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The integration of terahertz (THz) communication with cell-free massive
multiple-input multiple-output (CFMM) systems presents a promising strategy
to enhance energy efficiency and reduce system complexity in future wireless
networks. However, this integration faces significant challenges, such as dynamic
and unpredictable channel behavior. Traditional channel estimation techniques
are inadequate for handling these dynamic conditions. To address these issues, a
convolutional neural network (CNN)-based hybrid precoding scheme is
proposed for CFMM systems operating at THz frequencies. This method
leverages CNN to predict optimal precoding weights, significantly improving
the adaptability of hybrid precoding. The CNN-based model not only mitigates
pilot contamination (PC) but also enhances channel estimation by capturing
temporal and spatial dynamics. Simulation results indicate that the CNN-based
approach achieves superior energy efficiency and lower system complexity
compared to conventional techniques. At a signal-to-noise ratio (SNR) of
30 dB, it achieves 1.2 bits per joule and reduces system complexity to
1,400 FLOPs, demonstrating better scalability and resource optimization.
These findings highlight the potential of CNN-based hybrid precoding to
revolutionize THz communication in next-generation wireless networks by
optimizing energy efficiency and system complexity.
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Highlights

1. The paper developed a novel hybrid precoding scheme using convolutional neural
networks (CNNs) for dynamic terahertz communication channel conditions.

2. The proposed CNN-based approach significantly improves energy efficiency and
reduces system complexity compared to state-of-the-art systems.

3. The proposed CNN-based hybrid precoding scheme improves adaptability and
mitigates pilot contamination in a cell-free massive MIMO (CFMM) framework
operating at THz frequencies.

OPEN ACCESS

EDITED BY

Athina Petropulu,
Rutgers, The State University of New Jersey -
Busch Campus, United States

REVIEWED BY

Cheng Wang,
Beijing University of Posts and
Telecommunications (BUPT), China
Dionysis Kalogerias,
Yale University, United States
Spilios Evmorfos,
Rutgers, The State University of New Jersey -
Busch Campus Piscataway, United States, in
collaboration with reviewer DK

*CORRESPONDENCE

Tadele A. Abose,
tadenegn@gmail.com

Yitbarek A. Mekonen,
yitbarekanbese@gmail.com

RECEIVED 07 August 2024
ACCEPTED 04 November 2024
PUBLISHED 06 December 2024

CITATION

Abose TA, Mekonen YA, Assefa BG and
Gudeta NW (2024) Energy efficiency and
system complexity analysis of CNN based
hybrid precoding for cell-free massive MIMO
under terahertz communication.
Front. Comms. Net 5:1477270.
doi: 10.3389/frcmn.2024.1477270

COPYRIGHT

© 2024 Abose, Mekonen, Assefa and Gudeta.
This is an open-access article distributed under
the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with these
terms.

Frontiers in Communications and Networks frontiersin.org01

TYPE Original Research
PUBLISHED 06 December 2024
DOI 10.3389/frcmn.2024.1477270

https://www.frontiersin.org/articles/10.3389/frcmn.2024.1477270/full
https://www.frontiersin.org/articles/10.3389/frcmn.2024.1477270/full
https://www.frontiersin.org/articles/10.3389/frcmn.2024.1477270/full
https://www.frontiersin.org/articles/10.3389/frcmn.2024.1477270/full
https://www.frontiersin.org/articles/10.3389/frcmn.2024.1477270/full
https://crossmark.crossref.org/dialog/?doi=10.3389/frcmn.2024.1477270&domain=pdf&date_stamp=2024-12-06
mailto:tadenegn@gmail.com
mailto:tadenegn@gmail.com
mailto:yitbarekanbese@gmail.com
mailto:yitbarekanbese@gmail.com
https://doi.org/10.3389/frcmn.2024.1477270
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/communications-and-networks
https://www.frontiersin.org
https://www.frontiersin.org/journals/communications-and-networks
https://www.frontiersin.org/journals/communications-and-networks#editorial-board
https://www.frontiersin.org/journals/communications-and-networks#editorial-board
https://doi.org/10.3389/frcmn.2024.1477270


1 Introduction

The rapid evolution of wireless communication technologies has
propelled the demand for higher data rates, lower latency, and
increased energy efficiency. As we transition into the era of 5G and
beyond, terahertz (THz) communication emerges as a pivotal
technology due to its potential to provide unprecedented
bandwidths and data rates. Concurrently, cell-free massive
multiple-input multiple-output (CFMM) systems represent a
significant advancement in wireless networks, promising to
enhance coverage and capacity by leveraging a large number of
distributed antennas (Zhao et al., 2024). The integration of THz
communication with CFMM systems is anticipated to meet the
escalating requirements of future wireless networks. However, this
integration introduces formidable challenges, particularly in terms
of energy efficiency and system complexity (Gnanaprakash and
Perarasi, 2023).

A fundamental advancement in this domain is hybrid
precoding, a technique that optimizes the number of radio
frequency (RF) chains while preserving the achievable sum-rate
performance. Hybrid precoding has gained prominence, especially
in high-frequency massive MIMO systems, as it strikes a balance
between performance and resource utilization. However, the
conventional hybrid precoding methods encounter limitations
due to the high hardware complexity and power consumption
associated with large-scale antenna arrays. These limitations
necessitate the development of more efficient and adaptive
precoding techniques (Apiyo and Izydorczyk, 2024). The
computational complexity of hybrid precoding is notably high,
owing to the vast number of antennas and the intricacies of the
high-dimensional channel. Addressing these complexities is
fundamental to realizing the full potential of hybrid precoding in
enabling efficient and robust communication networks for the
future (Ozen and Guvensen, 2023).

CFMM systems have emerged as a revolutionary architectural
solution in the field of wireless communication over the past few
years. These systems are characterized by their distributed antenna
configurations, which enable simultaneous connections to mobile
stations from a multitude of nearby access points (APs). This unique
feature enhances end-to-end connectivity, thereby improving the
overall performance. Furthermore, these systems offer significant
advantages, such as improved signal reception, reduced latency, and
minimized power consumption. The latter is particularly beneficial
as it results from the shorter transmission distances of the active
links in the wireless orientation, leading to a more energy-efficient
network (Ng and Raju, 2024).

The role of machine learning (ML), specifically convolutional
neural network (CNN), in addressing the challenges associated with
these systems cannot be overstated. CNNs have proven to be highly
effective in handling sequential data and capturing temporal
dependencies. This makes them an ideal choice for predicting
and adapting to varying channel conditions in real time. The
integration of CNNs into the hybrid precoding process is a
significant advancement in this field. It allows for the dynamic
adjustment of the precoding weights based on the current channel
conditions. This not only enhances the energy efficiency of the
system but also minimizes its complexity, making it a viable solution
even in the challenging THz band. This integration of ML with

CFMM systems represents a significant stride in the evolution of
wireless communication systems (Sun et al., 2023).

