–300 m Based on audio
characteristics, it is possible to
identify drones from birds

Low detection range, low accuracy

Video One or several cameras are used
for drone identification

100–1000 m Very accurate at short
distances

Sensitive to low ambient noise. At long
range, drones are difficult to distinguish
from other small flying objects

LiDar Backscattering of Laser light is
exploited

Typically up to 2000 m, but range
varies with laser power, target
reflectivity, and atmospheric
conditions

Very effective for drone
detection

Sensitive to weather conditions, drones
and birds are indistinguishable
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drone is present. To accomplish this, a large collection of
images is collected, then preprocessed to guarantee that they
are in a consistent format and size, as well as to remove any
noise or undesired features. This could include resizing,
cropping, or filtering the images. Finally, the CNN is
trained on the preprocessed images as input and binary
labels (drone or not drone) as output. CNN will learn to
recognize features in images of drones. CNN processes
incoming data through a sequence of convolutional layers
composed of a set of learnable filters. Each filter is composed of
a set of weights that are convolved with the input data to
produce a set of feature maps that highlight different aspects of
the input. A high weight is given to the most relevant features
to discriminate between drone and non-drone images.

• Support Vector Machine (SVM) Bazi and Melgani (2018): is a
machine learning algorithm utilized for binary classification
tasks. SVMs can be trained to distinguish between drone and
non-drone instances based on a set of features extracted from
sensor data. They are particularly useful when working with
smaller datasets or when computational efficiency is a priority.
However, their effectiveness might be limited in scenarios with
high variability in drone appearances and complex
backgrounds. SVM can be used in combination with other
machine learning methods, such as convolutional neural
networks (CNNs), to improve the accuracy of drone
recognition and classification. CNNs may extract features
from visual data, such as images or videos, and then use
SVM to classify the data based on those characteristics.

• Recurrent Neural Networks (RNNs) Utebayeva et al. (2022):
are used in situations where drone trajectory analysis is critical
for detection and classification. RNNs can model temporal
dependencies in drone movements, assisting in discriminating
between regular and suspicious drone operations. The
combination of CNNs and RNNs provides a complete
strategy for both visual and temporal analysis.

• Long Short-TermMemory Networks (LSTM) Utebayeva et al.
(2020): are a sub-type of RNN that have been used to evaluate
flight patterns, follow trajectories, and identify possible
hazards based on past data. LSTM networks may find long-

term associations in sequential data, including time-series
data. In the context of drone detection, LSTM networks
may be trained on sequential sensor data such as radar or
acoustic data to recognize patterns that indicate the
drone’s presence.

• Random Forest Alharam and Shoufan (2020): is a machine
learning technique that provides predictions by combining
many decision trees in the forest, either by majority vote or by
averaging the predicted probabilities, as illustrated by Figure 2.
Random forests and ensemble methods combine multiple
weak classifiers to create a strong classifier. These
techniques are robust against noise and can handle
complex decision boundaries. Ensemble methods can
incorporate various features and data sources, such as
visual data, acoustic signatures, and radio frequency signals,
to improve overall detection accuracy. They also offer a degree
of interpretability by analyzing the importance of features.

• Liquid State Machine (LSM) (Jin et al., 2016; Wijesinghe et al.,
2019; Kaiser et al., 2017; Soures and Kudithipudi, 2019; Ivanov
and Michmizos, 2021): is a RNN that mimics the dynamics of
interconnected neurons, commonly used for temporal signal
processing and pattern recognition tasks. In drone
classification, it acts as a preprocessing stage, transforming
raw sensory input into (such as visual or audio signals from
drones) a higher-dimensional representation that captures
temporal dynamics and complex patterns of input signals.

• Spiking Neural Networks (SNNs) (Yamazaki et al., 2022): are
artificial neural networks based on the biological functioning
of neurons in the brain. They use discrete spikes or pulses of
activity as their fundamental processing unit, unlike
traditional neural networks that use continuous-valued
activations and backpropagation principles. SNNs use
discrete spikes to communicate, with timing and frequency
crucial for encoding information and influencing processing
dynamics. SNNs, which are adept at processing temporal
information, can utilize the transformed output from the
LSM to classify drones’ presence and characteristics. They
can learn to identify specific temporal patterns associated with
different drone types or behaviors.

FIGURE 1
CNN algorithm for drone detection and classification.
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3 Radar-based drone detection and
classification using ML algorithms

Radar systems send radio waves through the air until they come
into contact with an object, allowing the radar receiver to determine
its distance, speed, and direction. There are various types of radars
used in various applications, including pulse radar, continuous wave
(CW) radar and Frequency-Modulated Continuous Wave (FMCW)
radar. Pulse radar estimates range by calculating the time delay
between the transmitted pulse and the returned echo. Continuous
wave radar detects frequency shifts in received signals, enabling
target velocity calculation. FMCW radar transmits a signal with
changing frequency and measures the frequency difference for range
estimation. Several studies have proposed the integration of machine
learning algorithms into radar devices for improved drone
identification accuracy and efficacy over long distances.

3.1 Existing works

The authors of Oh et al. (2019) developed an UAV classification
system using micro-Doppler signatures from FMCW radar. The
system analyzes radar signals from various UAVs and non-UAV
objects to determine their unique properties and motion patterns.
The system uses empirical mode decomposition (EMD) to extract
information from radar signals. The 13 intrinsic mode functions
(IMFs) offer classification information for UAVs. The method’s
accuracy in classifying non-UAVs vs. UAVs was 94.39%, while its
accuracy in classifying objects into three categories was 90.59%.

