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The increasing amount of data sensors generate, and the dynamic nature of
climate and environment pose challenges for conventional smart
environmental monitoring systems. These systems encounter difficulties in
long-distance data communication, accurate data processing, and
generalized prediction modeling, particularly in large-scale, remote, and
hard-to-reach areas. Moreover, they are costly, complex, and inefficient,
especially in regions with limited telecommunications infrastructure.
Consequently, there is a pressing need for more efficient and effective
monitoring techniques to safeguard natural resources and ecosystems. To
address these challenges, we propose the concept of a novel environmental
monitoring system that integrates aerial access networks (AAN), federated
learning (FL), and hybrid LoRa Point-to-Point (P2P)/LoRaWAN technologies.
This integration offers a reliable and efficient solution for monitoring remote
regions. We provide an overview of the AAN, FL, and aerial FL paradigms and
discuss the benefits and challenges of their integration. Preliminary simulation
results demonstrated the proposed system’s feasibility and effectiveness. Lastly,
we outline open challenges and potential research directions to advance this
field.
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1 Introduction

Machine learning (ML) offers effective solutions to complex problems. However, the
success of ML relies on accurate, large, and unbiased datasets, which are often extremely
challenging, costly, or impossible to obtain.

Aerial access networks (AANs) are wireless networks that use flying platforms like
unmanned aerial vehicles (UAVs) to provide connectivity and communication services.
AANs overcome terrestrial access network (TAN) limitations, offering extended
coverage, improved communication quality, and enhanced mobility. They are
particularly valuable in remote and inaccessible areas, where TANs are unavailable or
have limited coverage.

Integrating low-power wide-area network (LPWAN) technologies like LoRaWAN® or
LoRa P2P into UAV-assisted AANs offers a comprehensive solution for environmental
monitoring in remote regions. These technologies enhance communication range and
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enable direct device-to-device communication, addressing
conventional wireless sensor networks (WSNs) constraints.
However, challenges remain in ensuring reliable communication
links, especially in harsh environments where environmental factors
significantly impact channel conditions and hinder the transmission
of large volumes of raw data from terrestrial to aerial nodes.

In recent years, the surge in data generation has driven the
adoption of ML for data analysis. However, traditional centralized
ML techniques have limitations concerning data privacy, raw data
transmission, and resource-intensive processing. To address these
challenges, Google introduced federated learning (FL) in 2016 as a
promising approach (Konečný, 2016). FL mitigates privacy risks and
communication costs by training ML models locally on devices
rather than centralizing data. This approach addresses privacy
concerns and reduces the need for high-bandwidth and low-
latency communication links, which can be expensive in large
Internet of Things (IoT) networks.

The original FL architecture faces technical challenges, such
as ensuring reliable connectivity between end devices (EDs) and
aggregation servers (AS). This issue becomes more pronounced
in scenarios with poor or non-existent connectivity between
EDs and AS. To address this issue, aerial federated learning
(AFL)—a variant of FL leveraging AANs—has emerged as a
promising approach (Pham et al., 2022). AAN platforms can
serve as relays to transmit local models from EDs to the AS or
aggregate models directly. Recent studies, such as (Pham et al.,
2022), have proposed AFL and emphasized the significance of
AANs and mobile edge computing (MEC) for next-
generation networks.

MEC brings computing and storage resources closer to the
network edge, enabling low-latency real-time applications and
reducing reliance on cloud-based data transmission. It is a key
technology for next-generation networks, facilitating IoT, 5G, and
edge AI use cases.

Integration of MEC, FL, and AANs offers the potential for
developing advanced intelligent environmental monitoring systems
in remote areas. However, research on their integration and
associated challenges for environmental monitoring is lacking.
This work introduces the UAV-assisted Federated Learning
system for Environmental Monitoring (UFEM), which integrates
AANs, FL, MEC, and a hybrid LoRa P2P/LoRaWAN topology. The
system addresses the limitations of conventional environmental
monitoring approaches and provides an efficient framework for
deploying intelligent IoT solutions in remote and harsh
environments.

In summary, the contributions of this article are:

• A technical review of FL and AFL, discussing their benefits and
limitations. This review contextualizes the challenges of
deploying federated learning in aerial environments,
emphasizing the need for hybrid solutions like the
proposed system.