Hybrid precoding is essential to maximizing the performance of
CFMM systems in THz communication. In massive MIMO systems,
this technology effectively manages the large array of antennas by
combining digital and analog precoding in a way that balances
hardware complexity, power consumption, and overall
performance. However, the fast-varying channel conditions
typical of THz frequencies cause standard hybrid precoding
techniques to fail (Ali K et al., 2023).

CNNs are particularly well-suited for real-time prediction and
response to dynamic channel circumstances because they can
analyze sequential input and capture temporal dependencies. By
using real-time data to train and update precoding algorithms
dynamically, CNNs can improve system robustness and flexibility
in contrast to previous methods that rely on static models and
cannot handle the high fluctuation of THz channels (Jayarin and
Sekar, 2023).

The main contributions of the paper are summarized as follows:

• Development of novel hybrid precoding scheme: This paper
introduces a novel hybrid precoding scheme utilizing CNNs
tailored for THz communication. The scheme exploits the
adaptive capabilities of CNNs to manage precoding weights
effectively, optimizing performance amid dynamic channel
conditions inherent in THz environments.

• Performance optimization and energy efficiency: The CNN-
based hybrid precoding method markedly improves energy
efficiency and reduces system complexity. Comprehensive
analysis and extensive simulations reveal that this
innovative approach significantly outperforms traditional
methods in terms of performance and efficiency within a
CFMM framework.

• Validation and superior performance in a CFMM framework:
Extensive simulations conducted within a CFMM framework
substantiate the effectiveness of the proposed hybrid
precoding scheme. The results demonstrate its superior
performance compared to state-of-the-art systems,
highlighting its potential to advance THz communication
technologies by enhancing both efficiency and reliability.

The organization of the paper is as follows: Section 2 offers an
exhaustive survey of the current literature. Section 3 delves into the
intricacies of the system model and the formulation of the problem.
Section 4 provides a detailed explanation of the design of MMSE-
based hybrid precoding for downlink multi-user massive MIMO
systems. Sections 5, 6, 7, 8 delve into the pilot assignment algorithm,
which is designed to mitigate pilot contamination (PC) in cell-free
networks, the application of ML techniques, complexity analysis,
and the presentation of results and discussions, including the
outcomes of simulations, respectively, and Section 9 concludes
the paper.

2 Literature review

A considerable body of research has been dedicated to exploring
the performance of ML-based hybrid precoding, with a particular
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focus on enhancing energy efficiency and reducing system
complexity in wireless communication. This has been especially
prevalent in the study of CFMM systems integrated with THz
communication. Recent advancements have led to the
introduction of various innovative strategies aimed at optimizing
these systems (Mohammadi et al., 2023). A substantial number of
these studies have honed in on evaluating the effectiveness of CNN-
based hybrid precoding. They have compared it with traditional
methods and analyzed its performance under different channel
conditions and system parameters (Gao et al., 2017). This section
aims to examine existing research, identify challenges, and set the
stage for targeted exploration. The study also delves into the
development and optimization of hybrid precoding algorithms
using CNNs, investigating their effectiveness in addressing energy
efficiency and system complexity challenges.

The authors in (Ozgur Gurbuz, 2021) explored the defining
features of THz wireless systems, shedding light on the
transformative potential of cell-free massive MIMO in enhancing
THz links. Their study emphasized the intrinsic challenges
associated with channel estimation in THz communication while
exploring the mitigative potential of hybrid precoding strategies in
reducing system complexity.

The authors in (Elbir, 2019) introduced a CNN framework for
designing precoders and combiners designs specifically for massive
MIMO downlink transmissions in beyond 5G networks, which have
been evaluated for energy efficiency and system simplicity. These
designs show significant promise for practical implementation in
advanced communication networks, underscoring their real-world
applicability and paving the way for seamless integration into the
evolving landscape of wireless communication technologies. The
findings suggest that CNNs can significantly enhance hybrid
beamforming performance, improving communication efficiency
and reducing computational demands.

The authors in Tentu et al. (2020) presented how CNNs can be
used for adaptive hybrid precoding in millimeter wave MIMO
systems, which are a forerunner to the more complex THz
communication systems. In order to improve signal transmission
efficiency, their study focuses on employing CNNs to dynamically
modify hybrid precoding matrices and balance digital and analog
components. Their study, which extensively evaluated the
framework’s performance concerning energy efficiency and
system complexity, showcased its remarkable scalability and
adaptability.

The authors in Abugubba et al. (2022) presented CNN-based
hybrid precoding model for mmWave massive MIMO systems,
achieving performance comparable to fully-digital precoders
while reducing computational complexity. It demonstrates
the effectiveness of deep learning in optimizing precoding
strategies and validates the model against traditional
algorithms through simulations. However, the reliance on
simulation data raises concerns about generalizability, and
the study does not address varying channel conditions.
Future research should explore the model’s robustness in
real-world scenarios and integrate other deep learning
techniques to enhance performance.

The authors in Biswas and Vijayakumar (2021) conducted Two
Deep Learning (DL) methods were proposed and evaluated for
channel estimation in massive MIMO configurations. The first

method employed a neural network composed of fully connected
layers. Conversely, the second method utilized a CNN to extract
spatial information from the channel covariance matrix, which was
subsequently used to eliminate intercell interference. The study also
accounted for factors such as imperfect synchronization and
channel aging.

The authors in Nguyen et al. (2020) explored the maximization
of energy efficiency in two-way amplify-and-forward half-duplex
MIMO relaying. In this scenario, multiple user pairs exchange
information through a shared relay. Unlike conventional iterative
optimization methods, the authors introduced a Deep Neural
Network (DNN) in the uplink (UL) mode. This approach
demonstrated optimal performance, distinguishing itself from
existing iterative optimization methods.

The authors in Khan et al. (2020) introduce the concept of
CFMM systems. In this context, they present closed-form
expressions. The energy efficiency is maximized through a two-
step optimization approach. The first step involves formulating the
convex problem, while the second step solves it in a decentralized
manner using the method of multipliers.

Despite significant advancements in hybrid precoding
techniques utilizing neural networks within wireless
communications, the majority of contemporary research remains
concentrated on traditional cellular architectures and hybrid
precoding for 5G technologies. Such methodologies fall short in
addressing the intricate and dynamic channel characteristics
inherent to THz communication. This oversight has led to a
discernible void in literature pertaining to CNN-based solutions
tailored for THz CFMM systems. Our research endeavors to bridge
this gap by pioneering CNN-based hybrid precoding specifically
designed for CFMM systems operating within the THz spectrum.
We introduce innovative algorithmic enhancements aimed at
mitigating system complexity and augmenting energy efficiency,
which dynamically adapt to the volatile and unpredictable channel
conditions characteristic of THz frequencies. The results highlight
the profound influence of this approach in optimizing THz
communication for CFMM systems, thereby setting the stage for
more sophisticated and dependable wireless technologies in the
forthcoming era.

This review of the literature highlights significant developments
and points out persistent gaps, providing an overview of the state of
existing research. The problem formulation and system model will
be discussed in the upcoming section 3.