A novel technique for locating and identifying UAVs utilizing
5G millimetre wave radar is presented in the study in Zhao et al.
(2019). The technique makes use of the high-resolution range profile
(HRRP) to locate the UAVs, the cepstrum method to calculate rotor
number and speed, andmicro-Doppler characteristics to identify the
UAVs. The separation between multiple UAVs is achieved using
sinusoidal frequency modulation parameter optimization. The
technique gathers information such as the number of rotors,
rotation speed, and micro-Doppler properties. The strategy also

provides a GPS-free UAV tracking mechanism, guaranteeing
adequate detection precision for reliable tracking data.

The researchers in Fu et al. (2021) propose an improved LSTM
model for drone categorization based on radar cross section
characteristics at mmWave frequencies. In low-light
environments like indoors, this model enables more precise
drone detection at smaller sizes. To train the LSTM model, they
applied a weight optimization strategy and an ALRO model
(adaptive learning rate optimization). The experiment’s findings
demonstrated that the LSTM-ALRO model outperformed the prior
CNN-based model in drone identification by 99.88%.

The authors of Raval et al. (2021) use a CNN algorithm to
classify different types of drones. The dataset for this study was
created using a realistic drone model with input parameters from the
Martin and Mulgrew models. Micro-Doppler fingerprints derived
from radar waves were employed for classification. The CNNmodel
trained on data from an X-band radar system with a 2 kHz pulse
repetition frequency achieved an F1 score of 0.816, indicating high
accuracy across the dataset. In comparison, the CNN model trained
on data from a W-band radar system with a 20 kHz pulse repetition
frequency produced produced less performant results.

The authors of Garcia et al. (2022) suggest an enhanced radar-
based drone detection system based on a Neural Network (CNN-
32DC) that may identify approaching drone threats and aid in
protecting infrastructure against them. This system’s radar device
runs on a frequency band centred at 8.75 GHz. The Real Doppler
RAD-DAR database utilized in this systemwas obtained and built by
Microwave and Radar Group, and it includes over 17,000 data
samples from vehicles, drones, and humans. The suggested CNN-
32DC network has been demonstrated to be more accurate and
efficient than existing networks with less processing time, attaining a
high-accuracy result of 99.48% in identifying drones from
other objects.

The work Gong et al. (2023) presents a novel method to detect
small drones using radar, employing the Doppler Signal-to-Clutter
Ratio (DSCR) detector. This detector extracts the DSCR value of
targets and can detect radar signals in real-time without tracking. It
outperforms typical SNR detectors in terms of detection probability

FIGURE 2
Random Forest algorithms for drone classification.
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and decreases missed targets. The authors will investigate different
solutions for detecting and recognizing drones using the DSCR
detector in future works.

In conclusion, the presented studies have produced considerable
advancements in drone identification utilizing deep learning and
hybrid models. Convolutional Neural Networks (CNNs) and
Recurrent Neural Networks (RNNs) were used to handle
RADAR signals, yielding high accuracy in drone categorization.
For example, UAV classification approaches that use FMCW radar
and micro-Doppler signature analysis have demonstrated high
accuracy in recognizing drones. Similarly, deep learning-based
drone classification systems using radar cross-section signatures
at mmWave frequencies have shown high classification accuracy. In
Table 2, we compare the presented research works, based on
classification type, radar type, dataset, ML algorithm, accuracy,
and used features.

3.2 Discussion

All reviewed publications indicate favourable classification
results for radar systems, indicating that the technique is
promising. However, it is unclear if these techniques can be
adapted to encompass more drone types, greater ranges, other
radar sensors, and alternative signal processing schemes. The

majority of research is experimental, with little consideration
given to design options.

Most publications discuss machine learning’s capacity to
categorize drones vs. drones or drones vs. birds, although they
often presume detection. Second, owing to the continually
developing nature of UAV technology, keeping a broad and up-
to-date signature database for multiple UAV types is a considerable
issue. Radar systems could have trouble correctly identifying new or
modified UAVs without a comprehensive database. Additionally,
stealthy UAVs with low radar cross-sections are made to be as
undetectable as possible, making detection and categorization more
difficult. The need to track UAVs at various heights and distances
complicates the design of the radar system, which affects its
effectiveness and detection range. Furthermore, it could be
challenging to distinguish UAVs from ground vehicles or
stationary clutter due to their slow speed and low Doppler shifts.
The DSCR detector successfully collects radar signals from tiny
drones, even at clutter levels, according to the authors’ research in
Gong et al. (2023). In fact, the DSCR method improves the accuracy
of drone recognition by successfully rejecting clutter and reducing
false alarms brought on by stationary or slowly moving objects. Its
increased sensitivity allows it to identify small and slow-moving
drones, making it useful in situations where traditional radar
systems may struggle. Real-time radar data processing for UAV
detection and classification is a considerable computing challenge,

TABLE 2 Comparison of Related Works on Radar-Based Drone detection and Classification Using ML Algorithms.

Research
work

Classes Radar type Dataset Algorithm Detection/
classification

Accuracy Features

Oh et al. (2019) Multi-classes
(Different
types of
drones)

FMCW Radar COTSradar, a ground
based surveillance
system, was used to
collect data in
Singapore

Empirical mode
decomposition
(EMD) and the
TER algorithms

No/Yes Binary classification
accuracy: 94.39%,
Multi classes
classification (non-
UAV, fixed wing UAV,
and rotary wing UAV)
accuracy: 90.59%

Micro doppler
signatures

Zhao et al. (2019) NS 5G millimeter
wave Radar

NS NS Yes/No Three targets are
detected at distances of
300 m, 799.2 m, and
850.2 m from the radar

Micro doppler
signatures

Fu et al. (2021) Multi-classes
(Small and
large drones)

mmWave Radar Collected Radar signals
(8 multi-rotor drones,
1 radio-controlled
(RC), and 1 helicopter)

LSTM-ALRO No/Yes Classification accuracy:
99.88%

Cross Section
Signatures

Raval et al.
(2021)

Multi-classes
(different
models of
drones)

