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Introduction: Automatic modulation recognition (AMR) plays a crucial role in
modern communication systems for efficient signal processing and monitoring.
However, existing modulation recognition methods often lack comprehensive
feature extraction and suffer from recognition inaccuracies.

Methods: To overcome these challenges, we present a multi-task modulation
recognition approach leveraging multimodal features. In this method, a network
is proposed to differentiate between multi-domain features for temporal feature
extraction. Simultaneously, a network capable of extracting features at multiple
scales is utilized for image feature extraction. Subsequently, recognition is
conducted by integrating the multimodal features. Due to the inherent
differences between 1D signal features and 2D image features, recognizing
them collectively may overlook the unique characteristics of each type.

Results: We examine the merit of the proposed multi-task modulation
recognition method and validate their performance with experiments using a
public datasets. With an SNR of 0 dB, the proposed algorithm achieves a
recognition accuracy of 92.30% on the RadioML2016.10a dataset.

Discussion: Therefore, we propose a multi-task modulation recognition
approach leveraging multimodal features to enhance accuracy. By integrating
temporal and image-based feature extraction, our method outperforms existing
techniques in recognition performance.
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1 Introduction

Automatic modulation recognition (AMR) plays a crucial role in modern
communication systems, involving the automatic recognition of the received signal’s
modulation type, ensuring accurate decoding and understanding of information.

In the military domain (Ansari et al., 2022), AMR stands as a pivotal technology within
electronic countermeasures, holding significant importance for strategic decision-making. In
the civilian sector (Jdid et al., 2021; Hu et al., 2023; KHAN et al., 2017), AMR plays a critical
role in spectrum resource monitoring. However, with the rapid advancement of
communication technology, modulation methods have become increasingly diverse and
complex, posing challenges to modulation identification. Therefore, studying the modulation
identification of communication signals holds great theoretical and practical significance.

Traditional automatic modulation recognition (AMR)methods can be broadly categorized
into two main types: those based on likelihood ratio tests and those relying on manual feature
extraction. AMR methods based on likelihood ratio tests (zheng and Lv, 2018) are primarily
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utilized to identify the modulation mode of a signal by constructing a
likelihood function. Although effective, the high computational
complexity of the method limits its application in increasingly
complex communication environments. On the other hand, AMR
methods based on manual feature extraction (Simic et al., 2021)
determine the modulation type of a signal by comparing the
extracted signal features with a preset threshold. However, this
approach is time-consuming and labor-intensive, and its
recognition performance heavily depends on the expertise of the
operators. Moreover, when the communication environment
changes, the recognition method based on the original features may
not be adaptable, leading to significant degradation in recognition
performance.

With the rapid advancement of deep learning technology, its
applications have extended beyond image detection (Lin et al., 2023;
Lin et al., 2022), opening up new research methods and
opportunities in the field of modulation recognition.

O’Shea et al. (2016) were the first to propose the application of
convolutional neural networks (CNN) for modulated signal
recognition. This method simplifies the entire process compared
to traditional identification methods. However, experimental results
show that its maximum recognition accuracy is 74%, which still
needs to be improved. Then, Daldal et al. (2019) used a Long Short-
Term Memory (LSTM) model to identify six modulation signals. It
successfully demonstrates that LSTM outperforms CNN-based
recognition methods in recognizing signal timing modes. To
address the increasingly complex signal types and improve the
robustness of the algorithm, Li et al. (2023) devised a network
architecture that combines Residual Networks with next iteration
(ResNeXt) and Gated Recurrent Unit (GRU). ResNeXt network
captures unique semantic features, while the GRU focuses on
extracting temporal features. In order to recognize the
complementary atrributes of these different features, they
proposed a discriminative correlation analysis model. Simulation
results demonstrate the superiority of this approach and provide a
solid foundation for future feature analysis. Moreover, these findings
promote the future application of feature fusion in AMR.
Subsequently, researchers have explored the image modality of
the signal. Daldal et al. (2020) achieved successful recognition of
signal image modality by converting a one-dimensional signal into a
two-dimensional time-frequency map through short-time Fourier
transform and feeding it into CNN for recognition. This
experimental result also presents a novel idea for subsequent
modal recognition research.