3 System model and problem
formulation

This research work focuses on a massive MIMO system with a
fully integrated hybrid precoding structure that is intended for
multiple users. In order to enable the deployment of several
distributed APs throughout the coverage area, the system adopts
a cell-free architecture, as shown in Figure 1.

In the context of CFMM systems, each access point is equipped
with NTR antennas and KRF RF chains to serve K mobile stations
(MS). Conversely, each MS is equipped with NRT antennas and an
RF chain. Within CFMM, which eliminates traditional cell
boundaries, each AP employs a digital baseband precoder
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represented by VB � [vB1, . . . . . . vBk] of size K × K, followed by an
analog precoder VR the analog precoding matrix VR which satisfies
the constant modulus constraint, is given by Equation 1
(Section 3.1).

VR � vR1, . . . . . . vRk[ ] (1)

The elements of the analog precoding matrix VR are normalized
to satisfy the constant modulus constraints |(VR)i,j| � 1���

NTR
√ ,∀i, j.

Let sk denote the transmitted signal at the AP for the ktℎ mobile
station, and s � [s1, . . . . . . , sk]T ∈ Ck×1. Consequently, transmitted
signal x at the access points (APs) is expressed using Equation 2
(Section 3.1).

x � ∑k
k�1

vksk � Vs (2)

Let vk � VRvBk and V � [v1, . . . . . . vk] ∈ CNTR×K represent the
hybrid precoding matrices. The received signal yk at the ktℎ user
terminal can be represented as shown in Equation 3 (Section 3.1).

yk � Hkvksk +Hk ∑k
k ≠ j

vjsj + nk (3)

The signal after combining at the ktℎ user terminal is modeled as
Equation 4 (Section 3.1).

zk � WRk( )HHkvksk + WRk( )HHk ∑k
k ≠ j

vjsj + WRk( )Hnk (4)

where (WRk)H ∈ C1×NTR is analog combiner at the ktℎ user terminal,
Hk of dimension NRT × NRT represent the THz channel from APs to
the ktℎ user and nk is the noise at the receiver which is assumed to
fellow Gaussian distributed with zero mean and variance σ2 I. The
effective channel gain for the ktℎ user terminal is calculated using
Equation 5 (Section 3.1).

hlk � WRk

HHkVR (5)

In the context of CFMM, the signal-to-interference-plus-noise
ratio (SINR) is calculated by considering the power of the desired
signal received at the user terminal normalized by total interference
and noise power (Zhong et al., 2021).

SINRk �
P
K hekvBk
∣∣∣∣ ∣∣∣∣2∑K

k ≠ j

P
K hekvBj
∣∣∣∣ ∣∣∣∣2 + σ2

(6)

The sum rate rk for the Kth user terminal represents the
achievable data rate rk for the k-th user terminal, defined as a
function of SINR, is given in Equation 7 (Section 3.1).

rk � log 1 + SINRk( ). (7)

Energy efficiency in a cell-free massive MIMO system can
indeed be calculated based on the Shannon capacity formula,
which considers the achievable data rate and the total power.

η � rk
P total.

(8)

The power consumption model, derived from hybrid precoder
studies (Rekkas et al., 2021) and (Zhang et al., 2021), accounts for the
total power usage of the system architecture. The total power
consumption is denoted as

P total � NTR NRT + 1( )PPA +NTRNRTPPS +NRT PRF + PDA( ) + PBB

(9)
In Equation 9, typical power consumption values are used,

reported in existing THz studies (Zhang et al., 2021), typically
around 0.1 THz, measured in mill watts. where PPA is the power
of the power amplifier and PPS represents the power of the phase
shifters. Moreover, PRF, PDA, and PBB denote the power
consumption of each RF chain, digital-to-analog converters, and
baseband function, respectively. The parameters of numerical
simulation are given as PPA = 20mW, PPS = 30mW, PRF =
30mW, PDA = 200mW, and PBB = 5 mW. A power consumption
model is adopted for its comprehensive and realistic depiction of the
system’s energy requirements. This model, which considers various
components such as power amplifiers, phase shifters, RF chains,
digital-to-analog converters, and baseband functions, provides a
holistic view of power consumption.

3.1 Channel model

Owing to the short wavelength of THz signals, their
transmission is marked by pronounced attenuation and limited
scattering, leading to a predominantly line of sight propagation.
This research introduces a THz-specific clustered channel model to
navigate the distinct propagation challenges at THz frequencies,
such as acute path loss and marked absorption. The model
incorporates scattering clusters, each consisting of NP

propagation paths, as delineated in Rajatheva and Latva-Aho
(2021). This model adeptly captures the intricate dynamics of
THz wave propagation. Thus, the channel matrix for THz
massive MIMO systems is modeled as shown in Equation 10
(Section 3.1).

Hk �
�������
NTRNRT

NCNP

√ ∑Nc

i�0
∑Np

i�0
aik,ilar ∅r

k,il, θ
r
k,il( )at ∅t

k,il, θ
t
k,il( ) (10)

In this model, NC denotes the number of scattering clusters,
with each cluster contributingNP propagation paths. The term aik,il

FIGURE 1
Cell-free massive MIMO architecture.
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represents the gain of the itℎ ray in the itℎ scattering cluster the
vectors ar(∅r

k,il, θ
r
k,il) and at(∅t

k,il, θ
t
k,il) represent the normalized

antenna array response vectors at the receiver and transmitter,
respectively. Here, ∅r

k,il(θrk,il) and ∅t
k,il(θtk,il) are the azimuth

(elevation) angles of the kth ray in the ith scattering cluster on the
receiving and transmitting sides, respectively. The mean cluster
angles ∅r

k,il(θrk,il) and ∅t
k,il(θtk,il) are assumed to be uniformly

distributed within the range of [0, 2π].
At THz frequencies, where traditional estimate methods fail due

to the dynamic and sparse nature of the channels, effective channel
state information (CSI) generation is essential for accurate
precoding in Cell-Free Massive MIMO systems. To address this
problem, we propose a CNN-based method trained on a dataset of
channel realizations, leveraging temporal and spatial correlations in
the THz channel. This model adapts to rapid changes in the channel,
reduces estimation errors, and boosts overall system efficiency. As a
result, it offers precise, real-time CSI estimates that significantly
improve precoding performance.

3.2 Problem formulation

In multi-user massive MIMO systems, hybrid precoding is
typically approached as an optimization problem, with the key
objective being the maximization of the total sum-rate across all
users. This involves finding a balanced synergy between digital and
analog precoding to ensure efficient data flow across the network, as
explained in Hojatian et al. (2021). To that aim, an optimization
model has been developed that combines both analog and digital
precoding strategies with the intention of maximizing the system’s
sum-rate.