X-band and
W-band Radars

Generated dataset
using Martin and
Mulgrew model

CNN No/Yes F1 score of 0.816 ±
0.011 at an SNR of
10 dB

Short-Time
Fourier
Transform
(STFT)
spectrograms

Garcia et al.
(2022)

Binary
(Drones and
other objects)

FMCW Radar 17,000 samples of radar
signals related to
drones, cars, and
people are collected in
real outdoor scenarios

CNN-32DC Yes/Yes Detection probability:
96.86%, Classification
accuracy: 96.85%

Micro doppler
signatures

Gong et al.
(2023)

Binary (Small
Drones and
other objects)

Ku-band pulsed-
Doppler phased
array radar, and
X-band marine
surveillance radar

Collected data
including various
environments and
moving targets

NS Yes/No Compared to the SNR
detector, the DSCR
detector reduces
missed target rates by
utilizing a lower
detection threshold

Doppler Signal-
to-Clutter Ratio
(DSCR)
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especially when multiple UAVs are detected. For timely detection,
the radar system must handle enormous data quantities while
maintaining low latency.

In order to overcome current obstacles, subsequent
investigations in the field of radar-based drone detection should
focus on various critical aspects. Firstly, it is crucial to improve the
resilience of detection algorithms to environmental conditions such
as rain and fog. This entails the creation of adaptable algorithms
capable of maintaining a consistently high level of accuracy in the
face of changing weather circumstances. Furthermore, enhancing
the ability to handle data in real-time is essential for practical
applications. One way to achieve this is to investigate lightweight
machine learning models that are suitable for running on edge
devices. Furthermore, it is imperative to tackle the limited
availability of extensive annotated datasets by employing data
augmentation methods and incorporating synthetic data
produced through simulations.

4 Acoustic-based drone detection and
classification using ML algorithms

Acoustic drone detection systems employ sound waves in order
to recognize and locate drones in the airspace. These devices work by
analyzing the acoustic signature that a drone emits when its motor
and rotors are in operation. Machine learning is used in acoustic
drone detection and classification because it may help distinguish
exactly between the sound of a drone and other noises in the
environment, such as wind or background noise.

4.1 Existing works

The authors of Matson et al. (2019) present a technique for
identifying drones that makes use of numerous acoustic nodes as
well as machine learning algorithms. Through realistic tests, they
enhanced the configuration of these nodes. During training, the
system made use of the short-time Fourier transform and Mel-
frequency cepstral coefficients. Support vector machines and
convolutional neural networks were trained using real-world
data. Four sensor node configurations were tested, and the
optimal configuration was determined to maximize detection
range without blind areas.

The research paper Dumitrescu et al. (2020) proposes an
acoustic system for detecting, locating, and transmitting the
positions of drones. This system might be helpful for monitoring
sensitive areas and private property holdings. The system was
evaluated using a spiral MEMS (Micro-Electro-Mechanical
Systems) microphone array, utilizing concurrent neural networks
and acoustic signal processing. According to the study, medium
multi-rotors can be observed from a distance of 380 m, and large
multi-rotors may be seen from a distance of 500 m.

The study in Casabianca and Zhang (2021) explores the
use of machine learning algorithms for detecting UAVs using
acoustic signals. CNNs, RNNs, and Convolutional Recurrent
Neural Networks (CRNNs) are three types of deep neural
networks (DNNs) the researchers employ for analyzing mel-
spectrograms. The CNN algorithm performs better at detecting

UAVs than both RNNs and CRNNs. The researchers also
investigated late fusion methods, reaching an average
accuracy of 94.7%.

The study in Ahmed et al. (2022) presents an acoustic-based
drone detection system that employs machine learning. The authors
retrieved 26 Mel Frequency Cepstral Coefficients (MFCCs) from
audio signals using a publicly available drone database and
environmental signals. The Random Forest and MLP algorithms
employed MFCCs to achieve an average F-score of 0.92 on the
training data, indicating the reliability of the system.

The study in Henderson et al. (2022) presents an auditory drone
detection and identification system using SNNs and LSMs
algorithms. The proposed approach achieves an accuracy of
97.13% for detection and 93.25% for identification tasks on a
publicly available acoustic drone dataset. The results emphasizes
the potential of neuromorphic hardware, which is lightweight,
efficient, and low-cost, for drone applications in energy-
constrained environments.

The paper Akbal et al. (2023) introduces a new sound dataset for
detecting acoustic drones (ADr) and presents an accurate
classification model for ADr detection. The model uses the
skinny pattern and iterative neighbourhood component analysis
(INCA) feature selector to extract features at multiple levels from
ADr sounds. The model is tested using 16 classifiers in five
categories, including decision tree, discriminant, support vector
machine, k-nearest neighbour, and ensemble classifiers. The best
classification accuracy achieved was 99.72% using Fine k-nearest
neighbour, demonstrating the success of the skinny pattern and
INCA-based ADr detection model in accurately identifying acoustic
drone sounds.

In Anwar et al. (2019), the authors address the growing security
concerns associated with UAVs by proposing a novel ML framework
for detecting amateur drones (ADr) based on sound. Their approach
involves extracting features from drone sounds usingMel Frequency
Cepstral Coefficients (MFCC) and Linear Predictive Cepstral
Coefficients (LPCC). The study employs SVM with various
kernels for classification. The experimental results reveal that the
SVM with a cubic kernel and MFCC features achieves an impressive
accuracy of approximately 96.7% in detecting drone sounds.
Additionally, the proposed ML framework outperforms
traditional correlation-based methods by more than 17% in
detection accuracy, demonstrating its effectiveness in
distinguishing drone sounds from other environmental noises
like birds, airplanes, and thunderstorms.