• The design and proposal of the UFEM system architecture,
which integrates FL, AANs, LPWAN technologies. This
includes the integration of AFL workflows and hybrid
LoRaWAN®/LoRa P2P topology to enable dual-hop
communication tailored for environmental monitoring in
remote areas.

• Identifying key challenges and research directions for AFL and
UFEM development.

2 Related works, concepts, and
limitations

In this section, we provide an overview of recent wireless sensing
technologies and then delve into the concepts of AAN and FL,
including their various paradigms. We then examine the specific
application of AFL and its associated benefits and limitations.

2.1 Wireless sensing technologies for
environmental monitoring

Several studies have examined using WSNs to monitor different
phenomena in remote and hard-to-reach environments, driven by
recent IoT breakthroughs in low-cost sensing devices, machine-to-
machine (M2M) connectivity, and wireless IoT technologies.
However, the difficult backhaul deployment, harsh wireless
channel conditions, and lack of public network coverage make
collecting data from these remote areas difficult.

In this context (Zhang and Li, 2020), suggested a drone-assisted
IoT relay system in which drones were implemented as mobile relays
for remote data gathering frommonitoring equipment positioned in
challenging areas with no public network coverage. The system aims
to provide a high-speed and cheap method of monitoring the
environment using two different types of wireless
communication. The first uses 5 GHz Wi-Fi to transmit low-
latency data between the drone and ground-based monitoring
devices. Meanwhile, LoRa technology was implemented as a Wi-
Fi module wake-up approach to save power.

Low-power wide-area networks (LPWANs) such as
LoRaWAN®, SigFox, and NarrowBand-IoT (NB-IoT) have
long-range capabilities and high energy efficiency. However,
each has limitations; for example, direct communication
between LoRa nodes is not permitted by LoRaWAN®, making
it unsuitable for private LoRa networks where one gateway (GW)
is placed for wide monitoring areas, and nodes cannot be in the
communication range of the GW. One possible solution is
wireless mesh networking that allows multi-hop
communication and data forwarding between nodes until it
reaches the GW. This approach was considered in (Lee and
Ke, 2018), which proposed a LoRa mesh networking system
for large-area monitoring. The results showed that the
suggested LoRa mesh networking system outperformed LoRa
star-network architecture regarding packet delivery ratio
(PDR) by 30%.

Similarly (Cecílio, 2021), investigated the use of LoRa in private
network deployments for IoT applications. The study then
presented an improved LoRa reliable protocol (AQUAMesh) with
mesh networking capabilities for remote monitoring applications
that can replace LoRaWAN®. It uses the LoRa physical layer, which
provides long-range communications and enables point-to-point
communications to be dealt with using custom time-division
multiple access (TDMA). The results showed that the proposed
protocol overcomes the shortcomings of the existing LoRaWAN®
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and can be effectively deployed in private networks for various
applications.

2.2 Aerial access networks

AANs, with their unique characteristics, including flexibility,
dynamic deployment, and increased coverage capabilities, play a
crucial role in developing 5G and 6G networks. They enhance
performance by supplementing terrestrial, underground, and marine
communication networks (Geraci et al., 2022), (Hu et al., 2024).

AANs can be classified into high-altitude platforms (HAPs) and
low-altitude platforms (LAPs). HAPs, such as satellites, are hindered
by limitations, including weather conditions, limited mobility, high
latency, the need for large and power-intensive equipment, and high
operational costs. These factors make HAPs less suitable for
environmental monitoring in remote and hard-to-reach areas.

In contrast to HAPs, LAPs, such as UAVs, offer several
advantages as aerial base stations (ABSs) or aerial users. These
advantages include mobility, low latency for real-time applications,
suitability for harsh environments, lower operational costs, and the
high probability of line-of-sight (LoS) communication due to the
dynamic nature of UAVs. Despite that, effective implementation of
AANs faces challenges, such as power constraints, spectrum
utilization, and interference management.