In addition, many studies have explored the feasibility of multi-
feature fusion methods in the field of AMR. Zhang et al. (2022)
proposed R&CNN for underwater acoustic signal modulation
recognition, which combines the automatic feature extraction and
learning capabilities of recurrent neural network (RNN) and
convolutional neural network (CNN) without manual feature
extraction, and has the advantages of high precision and fast
processing time. Huang et al. (2022) proposed OAE-EEKNN, an
efficient recognition method based on optimized autoencoders and
evaluation-enhanced K-nearest neighbor algorithms, which enables
fast and high-precision identification of multiple modulation types in
underwater acoustic channels. Wang et al. (2024) proposed
One2ThreeNet, a method that rationalized underwater acoustic
signals into time series, used One2Three blocks to extract signal

time features from three microscales, and combined with two-current
compression excitation (SE) block spatial feature extractor to
synthesize and extract higher-level AMR spatial features for
classification.Finally, some multi-feature fusion methods have been
proved effective in other fields. For example, Li et al. (2024) proposed
CurriFusFormer, which integrates course learning with a multi-
feature fusion transformer model to deal with various patterns and
ratios of lost data. Use spatial, temporal, and static features to generate
accurate real-time estimates of missing values in different scenarios.

Overall, the AMR method utilizing deep learning enhances the
performance of signal recognition. However, most deep-learning
approaches to modulation recognition tend to utilize only a single
modal feature of the signal. Additionally, due to the varying degrees
of influence that different modal features have on recognition, these
methods may not fully capture the signal’s characteristics. To this
end, we propose a multi-task modulation recognition method based
on multi-modal features, referred to as MTL. MTL effectively
achieves more accurate recognition of modulated signals.
Specifically, this paper selects the Markov Transition Field (MTF)
image and the original 1D signal for multi-mode feature fusion.
Markov transition field method can transform 1D signal recognition
task into image recognition task. At present, most automatic
modulation recognition methods based on deep learning only use
single-mode features without considering the complementarity and
difference between multi-mode features. MTF images can reveal
hidden patterns and structures in the 1D signal that may not be
apparent in a one-dimensional representation of the 1D signal, and
vice versa. For example, the 1D signal may contain immediate
information about the time series, while the MTF encoding
provides statistical information about the signal state transition;
While the 1D signal emphasizes local features of the signal,
including instantaneous amplitude, frequency, and phase changes,
MTF coding emphasizes global features of the signal, including long-
term dependencies between states and transition patterns.
Moreover, according to the information entropy theory, the
fusion of multi-modal features increases the information entropy
of the system, andmore signal details can be captured by sharing and
integrating information among different modalities. At the same
time, multimodal features can cover a larger feature space and
improve the discriminative power of the classifier. In summary,
this paper provides the following contributions.

• To differentiate the importance of various domain features in
recognition, we devised a time-series model capable of
assigning weights to multi-domain features. Specifically, the
extracted multi-domain features are aggregated both
horizontally and vertically. The probability of each feature
in the horizontal direction is obtained using softmax, which
serves as a weight coefficient. This coefficient is then
multiplied by the features composed in the vertical
direction to derive the final target feature.

• To enrich the features of the signal, we utilize Markov
Transition Field (MTF) coding to convert the one-
dimensional signal into an image. Subsequently, image
features are extracted at multiple scales using the MTF
model based on the focal modulation network. This model
can extract local features while preserving global features,
making the features more informative.
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• To tackle the variability among different modalities and
achieve better signal recognition, we propose a multi-task
optimized recognition method. The main task is
recognizing multimodal combinations, while the auxiliary
task is recognizing the image modality. Different loss
functions and weight coefficients are set for each task to
enhance the recognition accuracy of the main task.