In summary, recent studies underscore the effectiveness of ML
algorithms in enhancing acoustic-based drone detection. High
detection accuracy has been achieved by utilizing multiple
acoustic nodes coupled with ML models, demonstrating the
potential of distributed acoustic sensing systems for reliable
drone detection. Further research highlighted the power of deep
learning by achieving significant improvements in detection
accuracy through the late fusion of deep neural networks. This
approach leverages multiple layers of data processing, enhancing the
system’s ability to distinguish drone sounds from background noise
effectively. Robust performance in drone sound classification using
various ML techniques has also been showcased, emphasizing the
adaptability and precision of these models in different acoustic
environments. In Table 3, we compare the presented research
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works based on acquisition method, maximum range, dataset, ML
algorithm, accuracy, and used features.

4.2 Discussion

The research on acoustic drone detection using machine
learning is still in its early stages, with limited studies utilizing
microphone arrays for localization. Comparing contributions is
challenging due to variations in drone types, ranges, features,
classification methods, and performance metrics. The lack of
extensive databases containing the acoustic signatures of various
UAVs hinders the development and validation of classification
algorithms. Background noise can obscure UAV sounds, making
it difficult to distinguish them from other sources. The variability in
acoustic signatures among different UAV types and models
complicates the creation of accurate classification systems.
Acoustic detectors proposed so far have a maximum detection
range of 500 m, as indicated in Dumitrescu et al. (2020).
However, the impact of distance and environmental factors on
acoustic signals, which may limit the range of detection and
classification, has not been thoroughly investigated in the
reviewed papers. Furthermore, acoustic sensors can be integrated
with event-driven processing techniques, such as SNNs, to process
sound events in an energy-efficient manner. As demonstrated in
Henderson et al. (2022), SNNs and Liquid State Machines (LSMs)
offer valuable advantages in energy-constrained environments like
drones. SNNs operate using discrete spikes, reducing computational
and energy requirements compared to traditional continuous-

valued neural networks. They process information event-driven,
consuming resources only when a spike occurs, resulting in energy
savings during periods of inactivity. SNNs can transmit information
using spikes, which are binary events, reducing communication
overhead compared to continuous activations. LSMs often rely on
local computations and connections, minimizing the need to
transmit data to a central processing unit. They draw inspiration
from biological neural systems, making them well-suited for energy-
constrained environments. On the other hand, LSMs use reservoir
computing to process temporal signals, capturing complex patterns
in input data, reducing computational costs and enabling more
efficient data processing.

Future research in acoustic-based drone detection and
classification should concentrate on several key areas to enhance
performance and address current limitations. Firstly, improving the
robustness of detection algorithms against varying background
noise levels is essential. Acoustic systems can be significantly
impacted by environmental sounds, so developing advanced
signal processing techniques to filter out these interferences
effectively is crucial. Secondly, the integration of machine
learning models capable of real-time analysis is critical. Many
existing systems struggle with processing speed, so future work
should focus on lightweight and efficient algorithms that can operate
on edge devices, enabling faster detection and classification. Thirdly,
expanding the dataset diversity used for training acoustic models is
vital. Current datasets often lack representation of various drone
types and operational conditions. Research should focus on
collecting extensive real-world acoustic data and employing data
augmentation techniques to enhance model training.

TABLE 3 Comparison of Related Works on Acoustic-Based Drone detection and classification using ML Algorithms.

Research
work

Acquisition
method

Max
range

Dataset Algorithm Accuracy Features

Matson et al.
(2019)

Multiple acoustic
nodes system

75 m Drone and environment
noise audio signals

CNN and SVM Classifier SVM shows best
detection accuracy in
terms of color map

Mel Frequency Cepstral
Coefficients (MFCCs) and
short-time Fourier
transform (STFT)

Dumitrescu et al.
(2020)

Specialized spiral
microphone array with
MEMS microphones

500 m Dataset from GitHub
(acoustic signatures of
7 drones)

Binary classification (drone/
non drone). Random Forest
and MLP algorithms

Average F-score
of 0.92

MFCCs

Casabianca and
Zhang (2021)

NS NS Several multirotor drones
and background audios
obtained from web
sources

Binary classification (drone/
background). CNN, CRNN,
RNN, late fusion networks

From 91.0% to 94.7% Fast Fourier
transform (FFT)

Ahmed et al.
(2022)

NS NS Drone database from
GitHub (acoustic
signatures of different
drones and
environmental signals)

Binary classification (drone/
non drone). Random Forest
and MLP algorithms

Average F-score
of 0.92

MFCCs

Henderson et al.
(2022)

NS NS Publicly available
acoustic drone dataset.

Spiking Neural Networks
(SNNs)/Liquid State
Machine (LSM)

Drone detection
accuracy: 97.13%

MFCCs

Akbal et al. (2023) NS NS Collected dataset. Binary classification (drone/
non drone). Decision tree
(DT), discriminant (D),
support vector machine
(SVM), k nearest
neighborhood (kNN), and
ensemble classifiers (EC)

Best classification
accuracy achieved:
99.72% using Fine
k-nearest neighbor

Iterative Neighborhood
Component Analysis
(INCA) feature selector
combined with the tunable
Q-factor wavelet transform
(TQWT)
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5 Visual-based drone detection and
classification using ML algorithms

Visual drone detection systems take videos or images of drones
and use image processing algorithms to interpret the data. These
devices capture high-resolution images of the airspace while
recording drone size, shape, and movement. These systems can
recognize and track drones with greater precision and are less
impacted by weather conditions. Machine learning approaches
can increase the reliability and accuracy of these systems by
providing an exhaustive view of the airspace.