2.3 Federated learning

FL enables data collection and local model training on edge devices
(EDs). The trained local models are transmitted to the AS for model
aggregation, employing techniques such as FedAvg or other FL
algorithms (Fu et al., 2024). Then, the global model is sent back to
the EDs. This process is repeated until the desired performance is met.
Therefore, EDs do not need to send their raw data to the AS, which
requires less bandwidth and lower energy for data transmission. On the
other hand, as the rawdata are kept at the EDs, data privacy can be further
protected. This decentralized approach improves efficiency and privacy.

Based on the data distribution, FL can be categorized into three
groups: horizontal FL (HFL), vertical FL (VFL), and transfer FL
(TFL) (Du et al., 2020). HFL uses datasets with similar features from
EDs of the same type to train a common model. In contrast, VFL
collects data from EDs of different types to train personalized
models, while TFL focuses on knowledge transfer between
domains or tasks by pretraining on one dataset and fine-tuning
on another.

FL can also be categorized based on network topology:
centralized and distributed. Centralized FL uses a central server
(AS) for model aggregation, while distributed FL allows EDs to share
local models with each other based on trust and network protocols,
performing model aggregation in a distributed, decentralized
manner (Shayan et al., 2020), (Fu et al., 2024).

2.4 Aerial federated learning

In AFL, the location of AS can be fixed or dynamic. In scenarios
where EDs have limited access to the AS, an AAN platform serves as

a relay or directly aggregates models, either centrally or in a
distributed manner, as described earlier in the introduction.
Previous research, such as (Ng et al., 2020), has proposed and
discussed the concept of aerial aggregation, where a UAV is
deployed to collect local models from EDs and execute model
aggregation. However, the number of deployed UAVs depends
on the coverage area size.

Regarding implementing AFL, UAVs can be deployed in three
ways: as relays, EDs, or as part of a UAV swarm.

2.4.1 UAVs as Relays
UAVs extend network coverage by relaying local models from

EDs outside the AS’s range to the AS and transmitting the global
model back to the EDs. Previous research, such as (Du et al., 2020),
has investigated the implementation of UAVs as aerial relays for FL
in the context of the Internet of Vehicles (IoV).

2.4.2 UAVs as EDs
UAVs can also be deployed as EDs to provide FL services. In this

case, UAVs cooperate to perform a complex learning task. Literature
such as (Zhang and Hanzo, 2020) has explored using UAVs as EDs
for object detection and classification applications. The coordination
of UAVs can be accomplished through self-coordination or a
ground control station (GCS). When a reliable link exists
between the UAVs and GCS, a terrestrial server can coordinate
the UAVs. However, when reliable links are unavailable or
computation power at the GCS is sufficient, one of the UAVs
may assume the coordinator role.

2.4.3 UAVs Swarm
A swarm of UAVs can connect in an ad hocmanner and perform

the FL task. In such a network, UAVs can establish a fully aerial
network or connect to terrestrial infrastructure. In the latter scenario,
only a limited number of UAVs need to be directly connected to the
infrastructure, while the remainder of the UAVs can establish an
indirect connection through intermediate UAVs. The authors of (Lee,
2022)- (Liu et al., 2020) have examined the potential of UAV swarms
in FL, with (Lee, 2022) focusing on federated reinforcement learning
in aerial remote sensing, (Hoang et al., 2023), proposing a clustered
and scalable FL framework, and (Ding et al., 2024) addressing
distributed machine learning with a focus on computing, sensing,
and semantics. However, implementation challenges, including
routing, communication protocols, and dynamic topology, require
further examination.

3 Motivation

The main limitations of conventional environmental
monitoring systems include the need for long-range, reliable, and
high-bandwidth communication links, which become more
challenging in remote and hard-to-reach environments that lack
telecommunications infrastructure. Additionally, monitoring large-
scale areas results in large amounts of raw data that need to be
transmitted, which increases power consumption. Conventional FL
faces fixed deployment and coverage constraints, making adaptation
to dynamic ED behavior and deployment in remote areas difficult
and costly.
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To address these limitations, we propose a novel approach that
incorporates the advantages of AANs, AFL, and a hybrid LoRa P2P/
LoRaWAN communication system to improve the efficiency of
environmental monitoring in remote areas by bringing
intelligence to wireless sensor networks and enabling the efficient
extraction and transfer of meaningful data to points of interest.