This optimization process is formalized through Equation 11,
which decomposes the hybrid precoding task into three distinct
components: the analog precoder (VR), the analog combiner (WRk),
and the digital precoder (VBk). This decomposition is crucial not
only for energy efficiency but also for system scalability and
performance optimization, especially in cell-free massive MIMO
systems operating at THz frequencies.

max
VRWRk

VBk

∑K
k�1

rk

s.tC1: VR( )i,j
∣∣∣∣∣ ∣∣∣∣∣ � 1����

NTR

√ , ∀i, j

C2: WRk( )i,j∣∣∣∣∣ ∣∣∣∣∣ � 1����
NTR

√ , ∀i, k

C3: ‖ V‖2F � K

(11)

The decomposition of Equation 11 into analog and digital parts
allows the system to divide complex tasks between two domains,
optimizing resource usage. In massive MIMO systems, directly
solving nonconvex optimization challenges can be computationally
prohibitive. The hybrid precoding scheme employs both analog and
digital components to optimize performance while managing
complexity, particularly in terahertz communication environments.
The analog part, represented by the analog precoder (VR) and analog
combiner (WRk), operates at the RF level, performing beamforming
and directing signals while adhering to hardware constraints that

ensure equal power distribution across antennas as dictated by the
constant modulus condition |(VR)i,j| � 1���

NTR
√ . This ensures effective

signal transmission but limits flexibility. Analog precoding handles
beamforming at the RF level, where energy consumption is
significantly lower than in the digital domain. This enables the
system to manage large antenna arrays without excessive
computational strain. On the other hand, digital precoding focuses
on real-time signal adjustments, such as fine-tuning direction and
amplitude to ensure optimal quality. This separation allows each
component to specialize in tasks where they are most efficient.

The direct derivation from the nonconvex optimization
challenge does not yield a straightforward resolution explained in
Ammar et al. (2021). However, by decomposing the problem into its
analog and digital components, a systematic approach can be
developed. In the context of enhancing the antenna array gain,
the effective channel hlk � WRk

HHkVR emerges as a strategic
solution within the multi-user massive MIMO framework. This
decomposition facilitates a more manageable optimization process,
improving overall system performance.

The optimization constraints for the analog precoder are
described by Equation 12 (Section 3.2).

max
VRWRk

∑K
k�1

‖WRk

HHkVR‖2F

s.t. C1: VR( )i,j
∣∣∣∣∣ ∣∣∣∣∣ � 1����

NTR

√ ,∀i, j

C2: WRk( )i,j∣∣∣∣∣ ∣∣∣∣∣ � 1����
NTR

√ ,∀i, k (12)

Here, the analog precoder and combiner handle most
beamforming tasks that are computationally intensive but
essential for optimizing overall signal gain.

The optimization problem for the digital precoder is captured by
Equation 13 (Section 3.2).

max
vBk

∑K
k�1

rk

s.t.C1: ‖ V‖2F � K

(13)

This allows the digital precoding component to focus on
optimizing sum-rate for all users, ensuring that each user receives
the signal based on real-time conditions. The hybrid precoding
scheme in cell-free massive MIMO systems optimizes performance
and energy efficiency by decomposing Equation 11 into analog and
digital components. Analog precoding, operating at the RF level,
manages beamforming and reduces power consumption by limiting
the number of RF chains needed, while digital precoding fine-tunes
signals at the baseband to maximize signal-to-interference-plus-noise
ratio and enhance data rates. This decomposition simplifies
computational complexity, making the system easier to implement
and scale, especially in high-frequency THz communication
environments.

We presented the hybrid precoding optimization problem in the
context of THz communication in Section 3, along with the system
model for our CFMM. A hybrid precoding architecture based on
minimum mean squared error (MMSE) will be presented and
developed in Section 4, which builds on this foundation and is
specifically designed for the downlink multi-user massive
MIMO system.
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4 The MMSE based hybrid precoding
design for downlink MU massive
MIMO system

4.1 Analog precoder and combiner design

For data streams sent to mobile stations, the mean squared
error (MSE) is minimized by applying the MMSE criterion. This
criterion seeks to minimize E[‖ s − z‖2] which is the expected
squared norm of the difference between the transmitted signal (s)
and the received signal ( z). When CSI is fully available, it makes
it easier to derive a closed-form MMSE-based analog precoder
for the Kth MS (Liu et al., 2023). The overarching hybrid
precoding optimization problem is expressed in Equation 14
(Section 3.2).

Ak � HH
k Hk + Kσ2

P
I( )−1

HH
k (14)

The MMSE-based analog precoder relies on channel
knowledge, Hk, where k represents the number of users, P
denotes transmit power, σ2 signifies noise variance, and I
denotes the identity matrix. This approach aims to minimize
noise effects and enhance signal quality by leveraging accurate
channel information Hk. The analog precoder design based on
MMSE principles, involving parameters such as θi,j representing
elements of matrix Ak (i, j) th, is recommended for
optimal performance. The matrix Bk, used for the MMSE-
baseddesign of analog precoders, is defined in Equation 16
(Section 4.1).

vRK i, j( ) � 1����
NTR

√ exp jθi,j( ) (15)

Considering the channel Hk and the analog precoder VR, let

BK � HkVR (16)

The RF combiner Gk is designed based on the MMSE criterion
as shown in Equation 17 (Section 4.1).

Gk � BK( )HBK + Kσ2

P
I( )−1

BK( )H (17)

The analog combiner can possibly be expressed as:

wRk
i, j( ) � 1����

NRT

√ exp jψi,j( ) (18)

where ψi,j is the phase angle of the (i, j) th element of Gk.
We can obtain the effective channel after determining the analog

precoder and channel matrix and designing the analog combiner.
The channel matrix and analog precoder and combiner work
together to create the effective channel.

It considerably simplifies the system model, allowing for
more controllable digital precoding and combining in
subsequent stages. The effective channel after analog
precoding and combining is expressed as Equation 19
(Section 4.1).

hlk � WRk

HHkVR (19)

4.2 Digital precoder design

The goal of the analog precoder is tomaximize the antenna array gain.
Based on the analog precoder VR, the channelHk, and the RF combiner
WRk we can manage the interference among users via digital precoder
design. The following MMSE-based digital precoder is employed:

VB � HH
e He + Kσ2

P
I( )−1

HH
e (20)

The power constraints can be satisfied by normalizing the digital
precoder VB for the kth user terminal as follows:

~vBk �
vBk

��
K

√
‖ VRvBk ‖ F

(21)

For k = 1,K Do

Ak � (HH
kHk + Kσ2

P I)−1HH
k

Calculate Analog Precoder

vRK(i,j) � 1���
NTR

√ exp(jθi,j)
BK � HkVR

Gk � ((BK)HBK + Kσ2
P I)−1

(BK)H
wRk(i,j) � 1���

NRT

√ exp(jψi,j)
End for

Calculate effective channel

hek � vH
Rk
HH
kWR

Compute Digital Precoder

VB � (HH
eHe + Kσ2

P I)−1HH
e

Normalize Digital Precoder

~vBk � vBk

�
K

√
‖VRvBk

‖F

Algorithm 1. MMSE Based Hybrid Precoding Require: H_k and P.

This section has discussed the MMSE based hybrid precoding
design for downlink MU massive MIMO system, highlighting its
significance in our study. Next, we will proceed with the pilot
assignment algorithm for cell-free networks.