2 Signal model

In wireless communication systems, the modulated signals are
transmitted by the transmitter, which are received by the receiver
after propagation through the channel environment. The received
signal r(t) after downsampling at the t-th time slot can be expressed
by Equation 1 as follows:

r t( ) � m t( ) · h t( ) · g t( ) · ej 2πΔft+θ( ) + n t( )
t � 0, 1, . . .N − 1

(1)

where m(t) represents the baseband signal to be transmitted, and
n(t) denotes the additive Gaussian white noise. h(t) and g(t) denote
the channel gain and pulse shaping response, respectively. Δf
represents the carrier frequency offset and θ denotes the phase
deviation. The received baseband signal r(t) in complex form is
generally given as an IQ component, as shown in Equation 2:

I t( ) � Re r t( )( )
Q t( ) � Im r t( )( ) (2)

where the Re(r(t)) and Im(r(t)) represent the real and imaginary
part of the received signal r(t), respectively. The instantaneous
amplitude A(t) and the instantaneous phase P(t) can be defined by
Equation 3 as follows:

A t( ) �
������������������
Re r t( )( )2 + Im r t( )( )2

√
P t( ) � arctan

Im r t( )( )
Re r t( )( )( ) (3)

3 Methods

In this section, we introduce a detailed multimodal feature
(MFF) recognition method. The method structure comprises two
main parts: temporal modality-based modulation recognition and
image modality-based modulation recognition. Subsequently, a
multi-task loss optimization method is designed based on
multimodal recognition, aiming to further enhance the overall
recognition performance of the model and ensure full utilization
of the advantages of each modality. The overall structure of the
method is shown in Figure 1, where FMN denotes Focal Modulation
Nets (Yang et al., 2022), MLP is Multilayer Perceptron. The reshape
represents dimensional transformation, and the concate denotes
feature concatenate.

3.1 Multimodal-based modulation
recognition method

3.1.1 Temporal modal-based feature
extraction module

Considering that LSTM has demonstrated certain advantages in
processing sequence data due to its simple network structure, and
given that the one-dimensional signals in this study are sequence
data, LSTM was chosen as the basic network for extracting time-
series features.

The modulation recognition method based on temporal modes
proposed in this paper primarily relies on the LSTM model with
improvements. The method can effectively assign multi domain
features, enabling the model to better recognize the signal.

Firstly, the amplitude and phase (A/P) of the received signal are
obtained through data transformation, and I/Q and A/P are jointly
used as inputs to the model. Secondly, the LSTM model extracts
features from the multi-domain data. The features extracted through
LSTM are connected in two directions, horizontal and vertical,
respectively. Then, the feature vectors in the horizontal direction
undergo softmax processing to obtain the probability of each feature

FIGURE 1
Diagram of the overall structure of the MTL model.
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W � [w1, w2, w3, w4], which serves as a weighting coefficient. This
coefficient is multiplied by the feature vectors in the vertical
direction to obtain the final target features Tfinal. The calculation
process can be described by Equation 4 as follows:

Tfinal � TpWT �
w1I1 w1I2 / w1In
w2Q1 w2Q2 / w2Qn

w3A1 w3A2 / w3An

w4P1 w4P2 / w4Pn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (4)

where T represents the eigenvector, composed by connecting in the
vertical direction. The structure of the temporal model feature
extraction is schematically depicted in Figure 2, where Xt and ht
denote input and hidden states at time step t, respectively. δ and
tanh represent sigmoid activation function and hyperbolic
tangent function.

3.1.2 Image modality-based feature
extraction module

For the extraction of image modal features, the FMN network is
chosen as the base network in this paper. FMN is capable of multi-
scale feature extraction, enabling it to simultaneously capture global
and local features. This capability allows FMN to retain richer and
more effective features.