4 UAV-assistant FL system for
environmental monitoring

4.1 General concept

Figure 1 depicts the general concept of the proposed UFEM
system. As an example of a large-scale, remote, and hard-to-reach
environment, the simulation and results analysis utilize Malaysia’s
National Park tropical forest, which covers an area of 4,343 km2 and
is believed to be 130+ million years old, making it one of the oldest
deciduous rainforests identified to date.

To increase the efficacy of data collection, mobile sensing nodes
(SNs) equipped with LoRa transceivers for WSN capabilities are
implemented. This can be achieved by attaching the SNs to selected
wildlife, e.g., in the form of collar tags. This approach leverages the
animals’ access to hard-to-reach environments and their tendency to
move within a specific territory, which aids in developing a local
network for retrieving data from the SNs and transmitting it to the EDs.

The proposed UFEM system comprises three main components:
SNs, EDs, andAS. The system employsmany SNs distributed throughout
the environment to collect data. The EDs use the collected local data to
train local models, while the AS aggregates these local models - centrally
or distributedly - to update the global model.

Subsequent sections detail the network topology, components,
and FL workflow for environmental monitoring.

4.2 Proposed network topology

Among the latest LPWAN technologies, LoRaWAN® has
received significant attention from the scientific and industrial

communities due to its unique features and flexibility for long-
range communication requirements. It utilizes the LoRa physical
layer with an added Medium Access Control (MAC) mechanism to
enable nodes in the network to communicate with multiple GWs in
range. However, its reliance on multiple GWs limits deployments in
remote areas lacking infrastructure or feasibility for private
LoRaWAN® networks.

In such scenarios, the P2P communication feature of the private
LoRa network is much needed. As suggested by multiple studies, one
solution would be utilizing the LoRamesh network to support multi-
hop communications between nodes. The latter, however, increases
the network’s routing complexity with a major drop in power
consumption efficiency, making it unsuitable for the harsh
deployment scenarios targeted in this work.

This work addresses these challenges by proposing a hybrid
network topology combining LoRaWAN® and LoRa P2P
communication to enable dual-hop communication, as shown in
Figure 2. The proposed network consists of three main components:
(i) a LoRaWAN®-based GW, (ii) a hybrid LoRa P2P/LoRaWAN®
end node (EN), and (iii) a LoRa-based SN. SN transmits collected
data sequentially to an EN once or twice daily with limited
retransmissions to address communication failure while
maintaining full compliance with the spectrum and LoRaWAN®

regulations.
On the other hand, EN functions as a hybrid LoRa P2P/

LoRaWAN® node to relay data between SNs and the GW and is
mounted at relatively high altitudes. Hybrid networking can be
achieved by modifying the LoRaWAN® MAC layer of the ENs to
switch between two different networks. Accordingly, ENs may only
switch to LoRaWAN® mode when receiving a downlink message
from the GW that triggers the start or end of the LoRaWAN®

communication session.
Finally, GW is a typical private LoRaWAN® based GW that may

collect and forward local/global model parameters from/to ENs in
the sensing field. Similarly, when one or multiple UAVs are deployed
for large-scale monitoring, the LoRaWAN® modem is configurable
to switch between GW or EN functionality. Thus, UAVs
communicate by modifying the LoRaWAN® MAC layer to switch
between modes.

FIGURE 1
Proposed UAV-assisted FL service for environmental monitoring.
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4.3 Aerial federated learning workflow

The proposed UFEM system’s FL training process is composed
of the following steps:

1) Initialization: The AS sets the hyperparameters of the training
model (e.g., number of hidden layers and neurons, learning
rate, optimizer) and updates the EDs with the model
hyperparameters.

2) Data collection: SNs collect and store data from the field.
3) Data transmission to the EDs: SNs transmit data to the EN

based on a defined schedule, and the EN conveys the data
to the ED.

4) Local model training: Each ED trains a local model.
5) Local model update: After training for a predefined batch

number, each ED transfers its local model to the AS
(on the UAV).

6) Model aggregation: This process depends on the type of FL
(number of UAVs):
• Centralized FL: A single UAV retrieves and aggregates all
local models across the field.

• Distributed FL: Multiple UAVs, each retrieving and
aggregating local models within its defined sectors to
compute a semi-global model. Based on a predefined
path, these UAVs gather in a particular zone and share
semi-global models. Finally, one of the UAVs aggregates the

semi-global models and shares the computed global model
with other UAVs.