5 Pilot assignment algorithm to
mitigate pilot contamination for cell
free networks

This research investigates a cell-free network configuration
comprising “M” APs with “N” antennas and “K” user equipment’s
(UEs), each equipped with multiple antennas, distributed randomly
within a specified coverage area. Despite the expected scenario whereM
significantly exceeds K in CFMM systems, the architecture maintains
efficiency across all values due to its scalable design. Each AP is
connected to a central processing unit (CPU) via a backhaul
network. Channel modeling follows the Rayleigh fading model,
describing the channel between UE “k” and AP “m” as:

hmk ~ NC 0, Rmk( ) (22)

Here, Rmk represents the spatial correlation matrix with
shadowing and path loss features, with dimensions Rmk ∈ CN×N,
and large-scale fading coefficient βmk ≜

tNr(Rmk )
N . For every

m � 1. . . . .M; APs and k � 1 . . . . ..K;. Channel realizations hmk

are assumed to be independent random variables across distinct
coherence blocks. Our investigation focuses on analyzing uplink
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(UL) and downlink (DL) transmissions in the CFMM system,
operating in time division duplex (TDD) mode. We examine the
total time period τc � τp + τUL + τDL in terms of UL and DL
transmission durations. Pilot assignment involves reserving τp
samples in each coherence block for pilot signals, while τUL and
τDL are allocated for UL and DL data transmission, respectively.

5.1 Pilot contamination mitigation

PC is a situation where interference is caused due to the usage
of identical pilot sequences by different user equipments (UEs). To
address this issue, a unique pilot assignment strategy is suggested
(Gkonis, 2023). In this strategy, each UE is assigned a pilot
depending on its proximity to the closest AP. If there are
multiple APs at the same distance, the pilot is allocated based
on the large-scale fading coefficient, denoted as β. The assignment
algorithm involves three key steps. Firstly, UE selection prioritizes
UEs with lower channel quality for pilot assignment by calculating
and sorting the large-scale fading coefficients, β, in descending
order. Secondly, during AP selection, UEs use synchronization
signals to connect with nearby APs, with the closest AP serving the
UE. If multiple APs are equidistant, the AP with the highest β is
chosen. Lastly, in pilot allocation, the serving AP assigns an unused
pilot to the UE and informs neighboring APs to avoid using the
same pilot, thereby reducing PC and enhancing system
performance.

5.2 Received pilot signal

When UEs send out pilot signals, the signal that is picked up by
the AP at the m-th position is:

Zp
m � ∑k

i�1

���������
ρiτphim∅k

√
+ npm (23)

Here npm is the noise power, ρi is the i
th UE’s UL pilot power, and

npm ∈ CN×τp is the received noise matrix, or npm ~ NC(0, σ2)

5.3 Pilot allocation algorithm

Input: UA,UL,τp ,K,M, τ, β,s

Output: optimal ∅k � UA

1. Initialize: setUA � UL,

2. Compute: Calculate β for all users and sort into s

3. Pilot Assignment Condition:

• if K ≤ τp assign∅k to the kth user

• if K ≥ τp Identify the optimal serving AP for each UE

and assign the pilot that results in the minimal

interference.

4. Optimal Pilot Selection: Choose the pilot with

minimal interference impact on � UA.

5. Return: Optimal ∅_k

Algorithm 2. Optimal Pilot Allocation Algorithm. Algorithm 2 outlines the

optimal pilot allocation strategy used for mitigating pilot contamination

(Section 5.3).

To optimize pilot allocation, we utilize the optimal pilot
allocation algorithm tailored to mitigate PC and improve CE
accuracy in CFMM systems. It aims to mitigate PC and improve
channel estimation (CE) accuracy. The algorithm prioritizes UEs
with poor channel quality for network access, identifies the most
suitable AP to serve the UE, and assigns pilots in a way that
minimizes PC. It iteratively selects the best AP and assigns the
optimal pilot to reduce interference. The effectiveness of this
algorithm is demonstrated by its ability to strategically assign
orthogonal pilot sequences, thereby reducing PC, enhancing CE
accuracy, optimizing resource allocation, decreasing channel
correlation, minimizing mutual interference between UEs, and
ultimately improving overall system performance.

By presenting a novel pilot assignment algorithm in Section 5,
we addressed the important problem of PC in cell-free networks.
Building upon this advancement, Section 6 investigates the
integration of ML techniques aimed at significantly enhancing
the performance of CFMM systems. The received pilot signal
model and its noise-reduction mechanism are detailed in
Equations 24, 25 (Section 5.2).

6 Machine learning

Machine learning has significantly transformed wireless
communication by facilitating adaptive, data-driven
enhancements, particularly in the complex domain of THz
communication. Convolutional Neural Networks are particularly
adept at predicting channel state information by identifying spatial
features within data. Their implementation in THz systems
contributes to enhanced energy efficiency, reduced system
complexity, and improved accuracy in channel estimation. These
advancements collectively lead to superior overall performance,
addressing the increasing demands for higher data rates, lower
latency, and greater energy efficiency in future wireless networks
(Nguyen et al., 2020).

While traditional mathematical models provide a foundational
understanding of communication systems, they often depend on
assumptions that may not be applicable in real-world
scenarios—especially in intricate environments such as cell-free
massive MIMO systems operating within THz frequencies. In
contrast, CNNs excel at learning complex, non-linear
relationships from data, enabling them to adapt effectively to
variations in channel conditions, noise levels, and other dynamic
factors that traditional models may struggle to accommodate.

6.1 CNN-based network architecture for
hybrid precoding

A proposed CNN neural network architecture, shown in
Figure 2, predicts the precoding and combining vectors for a
hybrid system directly from the received CSI.

The neural network consists of eight layers: an input layer, two
convolutional layers, a pooling layer, three fully connected layers,
and a regression output layer. Each layer contains multiple units,
generating outputs using activation functions. The input includes
three channels: the element-wise absolute value and the real and
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imaginary parts of the channel matrix. The convolutional layers,
using ReLU activation, extract and select data features. After feature
extraction, the maximum pooling layer compresses the parameters,
and the data is rearranged into a one-dimensional vector. Fully
connected layers then perform weighted sums and map features to
the sample space. A dropout layer is added to prevent overfitting
during training. Finally, the regression layer outputs result by
computing mean squared error loss.

CNNs were chosen for this research despite their limitations in
handling temporal data because their strengths lie in capturing
spatial and spectral dependencies within each coherence time
frame. While channel data in massive MIMO systems exhibit
temporal correlations, the CNN-based approach focuses on
extracting spatial patterns that are crucial for hybrid precoding
and resource allocation. This eliminates the need for memory units,
such as recurrent neural networks. Furthermore, by continuously
updating themodel with real-time CSI, the CNN adapts dynamically
to temporal variations, thereby minimizing the need for handling
long-term sequences. This design choice achieves a balance between
reducing computational complexity and optimizing system
performance, making CNNs a suitable solution for real-time,
energy-efficient cell-free massive MIMO systems under THz
communication conditions.