The image form not only increases the dimensionality of
the data and provides more information to the model, but
also helps to improve the expressive and generalization
ability of the model. Image is the form of data representation in
two-dimensional space, by converting time series into image,
time series data can be combined with spatial information, so
as to more comprehensively describe the characteristics of
the data and the law of change. In this paper, the time series
signal is converted into a two-dimensional image by using
Markov transition field (MTF), an image coding method.
This method can transform the one-dimensional signal
recognition task into an image recognition task, extending the
technical means of signal modulation recognition. At the same
time, the MTF coding process also retains the dynamic statistical
characteristics of the signal, which makes the information
contained in it richer.

To realize one-dimensional signal imaging for a one-
dimensional signal sequence, the following four steps are
implemented:

Firstly, the sequence is divided into several segments, each
labeled accordingly. Each segment contains the same number of
sample points. Then, the weighted adjacency matrix is constructed
by calculating the transition probabilities between the segments,
which can be described by Equation 5 as follows:

W �
w11 / w1Q

w21 / w2Q

..

.
1 ..

.

wQ1 / wQQ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

s.t.∑
j

wij � 1; i, j � 1, 2, ..., Q.

(5)

where wij denotes the transition probability from segment i to
segment j, and the elements in each row are greater than 1 and the
sum of all elements is equal to 1. Finally, the MTF matrix M is
obtained by normalizing W and expressing the transfer probabilities
in chronological order.

M �
mij x1 ∈ qi, x1 ∈ qj

∣∣∣∣ / mij x1 ∈ qi, xN ∈ qj
∣∣∣∣

mij x2 ∈ qi, x1 ∈ qj
∣∣∣∣ / mij x2 ∈ qi, xN ∈ qj

∣∣∣∣
..
.

1 ..
.

mij xN ∈ qi, x1 ∈ qj
∣∣∣∣ / mij xN ∈ qi, xN ∈ qj

∣∣∣∣
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (6)

where qi and qj denote the ordinal numbers in the q-th quantile
segment. The elements on the main diagonal represent the
probability of self-transition. The MTF transition matrices MI

and MQ for the I and Q signals can be derived from Equation 6,
respectively. The MTF transition matrix MIQ for the combined
signals can be expressed by Equation 7 as follows:

MIQ � MI +MQ (7)
Afterwards, the image data is fed into the image feature

extraction module for feature extraction. The structure of this
module is depicted schematically in Figure 3, where H, W and d
represent the height, width, and feature dimension of the feature
map, respectively.

FIGURE 2
Schematic diagram depicting the structure of timing feature extraction.
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Initially, a one-dimensional signal is encoded into a two-
dimensional image using MTF. Subsequently, a patch
embedding layer, composed of convolutional blocks known as
Patch Embedding, segments the feature map. This segmented map
is then passed through the focus modulation network following a

linear transformation. This entire process is repeated four times.
After each iteration, the patch embedding layer reduces the spatial
size of the feature map by half and doubles the feature dimension.

Focal modulation consists of three main components. The first is
the hierarchical context. This component uses a series of deep

FIGURE 4
The structure of Focal Modulation Nets.

FIGURE 3
Schematic representation of the image feature extraction architecture.
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convolutional layers to encode visual context from near to far,
allowing the model to capture local to global visual information
at various levels of granularity. The second component is the gated
aggregation mechanism. This mechanism selectively aggregates
contexts from different levels of granularity based on the content
of query markers, filtering out irrelevant information. The final
component is elemental modulation. This part achieves the
combination of context and query tokens through element-level
multiplication operations, resulting in a refined representation.

The structure of the FMN is illustrated in Figure 4, where zi
denotes the i-th layer of contextual features. gate denotes a gated
aggregation computation. ⊙ represents dot product. The input image
is segmented into multiple tokens to form a feature
map. Hierarchical contextualization is achieved by stacking deep
convolutional layers, and generating contextual feature maps at
various levels of granularity. The global context is captured using
Global Average Pooling. Next, spatial and level-aware gating weights
are generated via linear layers. These gating weights enable the
model to control the extent of context aggregation from different
granularity levels. Finally, a linear layer projects the input feature
map into a new feature space. The modulators are then fused with
the query tokens through element-level multiplication to produce
the final feature representation.