5.1 Existing works

In Seidaliyeva et al. (2020), the authors present a real-time drone
detection algorithm in a video with a static background. The method
separates the work into detection and classification phases,
identifying moving objects using background removal and
morphological processes. The detected objects are classified as
drones, birds, or backgrounds using a CNN algorithm. The
training dataset consists of 1,000 video frames with a resolution
of 640 × 480 pixels. The algorithm’s accuracy for drone recognition
is stated to be 94.5%, however, it is heavily dependent on the
presence of a moving background. Indeed, the dynamic nature of
backgrounds like wind-driven vegetation or water bodies can make
it difficult to identify drones from background motion, resulting in
increased false positive and negative rates.

In Garcia et al. (2020), the authors present a vision-based drone
detection system that uses neural networks to detect drones and
prevent cross-border crime such as human trafficking and the
smuggling of drugs. The system uses a faster R-CNN with a
ResNet-101 network. Using the SafeShore dataset, the proposed
technique for visual sensing has an accuracy of 93.40% and correctly
identifies the drone in the test video simulation without confusing it
with a bird.

The authors in Wisniewski et al. (2021) propose a method for
generating synthetic drone images to train a convolutional neural
network to identify drone models in real-life video streams. They use
the Anti-UAV dataset, which includes videos and ground truth
labels for various drone models (DIJ Inspire, DIJ Mavic-Pro, DJI
Phantom, DJI Mavic-Air, DJI Spark, and Parrot drones). The
DenseNet201 architecture achieved an average accuracy of 92.4%
on the test dataset.

The study in Samadzadegan et al. (2022) developed a deep CNN
algorithm for detecting and recognizing drones using visible
imagery. The model used public images and videos of multirotor
and helicopter drones and various bird species. The model used
features like colour, texture, and shape. It achieved an mAP (mean
Average Precision) of 84% and an accuracy of 83%, indicating high
performance in drone detection and recognition. mAP is a common
performance metric used to evaluate the accuracy of object detection
and localization models in computer vision. Average Precision (AP)
measures how well a model ranks and localizes objects in its
predictions, and the mean Average Precision (mAP) calculates
the average AP across multiple classes.

The study Aydin and Singha (2023) introduces You Only Look
Once version 5 (YOLOv5), a one-shot detector for drone detection

that uses pre-trained weights and data augmentation to train using
YOLOv5, a fast object detection algorithm. A one-shot detector is a
type of object detection model that aims to recognize and locate
objects in images or video frames with minimal training examples.
Unlike traditional object detectors that often require a large dataset
for training, one-shot detectors are designed to achieve reasonable
accuracy with only a single example of each object category. In this
work, the proposed YOLOv5 model uses images of drones and birds
from public sources like Google, Kaggle and Instagram. The drone
photos were captured from various heights, angles, and
backgrounds, to ensure the diversity in the dataset. The model
achieved a 90.40% mAP improvement over the previous You Only
Look Once version 4 (YOLOv4) model.

The MultiFeatureNet (MFNet) and its variations, including
MFNet-Feature Attention (MFNet-FA), are promising in drone
detection and classification Khan et al. (2022). These models
improve detection accuracy and efficiency by capturing
concentrated feature maps and adaptively weighting input feature
channels. MFNet uses convolutional neural networks to process and
analyze visual data, extracting detailed features from drone images.
Khan et al. (2024) used various versions of MFNet to cater to
different detection requirements and computational constraints.
The dataset used for training and evaluation included diverse
scenarios with drone types, backgrounds, and environmental
conditions. MFNet-M achieved a precision score of 99.8% for
bird detection, while MFNet-L achieved 97.2% for UAV
detection. MFNet-FA-S, which incorporates the Feature Attention
module, enables real-time inference and multiple-object detection,
enhancing practical deployment in surveillance and security
applications.

In conclusion, recent studies have highlighted the effectiveness
of ML algorithms in visual-based drone detection. High accuracy in
real-time drone detection using static background videos has been
demonstrated, showcasing the practical applicability of
Convolutional Neural Networks in surveillance systems. The
potential of deep learning has been further validated by
significant improvements in detection accuracy with neural
network-based anti-drone systems. Additionally, robust
performance in drone model identification and recognition has
been demonstrated, emphasizing the versatility of CNNs in
handling various visual data types. Collectively, these studies
illustrate the transformative impact of ML algorithms,
particularly CNNs, in enhancing the accuracy and reliability of
visual-based drone detection systems. In Table 4, we compare the
presented research works based on classification type, dataset, ML
algorithm, accuracy, and used features.

5.2 Discussion

Research on drone detection and classification through visual
systems confronts a range of challenges. Firstly, the diversity of
drone designs in terms of size, shape, and appearance hampers the
creation of a universally applicable detection model. Secondly, the
complex and varied backgrounds in which drones operate pose
significant challenges for accurate detection. Drones can easily blend
into their surroundings, making them difficult to differentiate from
natural objects or other elements in the environment. This
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camouflage effect can lead to false negatives or missed detection,
which can be a critical issue in security, surveillance, and safety
applications. Additionally, the dynamic nature of lighting
conditions, including shadows and glare, adds complexity to the
process, potentially leading to both false positives and negatives.
Another significant set of challenges involves the technical aspects of
detection. Detecting drones accurately across different scales and
distances is an ongoing struggle. Privacy concerns and legal
restrictions hinder the acquisition of comprehensive and diverse
datasets for training, limiting the effectiveness of machine learning
models. To address this, some authors resort to transfer learning or
generate synthetic images using dedicated software to increase the
dataset size, while others consider data augmentation to enhance the
dataset size and diversity. By applying various transformations to
existing images, such as rotations, translations, and brightness
adjustments, the dataset becomes more robust. This aids in
training models to be resilient to different visual conditions or
generative models like Generative Adversarial Networks (GANs)
to create artificial data similar to real data. Finally, visual drone
detection heavily relies on a clear line of sight (LOS) between the
drone and camera system. This requirement limits the system’s
effectiveness in scenarios where obstacles, adverse weather, altitude
variations, and urban environments obstruct the direct visual
connection. Obstacles like buildings and trees can obscure
drones, adverse weather conditions can diminish visibility,
altitude differences can lead to drones being out of the camera’s
field of view; and complex urban layouts can create shadows and
occlusions.