Max pooling was employed in the CNN architecture due to
its ability to retain critical features while reducing
computational complexity, which is essential for real-time
hybrid precoding in massive MIMO systems. Max pooling
extracts the dominant spatial characteristics by selecting the
maximum value within a pooling window. Although this
process may result in the loss of some high-frequency details,
the trade-off is justified, especially given the shallow nature of
the CNN architecture, which only comprises two convolutional
layers. Experiments show that max pooling allows the system to
maintain good generalization across diverse channel conditions
while significantly reducing system complexity. In this study,
max pooling was specifically chosen to preserve the most
important features required for the CNN-based hybrid
precoding system, striking an effective balance between
feature extraction and computational efficiency.

Residual connections were not utilized in this research, as the
primary objective was to reduce system complexity and enhance energy
efficiency for real-time hybrid precoding tasks in THz communication

systems. Typically, residual connections are employed in deeper
networks to address vanishing gradient issues. However, since our
CNN model is relatively shallow comprising only two convolutional
layers the architecture was considered sufficient for effective feature
extraction and system performance without adding unnecessary
computational overhead. Prior works, such as those referenced in
Elbir (2019); Abugubba et al. (2022), have shown that a similar
structure without residual connections was effective for feature
extraction while maintaining computational efficiency. Moreover, the
use of ReLU, suitable activation function and Adam optimizer further
enhances the learning process in this simpler architecture. The model’s
training on a substantial dataset also aids in learning robust features
critical for hybrid precoding. While residual connections could be
explored in future research for deeper architectures, the current
design strikes an optimal balance between model complexity and
computational efficiency, making it ideal for real-time deployment
in CFMM systems.

6.2 Proposed CNN based hybrid precoding

The proposed framework utilizes a CNN to optimize the hybrid
precoding process in cell-free massive MIMO systems at THz
communication frequencies. As shown in Figure 3, the hybrid
precoding structure enabled by CNN processes various factors,
including the channel matrix, spatial correlation, mobility,
channel phase noise, power fading, and shadowing, along with
analog and digital precoder information. The CNN outputs
parameters for the analog precoder, digital precoder, and analog
combiner, which are crucial for optimizing precoding and
enhancing throughput, energy efficiency, and reliability. This
approach makes the hybrid precoder system adaptive, allowing it
to optimize beamforming strategies based on learned information
and adjust parameters over time in response to changing channel
conditions.

In this architecture, CNNs are used at both the transmitter and
receiver ends, processing beamforming matrices by extracting key
features that improve overall communication efficiency. The
independent design of the transmitter and receiver allows for
separate optimization, simplifying the design process while
maintaining effective performance tuning for different
operational environments.

FIGURE 2
The proposed CNN network architecture.
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Performance evaluation of the CNN-based approach is
conducted using metrics like energy efficiency and system
complexity. Our results show that CNN-driven methods achieve
comparable performance to traditional optimization techniques,
while significantly lowering computational overhead.

The process begins by initializing the CNN with dynamic
channel data and precoding information. The CNN then
generates analog and digital precoders, as well as analog
combiner parameters to optimize system performance. These
parameters are continuously updated by the CNN to adapt to
changing channel conditions. During transmission and reception,
signals are processed using the hybrid precoder parameters to
achieve efficient communication. This adaptive approach enables
enhanced throughput, energy efficiency, and reliability in cell-free
massive MIMO systems operating at THz communication
frequencies.

The essential data generation parameters for CNN-based hybrid
precoding in cell-free massive MIMO at THz frequencies encompass
real and imaginary channel gains, channel phases, spatial correlation
among antennas, noise power, transmitted signal power, path loss,
shadowing, and fading effects. These parameters are reflected in
metrics such as signal strength, phase shifts, correlation levels, noise
levels, signal attenuation, and environmental variations. Moreover,
the weights for digital and analog precoding, along with the analog
combining matrix, play a pivotal role in controlling the hybrid
precoding process. This diversity in data is vital for effectively
training and testing the CNN model, ensuring robust and reliable
performance in THz communication environments.

This research involves the implementation and evaluation of a
CNN model intended for hybrid precoding weight prediction in
dynamic wireless communication contexts. The actual
implementation involves training the CNN on relevant datasets,
including synthetic data designed to simulate various channel
conditions. Once trained, the CNN can be integrated into both
transmitter and receiver hardware for real-time operation. This
integration facilitates efficient processing of beamforming tasks,

leading to reduced computational overhead and improved
energy efficiency.

To determine the model’s dependability and effectiveness, we
use 70% of the dataset for training, followed by extensive testing and
validation phases. Under THz communication conditions, the main
goal is to maximize energy efficiency and reduce system complexity
in CFMM systems.

• Training Phase: The CNN is trained with 70% of the dataset,
which includes dynamic channel data and precoding features
such as real and imaginary channel gains, channel phases, and
noise power. To reduce the mean squared error (MSE) loss
function, the ADAM optimizer is used with a learning rate of
0.001 and a batch size of 137. Throughout the training
procedure, the CNN’s weights are continually modified to
improve predicting accuracy. The model is trained across
250 epochs, with the fit method and the provided
batch size used.

• Testing Phase: After training, the performance of the CNN is
evaluated on 15% of an independent dataset. In this stage, the
model’s ability to generalize and accurately predict hybrid
precoding weights across a range of channel conditions
is assessed.

• Validation Phase: To ensure optimal model performance and
reduce the possibility of overfitting, 15% of the dataset is set
aside for validation during the training phase. In order to
optimize hyperparameters and guarantee efficient learning,
the CNN’s performance on the validation set is continuously
observed. During this validation stage, CNNs in CFMM
systems operating in THz communication settings can best
respond to real-time channel fluctuations while preserving
high energy efficiency and reducing system complexity. This
systematic procedure ensures that the CNN model is properly
evaluated, validated, and rigorously trained, resulting in
dependable performance in scenarios involving dynamic
wireless communication.

FIGURE 3
Proposed CNN-based hybrid precoding.
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The training data are shuffled to improve the model’s
generalization across various channel conditions and to
prevent over fitting. The focus is on capturing spatial and
spectral features rather than temporal dependencies, as the
hybrid precoding system operates within the short coherence
time of THz channels. While not shuffling could preserve
temporal dependencies, it would necessitate more complex
models like attention mechanisms or RNNs, increasing
computational complexity. This research aims to balance
performance and system efficiency, with the CNN-based
approach optimizing spatial and spectral patterns to achieve
energy efficiency and reduced complexity in real-time massive
MIMO systems at THz frequencies.

To address the complex demands of CFMM systems in THz
communication, a specialized CNN configuration is designed. This
setup features the Adam optimizer, selected for its adaptability in
adjusting learning rates, which facilitates efficient convergence and
robust performance across diverse scenarios. The ReLU activation
function is employed to capture the nonlinear relationships crucial
for hybrid precoding. Additionally, the Mean Squared Error (MSE)
loss function is utilized, prioritizing precise channel estimation by
minimizing the average squared difference between predicted and
actual values, thus enhancing regression performance (Ammar et al.,
2021). This configuration aims to improve performance and
reliability by efficiently managing large datasets, ensuring
compatibility with real-world requirements, and minimizing
errors in predicted channel characteristics. Consequently, it
enables accurate precoding decisions in dynamic
communication scenarios.