7) Global model sharing: In the next mission, the UAV broadcasts
the updated global model to the EDs.

The above procedure is repeated until the desired performance is
achieved. This iterative process is adaptable to both centralized and
distributed federated learning configurations. The centralized
approach minimizes computational overhead on EDs, making it
ideal for deployments with fewer UAVs and simpler network
topologies. In contrast, the distributed approach enhances
scalability by leveraging multiple UAVs for sector-based
aggregation, enabling the system to handle large-scale
deployments efficiently. These design choices balance scalability,
resource constraints, and performance requirements, catering to
diverse environmental monitoring scenarios.

As detailed in Section 4.1, the proposed workflow is directly
applicable to large-scale environmental monitoring scenarios, such
as Malaysia’s National Park, where sensing nodes on wildlife collect
data for federated learning.

5 Performance evaluation

The feasibility and effectiveness of the proposed system
architecture are evaluated through both LoRa coverage analysis

FIGURE 2
The proposed network topology.

Frontiers in Communications and Networks frontiersin.org05

Behjati et al. 10.3389/frcmn.2025.1529453

https://www.frontiersin.org/journals/communications-and-networks
https://www.frontiersin.org
https://doi.org/10.3389/frcmn.2025.1529453


and FL performance analysis. The LoRa results are discussed first,
followed by the FL simulation results. The simulations were
conducted using the Cloud-RF® RF planning tool for the LoRa
coverage analysis and Tensorflow Federated for the FL simulations.

As illustrated in the previous section, ENs function as hybrid
LoRa P2P/LoRaWAN® nodes to communicate with both SNs and
the GW. This makes ENs the most important component in the
proposed system, where achievable coverage directly depends on
ENs placement and the physical layer configuration parameters for
LoRa, including spreading factor (SF), transmission power, and
bandwidth. It is assumed that 33 ENs are deployed throughout
Malaysia’s National Park. Then, simulations were performed to
predict the average coverage range per EN, considering both EN
to SN and EN to GW communication scenarios.

The simulations considered the ENs mounting height 20 m above
ground level (AGL). Meanwhile, SNs and GWwere considered at 1 m
and 60 m AGL, respectively. Other physical layer configuration
parameters of LoRa were comparable to simulation parameters in
(Alobaidy et al., 2022), (Alobaidy et al., 2024), including a
transmission power of 20 dBm, AS923 frequency band with a
125 kHz bandwidth, receiver sensitivity of −137 dBm, and a 3 dBi
omnidirectional antenna for all node types. The Longley-Rice

Irregular Terrain Model (ITM) was used for its ability to account
for irregular terrain impacts, with knife-edge diffraction enabled and
the default tropical climate profile applied for accurate coverage
modeling. It should be noted that the simulations were performed
by utilizing the API calculation feature of Cloud-RF® then coverage
results from each node were combined into one supper layer to plot
the coverage heatmap of the achieved results, as shown in Figure 3.

Based on the coverage heatmaps shown in Figure 3A, it can be
noted that moderate coverage may be achieved with an average
radius of 1–3 km while also achieving wider ranges, in some cases,
depending on the terrain, foliage, and other signal-influencing
factors that may impact the communication between EN and
SNs. Meanwhile, it is clear from Figure 3B that a GW carried out
by a UAV at 60 mmay cover all 33 ENs with a signal strength that is,
on average, equal to or greater than −110 dBm.

It can be concluded that the proposed system may be operated
successfully in the considered environment by considering an
SF9 for the EN to SN link and an SF7 for the EN to GW link.
On the other hand, the bandwidthmay be maintained at 125 kHz for
the EN to SN communication scenario, while it may be increased to
250 kHz or even 500 kHz for the EN to GW
communication scenario.

FIGURE 3
LoRa coverage heatmap, with an example showing captured results for one of the ENs (highlighted in a red frame); for (A) ENs to SNs
communication scenario and (B) ENs to GW communication scenario.
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Meanwhile, to maintain the duty cycle and maximum allowed
airtime between the nodes, especially for EN to SN or vice versa
communication link due to limited bandwidth, the SNs may be
configured to transfer or receive data to/from EN once or twice per
day in a sequential manner. Further, nodesmay also be configured to
consider two to three retransmissions to cater to any packet losses
due to communication failure.