Future research in visual-based drone detection should
concentrate on several key areas to enhance current capabilities.
One critical area is developing adaptive algorithms that can
maintain high detection accuracy in dynamic and cluttered
environments, addressing challenges posed by varying lighting
conditions and complex backgrounds. Additionally, improving
real-time processing capabilities through lightweight and efficient
machine learning models suitable for edge devices is essential for
practical applications like security and surveillance. The scarcity of
labeled visual datasets remains a significant challenge. Future efforts
should focus on advanced data augmentation techniques and the use
of synthetic data generated through simulations to enhance model

training. Leveraging transfer learning, where pre-trained models on
large datasets are fine-tuned for specific tasks, can also help mitigate
data scarcity issues.

6 RF-based drone detection and
classification using ML algorithms

RF systems detect unique electromagnetic signals emitted by
drones, such as remote control, telemetry, or GPS signals, for
identification and tracking. Environmental factors like the
weather and terrain can have an impact on these signals.
Machine learning can analyze these signals to extract drone
presence features and filter out noise and interference. By
incorporating machine learning algorithms, these systems can
adapt to new or unknown signals and distinguish between
different drone types, especially as drone technology evolves
rapidly with new types and different radio signals.

6.1 Existing works

The authors in Al-Sa’D et al. (2019) use deep learning to detect
and identify drones using RF-basedmethods. They provide an open-
source drone database and show average classification performance
for three deep neural networks. The first DNN achieved 99.7%
accuracy for binary classification, 84.5% for multi-class
classification, and 46.8% for multi-class classification. The
accuracy of multi-class classification decreases because of
similarities in drone RF spectra, which may be reduced by
utilizing sophisticated classification methods.

In Allahham et al., 2020), the authors developed a drone detection
and identification system utilizing RF sensing. For classification and
feature extraction; the system employs a multi-channel, 1-
dimensional convolutional neural network. The authors introduced
a new dataset called DroneRF, which includes RF signals from several
drone types. The classification process is divided into three stages:
detecting the drone’s presence, recognizing its type, and determining
its flying mode. The first stage achieved an average accuracy of 100%,
followed by the second stage at 94.6%, and the last stage at 87.4%.

TABLE 4 Comparison of Related Works on Visual-Based Drone detection and classification using ML algorithms.

Research
work

Classes Dataset Algorithm Accuracy (%) Features

Seidaliyeva et al.
(2020)

Binary classification
(drones, birds)

1,000 video frames with a
resolution of 640 × 480 pixels

CNN Drone detection
accuracy: 94.5

Learned features

Garcia et al. (2020) Binary classification
(drone, birds)

The SafeShore dataset is used
(http://safeshore.eu
/dataset/)

A Faster R-CNN (Region-based
Convolutional Neural Network)
with ResNet-101 (Residual Neural
Network-101)

Accuracy: 93.40 Learned features

Wisniewski et al.
(2021)

Multi-classification
(different types of drones)

Anti-UAV dataset. CNN Detection
accuracy: 92.4

Model, size, and
payload

Samadzadegan et al.
(2022)

Binary classification
(drone, birds)

Public images and videos of
drones and birds

CNN mAP of 84 Color, texture, and
shape features

Aydin and Singha
(2023)

Binary classification
(drone, birds)

Images of drones and birds
collected from public sources

YOLOv5 mAP of 84 Learned features
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In Medaiyese et al. (2020), the authors employ an ensemble
machine learning algorithm called XGBoost (Extreme Gradient
Boosting) for drone detection and identification using RF-based
signals. In XGBoost, individual decision trees undergo incremental
training to correct the mistakes made by their predecessors. The final
predictions are then generated by combining these trees. XGBoost
optimizes the ensemble process by using gradient descent to
minimize a loss function, effectively enhancing the model’s
performance across iterations. It also employs regularization
techniques to control overfitting and enhance generalization. In
this work, the authors used half of the feature vector from a previous
work and input the lower and upper bands of the RF signature. The
XGBoost model is used in experiments on the DroneRF dataset, with
three cases: detecting drone presence, identifying a specific type, and
determining the drone’s operational mode. The models achieve an
average accuracy of 99.96% using only the lower band of the RF
signature as input features.

The algorithm proposed in Mo et al. (2022) involves
constructing a deep learning UAV detection and classification
network based on radio frequency compressed signals,
performing filtering and feature extraction on the compressed
measurement signal, and using machine learning algorithms such
as KNN and XGBoost to classify the UAV types and modes. The
features used for classification are extracted from the RF signals, and
the dataset used for evaluation is a publicly available dataset. The
type of UAV and corresponding flying modes are determined with
an average accuracy of about 99%.

The research in Alam et al. (2023) suggests a complete way to
find and identify drones using deep learning and RF technology with
different signal-to-noise ratios and the CardRF dataset. The
proposed approach used a CNN-based model to classify RF
signals emitted by drones and identify their models. The
algorithm achieves an accuracy of 97.53% for the detection task
and an accuracy of 76.42% for the identification task.

In conclusion, recent studies have demonstrated the
effectiveness of ML algorithms in enhancing RF-based drone
detection. High accuracy in drone identification has been
achieved by training deep learning models on extensive RF
datasets, highlighting the potential of deep learning to handle
complex signal data. Similarly, detection accuracy has been
significantly improved with a multi-channel CNN approach,
which effectively processes complex RF signals and enhances
classification reliability. Robust performance in drone detection
and identification has also been shown using an ML framework,
validating the integration of ML algorithms with RF signal analysis.
These key results underscore the advancements in RF-based
detection systems through the application of deep learning
techniques, paving the way for more accurate and reliable drone
monitoring solutions. In Table 5, we compare the presented research
works based on classification type, dataset, ML algorithm, accuracy,
and used features.