3.2 Multi-task based modulation
recognition method

Considering the disparities in the characteristics of various
modalities, this section introduces a multi-task recognition
approach that leverages multi-modal features for primary
recognition and image feature recognition as a secondary
method. Distinct loss functions are employed for each
recognition task. Subsequently, these loss functions are weighted
differentially, and their weighted sum is calculated to derive the
ultimate objective loss function. The optimization of this loss
function is iteratively refined to enhance the model’s recognition
capabilities. Consequently, the proposed methodology not only
achieves the integration of multimodal features but also
optimizes multiple loss functions, thereby augmenting the
network’s overall performance in sophisticated settings.

For recognizing multimodal features, we opted for the cross-
entropy loss function, while for recognizing image modalities, we
selected the KL divergence loss function. The formula for the
objective loss function defined by Equation 8 is as follows

Losstarget � αLossMulti + βLossImage (8)

where α and β are the weight coefficients for two different
recognition tasks. LossMulti and LossImage represent the loss

functions for the multimodal feature recognition task and the
image modal feature recognition task, respectively.

4 Experiments and results analysis

4.1 Experimental setup

4.1.1 Datasets
Experiments were conducted using the open-source dataset

RadioML2016.10A (Lin et al., 2023), partitioned into training,
validation, and test sets with a ratio of 6:2:2. The related
parameters are illustrated in Table 1.

4.1.2 Evaluation indicators
In this paper, recognition accuracy and confusion matrix are

selected as evaluation metrics. Under conditions of low SNR, the
recognition accuracy of all models is significantly reduced. To
clearly examine the advantages of different models, two
representative SNR conditions, 0 dB and 18dB, are chosen for
experimental analysis. The recognition accuracy can be expressed
by Equation 9 as follows

accuracy � TP + TN

TP + TN + FP + FN
(9)

where TP and TN represent the number of correctly identified
positive and negative samples, respectively, and FP and FN represent
the number of incorrectly identified positive and negative samples,
respectively.

The confusion matrix is a square matrix representing the
total number of categories of the samples. The horizontal axis
denotes the predicted results, while the vertical axis represents
the true identification results. Each cell’s value indicates the
number of samples from the true category that are predicted
to be in the corresponding predicted category. To provide a more
intuitive representation of the confusion results, this study
normalizes the number of predictions and then multiplies the
values by 100, retaining two decimal places, resulting in a
probability value.

4.1.3 Experimental setup
To determine the loss weight coefficients for the various tasks in

the MTL model, a parametric analysis was conducted. The details of
other specific parameters are presented in Table 2.

This paper conducts a comparative analysis of several
mainstream deep learning-based methods, namely CNN
(Tekbıyık et al., 2020), LSTM (Rajendran et al., 2018), ResNet
(Liu et al., 2017), CLDNN (West and O’shea, 2017), and
Transformer (Cai et al., 2022).

TABLE 1 Dataset related parameters.

Sample size 220000

Modulated signal type 11

SNR range −20 dB:2 dB:18 dB

Signal length 128

TABLE 2 Parameters related to model training.

Optimizer Adam

Batch size 64

Maximum training epochs 200

Initial learning rate 0.0001
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4.2 Performance of the proposed
multimodal feature

4.2.1 Ablation study
We conducted ablation experiments on the modules in MFF and

verified the effectiveness of each module. LSTM_orign denotes the
original LSTMmodel that has not undergone any modification and.

LSTM_multi represents the improved LSTM model, which
employs multiple features as input. MTFN stands for MTF Image
RecognitionNetwork. The proposedMFF is amultimodal recognition
method. As illustrated in Figure 5, the LSTM_Mmethod proposed in
this study enhances recognition performance compared to the
standard LSTM approach. This finding also confirms that features
from different domains have varying impacts on the recognition
outcomes. Furthermore, the recognition performance of the MFF
method surpasses that of both LSTM_M and MTFN. This indicates
that the richer effective features extracted by the multimodal
recognition method contribute significantly to enhancing the
model’s recognition performance.