In Section 6, we delve into the integration of ML techniques with
MMSE-based hybrid precoding to augment the performance of
CFMM systems. Having established these methodologies, we
proceed to Section 7, where we analyze the system complexity of
the proposed CNN-based hybrid precoder.

7 CNN- based precoding
complexity analysis

The complexity of the CNN-based precoding method is
primarily determined by the convolutional layers used in the
neural network. The key components of the CNN model include
a convolutional layer, a pooling layer, and a dense layer. The input to
the convolutional layer is channl matrix H with 64 filters and a
kernel size of 1. The pooling layer has a pooling size of 2, and the
dense layer comprises 128 units.

Table 1 compares the computational complexity of different
precoding schemes, including the proposed CNN-based method
(Section 7). To understand the complexity of the convolutional
layer, we can approximate it by calculating the number of operations
required to convolve the input feature map with the filters. The
operations per filter can be represented as (Nt − k + 1) × k

For 64 filters, the total number of operations for the
convolutional layer is approximately

64 × Nt − 1 + 1( ) × 1 ≈ 64 × Nt

The complexity of the pooling layer, particularly a max pooling
layer with a pool size of 2, is significantly lower because it involves
taking the maximum of every 2 elements. The total operations for
the pooling layer can be approximated as Nt/2. This number is
considerably less than that of the convolutional layer and can be
considered negligible in comparison.

For the dense layer with 128 units, the input to this layer is from
the previous layer’s output. Assuming the output dimension from
the previous layer is proportional toNRF

t × Nr, the total operations
for the dense layer can be calculated as follows:

Total operations for dense layer � 2 × N × NRF
t × Nr

� 2 × 128 × NRF
t × Nr

� 256 × NRF
t × Nr (24)

Complexity of fully connected layers.
Consider a fully connected layer where each neuron in the layer

connects to every input feature. The complexity arises from the
number of multiplications and additions required. The input to the
fully connected layer be a matrix where dimensions involveNRF

t and
Nr. The interaction term involves pairs of inputs. ForNRF

t RF chains
and Nr antennas, we have:

Total possible pairs of inputs.

� NRF
t × Nr( ) × NRF

t × Nr( ) � NRF
t( )2 × Nr( )2

Considering all interactions, the complexity term for the fully
connected layers that account for these pairs is:

Fully connected layers complexity � NRF
t( )2 × Nr( )2( ) ≈ β NRF

t( )2 × Nr( )2
(25)

where β: Scaling Factor ≈ 55
The value of β was selected as 55 by benchmarking against

related works in Zhong et al. (2021). Various research papers that
analyze the complexity of fully connected layers in neural networks
were reviewed to determine an appropriate scaling factor. By

TABLE 1 Complexity of different precoding scheme.

Methods Computational complexity

DNN-Based (Tentu et al., 2020) O(3N2
t Nr +Nt

RF(LN t Ns + L4 Ns + (Nt
RF)5 Nt + NtNt

RF Ns) +Nr
RF(LN r Ns + L4 Ns + (Nr

RF)5 Nr + NrNt
RF Ns))

RZF (Zhang et al., 2021) O(3N2
t Nr +K2(Nt

RFNtNS + (Nt
RF)2N5

t NS + (Nt
RF)2N3

t ) + K2(Nr
RFNrNS + (Nr

RF)2N5
rNS + (Nr

RFN
2N3

r ))

MMSE (Nguyen et al., 2020) O(3N2
t Nr + L

Nr
RF

( ) Nr
RF( )3 + 2NsNr

RF Nr + 2N2
sN

2
t( ) + 3 Nr

RF( )3
Proposed CNN-Based O(64Nt + 256Nt

RFNr + 55(Nt
RF)2N2

r )
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comparing the computational loads and performance metrics
reported in Zhang et al. (2021). This benchmarking ensures that
the chosen β value is representative of typical computational
demands in similar contexts and provides a reliable estimate for
modeling the complexity of fully connected layers in CNN-based
precoding methods.

Then fully connected layers complexity become
55(NRF

t )2 × (Nr)2
Combining all the terms, we get the overall complexity:

Total complexity � O 64Nt + 256Nt
RFNr + 55 Nt

RF( )2N2
r( ) (26)

In Section 7, we analyze the complexity of the proposed CNN-
based hybrid precoder. We now advance to Section 8, where we
present the results of our simulation evaluations and engage in a
comprehensive discussion of the findings.

8 Result and discussion

The simulation parameters for the hybrid precoder research
encompasses several critical components. The setup includes
256 transmit antennas and 64 receive antennas. The simulation
models 5 paths and 10 clusters, operating at a frequency of 0.1 THz.
Arrival and departure angles for paths are randomly generated
between 0 and 2π. Channel gains for clusters and paths follow a
complex normal distribution with a mean of 0 and variance of 1. The
channel matrix is derived based on the numbers of transmitter and
receiver antennas, as well as the channel gains. The noise variance is
set to 10 dB. Additionally, the simulation involves 50 users and
utilizes a transmit power of 30 dB.

Figure 4 presents the energy efficiency achieved by the CNN-
based hybrid precoding method compared to the MMSE,
regularized zero-forcing (RZF), and zero-forcing (ZF) hybrid
precoding methods. The Figure clearly demonstrates the
proposed CNN-based hybrid precoding method significantly
outperforms traditional methods such as MMSE, RZF, and ZF in
terms of energy efficiency, particularly at higher signal-to-noise ratio
(SNR) levels. Energy efficiency is computed using Equation 8, which
is based on Shannon’s capacity formula. At −20 dB, all techniques

exhibit similar energy efficiencies near zero. However, as the SNR
increases, the performance distinctions become marked. The CNN-
based approach achieves approximately 1.2 bits per joule at 30 dB,
compared to about 1.0 bits per joule for MMSE, 0.8 bits per joule for
RZF, and 0.6 bits per joule for ZF. This superior performance is
attributed to the CNN’s enhanced capability to exploit high-quality
signal environments. The integration of a CNN-trained model,
using parameters from Table 2 and hybrid precoding parameters
illustrated in Figure 3, further optimizes system performance,
highlighting the robustness and potential of the CNN-based
method for energy efficiency optimization.

Figure 5 illustrates the energy efficiency performance of various
precoding schemes as the number of transmitter antennas increases. The
CNN-based hybrid precoding method demonstrates superior energy
efficiency as the number of transmitter antennas increases from 0 to 250,
starting at around 0.1 bits per joule and rising to approximately 0.7 bits
per joule. The MMSE method also shows high efficiency, peaking at
about 0.6 bits per joule before flattening. RZF and ZF methods exhibit
more moderate increases, reaching 0.45 bits per joule and 0.4 bits per
joule, respectively. These findings highlight the CNN-based method’s
superior performance in achieving higher energy efficiency, especially
with an increasing number of transmitter antennas, demonstrating its
potential inmassiveMIMOsystems. The critical role of Equations 15, 18,

FIGURE 4
Energy efficiency vs SNR.