6.2 Discussion

The role of RF signals in drone technology is pivotal, offering
potential applications in detection and localization. However, their
efficacy can be compromised when drones venture into autonomous

operations, navigating predefined GPS routes with minimal RF
connectivity to ground stations. This autonomy restricts
communication, making it challenging to utilize RF signals
effectively. Machine learning for RF data analysis is a relatively
new field, hindered by a lack of comprehensive public RF datasets,
which hinders the validation and benchmarking of various
techniques.

Furthermore, current techniques are limited in their capacity to
perform well in low signal-to-noise ratio circumstances. This
limitation underscores the need for robust strategies capable of
extracting meaningful information from RF signals even amidst
significant background noise. Additionally, the current research
landscape predominantly relies on controlled indoor
environments, failing to capture the complexities of real-world
scenarios where RF signals are susceptible to degradation,
jamming, and interference. For RF-based drone detection and
localization techniques to evolve into dependable solutions, they
must confront these practical adversities, adapting to the challenges
posed by genuine operational conditions.

To advance RF-based drone detection technology, future
research must adopt a multifaceted approach. Developing
innovative communication protocols is essential for enhancing
interactions between drones and ground stations, especially
during autonomous flight. Creating diverse and representative RF
datasets is crucial for effective algorithm development and
assessment, as it will improve the robustness of detection systems
in varied RF environments. Addressing the limitations of machine
learning algorithms under low signal-to-noise conditions will
require the exploration of advanced signal processing techniques
and the integration of domain expertise. Additionally, enhancing
real-time processing capabilities through lightweight and efficient
machine learning models for edge devices is vital for practical
implementation. This involves optimizing computational
efficiency without compromising accuracy to enable quicker and
more responsive detection systems.

7 LiDAR-based drone detection and
classification using ML algorithms

LiDAR is a remote sensing technology that utilizes laser beams
to measure the time it takes for reflected light to return to a sensor. It
can detect drones and provide information about their speed,
direction, and altitude. LiDAR’s primary advantage is its ability
to accurately measure distances between objects, enabling drones to
distinguish themselves from other objects like birds. It excels in low-
light or adverse weather conditions, where visual or RF-based
detection methods may be hindered. Compared to radar, LiDAR
offers higher spatial resolution, enabling the creation of precise 3D
maps for drone identification in complex environments. It also
improves object recognition, reduces false alarms, and improves
detection accuracy. However, LiDAR requires direct line-of-sight
and can be more expensive and power-intensive than radar.

When using Lidar systems in combination with machine
learning for drone detection, the LiDAR system provides
information on the distance and position of objects in its field of
view. This data may be used to generate a 3D point cloud
representation of the environment, which machine learning
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algorithms can use to identify and categorize drones. The authors in
Hammer et al. (2020) propose a method to differentiate between
drones and birds using LiDAR point clouds and images. They use
standard 360° scanning LiDAR sensors for automotive applications
to identify and track flying objects at 50-meter distances. A grayscale
camera points towards the object and records a picture, then uses a

CNN algorithm to distinguish between the two. The proposed Light
Imaging Detection and Ranging system in (Salhi and Boudriga
(2020) uses a quasi-spherical shape with vertically arranged
transmitters and receivers to form one or multiple arrays of
receivers and transmitters, as shown in Figure 3 The system
transmits laser light to target potential drones within a

TABLE 5 Comparison of Related Works on RF-based Drone detection and classification using ML Algorithms.

Research
work

Classes Dataset Algorithm Accuracy Features

Al-Sa’D et al.
(2019)

Binary classification (drones vs.
non-drones) and multi-class
classification (different types of
drones)

Open source drone database Three designed DNNs Binary classification
accuracy 99.7%

Spectral and statistical
features

Allahham et al.
(2020)

Multi-class classification DroneRF dataset includes RF
signals of different drones
functioning in various flight states
such as on, off, hovering, flying,
and video recording

Multi-Channel 1DCNN
(1-Dimensional
Convolutional Neural
Networks)

Classification
accuracy:87.4%

Signal strength,
frequency content,
phase shifts, or
modulation patterns

Medaiyese et al.
(2020)

Binary and Multi-class
classification

DroneRF dataset. XGBoost algorithm Classification
accuracy; 99.96%

Lower band (LB) and
upper band (UB) of the
RF signature

Mo et al. (2022) Multi-class classification (UAV
types and modes)

Publicly available dataset. KNN and XGBoost
algorithms

Classification
accuracy: 99%

Radio frequency
compressed signals

Alam et al. (2023) Multi-class classification
(different Manufacturers)

CardRF dataset. CNN. Detection accuracy:
97.53%, Classification
accuracy:76.42%

Raw RF signals

FIGURE 3
LiDAR system.
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predefined surveillance zone. A portion of the emitted light is
reflected back by the target, reaches optical receivers, and is
collected by a central photodiode. Two alternatives are available:
one-array turning Lidar, which consists of only one array with
rotational movement, and multi-array static Lidar, which has a fixed
Lidar system with multiple arrays for increased drone detection.

LiDAR technology holds significant promise for drone detection
but also presents several challenges that future research must
address. One key limitation is the relatively short range of
commercial LiDAR systems compared to radar, which limits
their effectiveness for detecting drones at high altitudes or over
long distances. Additionally, buildings and dense vegetation can
obstruct LiDAR’s line-of-sight capabilities, complicating the
detection of hidden drones. LiDAR also struggles with
distinguishing materials or surfaces with similar reflectance
properties, which can lead to false positives or negatives in
environments with highly reflective surfaces.