4.2.2 Comparison methods
In this paper, our proposed MFF method is compared with five

mainstream modulation recognition methods. Figure 6 depicts the
recognition accuracy curves of the six methods on the RML2016.10A
dataset. When the SNR is below −12 dB, the recognition performance
of all six methods degrades significantly due to the substantial impact
of noise. However, when the SNR exceeds −10 dB, the proposed MFF
model begins to demonstrate its recognition advantage for modulated
signals. It can be found from the Table 3 that the best recognition
accuracy of other methods is up to 90.10%, while the best recognition

accuracy of the proposed MFF model reaches 92.30%. The average
recognition accuracy is higher than CNN, ResNet, LSTM, CLDNN
and Transformer. This also shows that the MFF is more stable in the
recognition performance within 11 modulated signals, thereby
ensuring a high average recognition accuracy.

To more intuitively observe the classification effect of the MFF
method compared to several other models, Figure 7 presents the t-SNE
visualization result plots for the six methods. As shown in Figure 7, the
MFF method has the least confusing regions for classification,
highlighting its recognition advantage over the other methods.

To further analyze the recognition performance of MFF,
confusion matrices of the six methods at 0 dB are presented in
Figure 8. Figures 8A–F depict CNN, LSTM, ResNet, CLDNN,
Transformer, and the proposed method in this paper, respectively.
As observed in Figure 8, at 0 dB, MFF has demonstrated effective
recognition of two easily confused signals, 16QAM and 64QAM.
However, for theWBFM signal, the presence of silence periods during
sampling renders all six methods less effective in recognition.

Finally, since the proposed method employs two separate branch
models to extract temporal and spatial features respectively, it is
inevitable that the number of model parameters will expand. As
illustrated in Table 4, while the proposed method achieves the
optimal recognition performance, it involves a relatively larger
number of parameters compared to other benchmark methods. This
demonstrates that the improvement in recognition performance comes
at the cost of a dramatic increase in the number of parameters.
Importantly, the number of parameters remains within a
manageable range, ensuring the model’s practicality and feasibility
in real-world scenarios. Specifically, the number ofmodel parameters of
the proposed method is 28.64 M, which is higher than that of CNN

FIGURE 5
The recognition accuracy curves of MFF modules.
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(1.59 M), ResNet (3.98 M), LSTM (0.26 M), CLDNN (0.51 M), and
Transformer (11.53 M). This implies that the proposed algorithm has
the lowest inference speed. While this design increases the
computational requirements of the model, the method can achieve
considerable performance gains and is suitable for scenarios with high
accuracy requirements. With the continuous development of advanced
devices with high computility, the MFF model will be a compelling
example in the field of automatic modulation recognition,
demonstrating that the modulation recognition performance can be
significantly improved by increasing the model scale.

4.3 Performance of the proposed multi-task

4.3.1 Parametric analysis
To determine the coefficients for weighting loss in different

tasks, we conducted experiments involving parametric analysis. The
experimental results are depicted in Figure 9.

From Figure 9, it’s evident that recognition accuracy increases
initially and then decreases as α gradually decreases. Therefore, we
selected the set of weight parameters that yielded the highest
recognition accuracy, specifically α � 0.9, β � 0.1. Across the
four groups of experiments, the highest average recognition
accuracy was nearly 1.5% higher than the lowest. With the
increase of β from 0.05 to 0.1, all evaluation indexes of the
model are rising. As the value of β increases from 0.1, the
overall recognition performance and the best recognition
performance exhibit a decreasing trend. The experimental result
also further verifies that the multi-modal feature serves as the main
recognition means and supplemented by the image mode, plays a
positive role in the modulated signal recognition. Compared with
other algorithms, this algorithm not only improves the recognition
accuracy, but also enhances the ability of the signal characteristics
description. Therefore, the algorithm combined with multi-modal
and image modes can mitigate the effect of the complex wireless
communication environment.

TABLE 3 Comparative experimental results.