TABLE 2 Simulation specifications for training CNN model.

Parameters Values

Input layer 19

Output layer 6

Convolution layer 1 256

Convolution layer 2 128

Polling layer 64

Fully connected layer 32

Optimizer ADAM

Activation Function RELU

Loss Function MSE

FIGURE 5
Energy efficiency versus transmitter antenna.
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which depend heavily on the number of transmitter antennas,
underscores the impact of antenna count on energy efficiency. The
CNN-based method’s advanced feature learning capabilities, robustness
to noise and interference, and computational efficiency enable it to
overcome the challenges faced by traditional methods, showcasing its
potential for enhancing energy efficiency in large antenna systems.

Figure 6 demonstrates the energy efficiency of various
transmission schemes in a massive MIMO system as the number
of users increases from 0 to 50. The CNN-based hybrid precoding
method consistently outperforms traditional methods (MMSE, RZF,
and ZF) across this range. Starting at around 0.1 bits per joule, the
CNN-based method’s efficiency rises steadily, peaking at
approximately 0.8 bits per joule at 40 antennas before experiencing
a slight decline. MMSE shows high efficiency, reaching about 0.6 bits
per joule before flattening. RZF and ZF exhibit moderate increases,
peaking at 0.5 and 0.45 bits per joule, respectively. This performance
highlights the CNN-based method’s superior capability to achieve
high energy efficiency, especially as the number of users increases,

validating its effectiveness in massive MIMO systems. The increase in
energy efficiency aligns with theoretical expectations based on the
signal-to-interference-plus-noise ratio (SINR) as outlined in Equation
6. However, at higher user densities, the efficiency increase diminishes
due to growing interference and limited channel resources, illustrating
the practical limits of energy efficiency in densely populated
user scenarios.

Figure 7 illustrates the CNN-based method’s higher energy
efficiency over a variety of RF chains. As the number of RF
chains increases, all approaches become less efficient due to
increased system complexity and power consumption. The CNN-
based technique is more efficient than MMSE, RZF, and ZF,
especially when there are a few RF chains (2–4). Despite a
general fall in efficiency with more RF chains, the CNN method’s
decrease is more gradual, indicating superior scalability and resource
optimization. These findings are in line with the mathematical
model described in Section 3, which describes the performance
limits of fully connected RF chain designs. Algorithm 1 describes in
detail the formulas used for hybrid precoding, which are crucial to
understanding the efficiency of these systems.

Figure 8 compares the computational complexity, measured in
FLOPs, of four signal processing algorithms: MMSE, RZF, ZF, and
CNN, across a range of SNR values from −20 dB to 30 dB. The
MMSE algorithm exhibits the highest complexity, starting around
1,600 FLOPs and increasing to approximately 1,800 FLOPs as SNR
rises. The RZF algorithm follows a similar trend, with complexity
increasing from slightly above 1,400 FLOPs to around 1,600 FLOPs.
In contrast, the ZF algorithm maintains a small increase in
complexity of about 1,400 FLOPs. The CNN algorithm shows the
lowest initial complexity at around 1,000 FLOPs, gradually
increasing to approximately 1,400 FLOPs as SNR increases.
These results validate the theoretical and mathematical analysis
presented in Section 7.

Figure 9 shows the comparison of computational complexity of
RZF, MMSE, ZF, and CNN as the number of antennas increases
from 0 to 250. TheMMSE algorithm exhibits the highest complexity,
starting around 1,000 FLOPs and exceeding 2,400 FLOPs at
250 antennas, due to its reliance on complex matrix operations.
RZF shows a similar trend, with complexity rising steeply from
1,000 to 2,200 FLOPs. The ZF algorithm demonstrates a more

FIGURE 6
Energy efficiency versus receiver antenna.

FIGURE 7
Energy efficiency versus RF chains.

FIGURE 8
System complexity versus SNR.
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moderate increase in complexity, from 1,000 to 2000 FLOPs,
indicating its simpler computational requirements. The CNN
algorithm maintains the lowest initial complexity, starting at
1,000 FLOPs and increasing steadily to 1,600 FLOPs,
showcasing its efficient scalability. The critical role of Equation
26, which depend heavily on the number of transmitter antennas,
underscores the impact of antenna count on system complexity.
These results align with the theoretical and mathematical analysis
presented in Section 7, confirming the high computational
demands of MMSE and RZF in large antenna systems, the
moderate complexity of ZF, and the efficient scalability of
CNN, providing a realistic assessment of computational
requirements for these algorithms.

The CNN-based precoding method for THz communication
presents a new way to handle THz channel challenges, but it has
limitations that future research needs to address.

• Dependence on Accurate CSI: The CNN-based precoding
relies heavily on accurate CSI, and any inaccuracies can
degrade performance. Future work could explore advanced
CSI techniques to address this issue.

• Computational Complexity: The CNN model introduces
computational overhead, which may challenge real-time
applications. Optimizing the model or using more efficient
algorithms could help balance performance and
computational demands.

• Limited Adaptability to Dynamic Channels: The CNN may
struggle with rapidly changing channel conditions in THz
communication. Research into adaptive mechanisms or
enhanced training strategies could improve its adaptability.

9 Conclusion

The research examined CNN-based hybrid precoding in CFMM
systems operating in the THz band. It found that using CNNs to
dynamically configure analog and digital precoders improves energy
efficiency and reduces system complexity, offering advantages over
traditional precoding methods. The research findings highlight the
superiority of CNN-based hybrid precoding in CFMM systems
operating in the THz band under challenging conditions. The CNN-

based method significantly enhances energy efficiency compared to
traditional precoding techniques like MMSE, RZF, and ZF. At a high
SNRof 30 dB, the CNN-based approach achieves approximately 1.2 bits
per joule, outperformingMMSE at 1.0 bits per joule, RZF at 0.8 bits per
joule, and ZF at 0.6 bits per joule. This superior performance extends
across varying numbers of antennas and receiver chains. With
increasing antenna counts, the CNN-based method maintains higher
energy efficiency, achieving around 0.8 bits per joule with 32 antennas,
while MMSE, RZF, and ZF lag behind at approximately 0.52, 0.45, and
0.42 bits per joule, respectively. Additionally, the CNN-based approach
exhibits better scalability and resource optimization, particularly evident
with fewer RF chains where it shows amore gradual decline in efficiency
compared to traditional methods. Furthermore, the method
demonstrates robustness in managing challenges posed by THz
frequencies and system complexity effectively. These findings
underscore the potential of CNN-based precoding to meet the
demands of high data rates and low latency in next-generation
wireless networks, suggesting avenues for future research into its
scalability across diverse communication environments and
integration with advanced technologies.
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FIGURE 9
System complexity versus transmitter antennas.
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