Future research directions should focus on enhancing the
robustness of LiDAR-based detection systems in various
environmental conditions. This involves developing algorithms
that can maintain high accuracy in adverse weather conditions,
such as rain, fog, and other challenging environments that can
degrade LiDAR performance. Another critical area is improving
real-time processing capabilities by developing lightweight and
efficient ML models suitable for deployment on edge devices.
This enhancement is crucial for applications in surveillance and
security, where timely detection and response are essential. The
integration of LiDAR data with other sensor modalities, such as
radar and cameras, is another important research avenue.
Multimodal sensor fusion techniques should be investigated to
improve detection accuracy and robustness by leveraging the
strengths of different sensor types. For example, combining
LiDAR with radar can enhance detection capabilities in poor
visibility conditions, while integrating cameras can provide
additional visual context for better classification. Addressing the
scarcity of labeled datasets is also vital for the development of robust
ML models for drone detection. Research should explore data
augmentation techniques and the use of synthetic data generated
through simulations to create large, diverse datasets. These datasets
will enable the training of more robust and generalizableMLmodels.

8 Multi sensor systems

Multi-sensor systems, which combine several sensors, including
radar, lidar, cameras, acoustics, and RF, to improve performance
and accuracy, are crucial for drone detection and classification.
These systems combine data from several sensors to produce a
reliable detection and classification solution while taking into
account the advantages and disadvantages of each sensor. Multi-
sensor systems can increase detection range and accuracy by
integrating many sensors, especially in difficult weather or
complex environments. In addition, having redundant sensors
increases system reliability. If one sensor fails or faces
interference, other sensors can still provide data for detection
and classification, ensuring continuous operation. The use of
multi-sensor systems allows for the integration of data from
multiple sensors, allowing for more accurate and reliable drone

classification. Each sensor provides unique information that, when
fused, can result in a more detailed and comprehensive classification
and allow better tracking and localization of drones, enabling real-
time monitoring and response. Multi-sensor systems enable cross-
validation of detected targets. By confirming the presence of a drone
using multiple sensors, false alarms can be reduced, leading to a
more reliable threat assessment. Also, some sensors excel at specific
aspects of detection and classification. For example, cameras are
useful for visual identification, while radar can detect non-line-of-
sight objects. Integrating these complementary technologies
enhances overall system capabilities.

In the literature, several multi-sensor information fusion
approaches are proposed, such as (Liu et al., 2017; Jovanoska
et al., 2018; Diamantidou et al., 2019; Dudczyk et al., 2022; Fei
et al., 2022). Meanwhile, there are several critical challenges that
must be addressed. First and foremost, an appropriate and effective
method of combining information collected from several sensors
should be developed since the collected data contains a lot of noise in
many cases. Furthermore, multi-sensor information is acquired
utilizing various sensor configurations, implying that the raw
data will have different representations. This leads to variable
predictive power. Key results from the presented studies
underscore the effectiveness of multi-sensor systems in drone
detection and classification. These systems combine data from
various sensors, such as cameras, microphones, radar, and
LiDAR, to enhance accuracy and reliability. High accuracy in
drone detection has been achieved using an audio-assisted
camera array, demonstrating the practical applicability of
integrating audio and visual data. Significant improvements in
detection and tracking accuracy have been realized with multi-
sensor data fusion approaches, showcasing the potential of
combining data from various sensors to improve performance
in different environments. Additionally, multimodal deep learning
frameworks and 3D data fusion have demonstrated robust
performance in UAV detection, further validating the
effectiveness of these approaches in handling complex data
from multiple sources and enhancing detection capabilities.
Future research in multi-sensor drone detection systems should
address several critical areas to enhance their effectiveness and
applicability. One major focus should be the integration of data
from multiple sensors presents significant challenges. Advanced
sensor fusion techniques should be investigated to effectively
combine different types of sensor data, enhancing detection
accuracy and robustness. The use of synthetic data generated
through simulations can also help address the scarcity of
labeled data for training ML models.

9 Conclusion

The urgency of drone detection and classification stems from the
rapid expansion of the drone market and the inherent risks. ICT
solutions like the Low Altitude Authorization and Notification
Capability (LAANC) aim to streamline authorization processes,
yet ensuring compliance remains challenging due to both
negligent and malicious users. Therefore, the ability to detect,
classify, and identify drones in low-altitude airspace is crucial for
risk assessment and intervention. Different sensing modes for drone
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detection–radar, acoustic, visual, RF, and multi-sensor
systems–each have unique strengths and limitations. Radar
systems provide precise location data and are effective in all
weather conditions but can be expensive and resource-intensive.
Acoustic systems are cost-effective but can be impacted by
environmental noise. Visual systems, particularly those using
deep learning, offer high accuracy but struggle in low-light
conditions and require a clear line of sight. RF systems effectively
detect drones based on communication signals but may face
challenges in congested RF environments. Multi-sensor systems,
which combine data from various sensors, offer enhanced accuracy
and reliability by leveraging the strengths of each sensor type.
However, integrating data from multiple sensors increases
complexity and requires advanced sensor fusion techniques. Most
proposed solutions are grounded in static detection setups, posing
limitations in urban areas characterized by obstacles and noise. To
address these challenges in drone detection and classification,
distributed and collaborative detection systems that harness wide-
area solutions or city-wide sensor networks are suggested as a
promising approach. Future research should focus on developing
algorithms that enhance robustness in diverse environmental
conditions and improving real-time processing capabilities with
lightweight and efficient ML models for edge devices. Advancing
sensor fusion techniques and using synthetic data through
simulations can address integration challenges. By focusing on
these areas, future research can further enhance the effectiveness
and applicability of multi-sensor drone detection systems. This
comprehensive approach will ensure that these systems continue
to evolve to meet the demands of modern applications and mitigate
the risks associated with the increasing prevalence of drones.
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