Model Average accuracy Best accuracy 0 dB 18 dB

CNN 55.62% 83.45% 78.68% 81.36%

ResNet 55.09% 84.86% 77.31% 83.72%

LSTM 58.97% 90.09% 82.50% 89.27%

CLDNN 57.09% 85.81% 80.68% 85.81%

Transformer 57.18% 90.10% 78.04% 89.57%

MFF 61.20% 92.30% 86.27% 92.27%

FIGURE 6
Recognition performance comparison of different methods.
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4.3.2 Comparison experiment
To verify the superiority of the multi-task recognition method,

additional experiments were conducted. The proposed MFF_ML
model was compared with the MFF model, and the recognition
accuracy variation curves for both models as functions of signal-to-
noise ratio were obtained, as illustrated in Figure 10. The average
and best recognition accuracy of MFF_MLwere 62.33% and 92.90%,
respectively. The recognition accuracy of 0 dB and 18 dB were
88.45% and 92.81%, respectively. Compared with the MFF method,

the average recognition accuracy of MFF_ML is increased by 1.13%,
and the best recognition accuracy is increased by 0.60%. It also
verifies that the multi-task recognition method proposed in this
chapter can further improve the recognition performance of multi-
modal feature recognition.

The MFF_ML method proposed in this paper achieves the highest
recognition accuracy of 92.9%, surpassing the five mainstreammethods
by at least 2.8%. The average recognition accuracy stands at 62.33%,
underscoring the superiority of the MFF_ML method in modulated

FIGURE 7
t-SNE visualization of classification effects of different models. (A) CNN. (B) ResNet. (C) LSTM. (D) CLDNN. (E) Transformer. (F) MFF.
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FIGURE 8
Confusion matrix between MFF and other methods at 0 dB. (A) CNN. (B) LSTM. (C) ResNet. (D) CLDNN. (E) Transformer. (F) MFF.

TABLE 4 The number of parameter comparison results.

Model CNN ResNet LSTM CLDNN Transformer MFF

Number of Parameters 1.59M 3.98M 0.26M 0.51M 11.53M 28.64M
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signal recognition. These findings demonstrate that the MFF_ML
method offers superior and more stable recognition performance.

Figure 11 illustrates the confusion matrix at 0 dB for
both methods.

As depicted in Figure 11, MFF_ML significantly enhances
the discriminative capacity of 8PSK at 0 dB relative to MFF.
This improvement can be attributed to the collaborative
optimization of multiple tasks in MFF_ML, enabling the

FIGURE 10
Recognition performance comparison of MFF_ML and MFF.

FIGURE 9
Recognition performance of MTL with different weighting coefficients.
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model to extract more resilient and distinctive features from
the input data.

5 Conclusion

In this paper, we propose a novel multi-task approach
for modulation recognition, which significantly advances the
field through several key contributions. First, we design a time-
series feature extraction model that dynamically allocates weights
to multi-domain features, optimizing their representation
before extraction. Second, to enrich feature information, we
employ MFF_ML coding to transform temporal IQ signals into
image format, enabling the extraction of complementary spatial
features. Third, we introduce a focus modulation network to
comprehensively extract effective features from the image
modality. Finally, we devise a multi-task recognition method to
mitigate variability among multimodal features, further
enhancing the model’s recognition accuracy. Experimental
results demonstrate that our proposed multi-task modulation
recognition method achieves at least 2.8% higher accuracy
compared to five mainstream modulation recognition methods.
This improvement underscores the effectiveness of leveraging
multi-modal features and highlights the distinct roles played by
features from different modalities in the recognition process. The
success of our approach not only validates the potential of multi-
task learning in modulation recognition but also provides a robust
framework for future research in signal processing and related
fields. For future work, we identify several promising directions.
First, incorporating denoising processes could enhance the
model’s performance at very low signal-to-noise ratios,
addressing a critical challenge in real-world applications.
Second, extending the proposed framework to other signal
recognition tasks, such as speech or image recognition, could
validate its generalizability and broaden its impact.
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