To evaluate FL under different scenarios, simulations were
conducted utilizing the MNIST dataset to represent non-i.i.d.
data distribution. The dataset was partitioned and distributed
among multiple EDs to train the model locally on each ED’s data.

Generally, the performance of FL is affected by factors such as
the nature of the data, the optimization technique employed, the
model architecture, the number of EDs, and the other
hyperparameter settings. The study used a set of specific
hyperparameters, model architecture, and optimization methods
that align with the parameters and configurations outlined in
(TensorFlow, 2024).

Figure 4A compares the performance of FL with 33 EDs to that
of conventional ML (CML). CML uses a centralized approach where
all data is sent to a central server for training, resulting in higher
accuracy due to access to all data. In contrast, FL distributes data
among multiple EDs and trains the model locally on each ED’s data,
leading to lower accuracy as the model does not have access to all
data. However, increasing the number of training rounds can reduce
the gap in performance between CML and FL to a small margin
(0.08) after 20 rounds. The performance gap depends on factors
such as the data, optimization technique, model architecture, and
hyperparameters, which can be further optimized to improve
performance.

Figure 4B presents the performance evaluation results of FL
under varying numbers of EDs. The impact of EDs on FL

performance depends on the dataset and model architecture
utilized. It is important to note that in the proposed system, a
large set of sensors are collecting environmental data, such as
meteorology data, from a large-scale environment; therefore, the
expected type of data likely would be non-i.i.d. From the results, it
can be observed that an increase in the number of EDs initially
slightly decreases FL performance; however, the accuracy fluctuates
around 0.92%, which indicates that FL can effectively handle the
learning task in a distributed manner.

In general, FL performance is expected to improve with
increased EDs; however, when dealing with non-i.i.d data, this
may not always be the case. More EDs do not necessarily
provide more diverse and representative data to the model but
may lead to a more robust model. Therefore, it is important to
consider the trade-offs between the benefits of having more EDs and
the increased complexity and communication costs.

6 Open research challenges and future
directions

While there are numerous challenges in this domain, this section
focuses on the most critical ones directly impacting the development
and deployment of the proposed UFEM system. These challenges
require further investigation and present significant open research
opportunities.

6.1 Aerial access networks

The use of AANs in environmental monitoring offers several
distinct advantages; however, several technical challenges must be

FIGURE 4
(A) Comparison of centralized/conventional ML with federated learning (FL). (B) Performance of FL under different numbers of edge devices (EDs).
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addressed to leverage their potential fully. One of the main
challenges is optimizing the path planning of the UAVs for
maximum performance. This includes optimizing parameters
such as travel distance, communication link reliability, energy
consumption (particularly during aggregation and relaying tasks),
and time-on-air. In addition, the impact of factors such as altitude,
speed, and mobility of the UAVs on the performance of the AANs
and the overall system needs to be investigated.

There are also challenges in channel modeling for harsh
communication environments that need further study. To
improve the performance of FL service, UAVs’ autonomy level
and decision-making capability need to be improved.
Additionally, the security and privacy of transmitted data must
be considered, and new networking protocols may be needed to
improve communication and coordination between UAVs or other
networks/devices.

6.2 Edge devices

Several technical challenges and potential research directions
must be addressed to fully leverage the potential of EDs in
environmental monitoring systems. These challenges include
ensuring the security and privacy of data, developing efficient data
pre-processing and feature selection methods, and investigating the
impact of factors like the number and distribution of EDs on system
performance. Additionally, developing methods for handling the
dynamic behavior of EDs, such as the ability to join or leave the
FL network and the ability to adjust the resources allocated to the EDs
based on their capabilities and requirements, is also important.

The scalability of the proposed system to support large-scale
deployment of EDs and handle the increase in data volume and
complexity is an important area of research. Additionally,
investigating the energy efficiency of EDs, and developing
methods for power management and energy-aware resource
allocation are important future research directions. The
robustness and fault tolerance of the proposed system to handle
potential failures or malfunctions of EDs must also be investigated.

The non-i.i.d. nature of the data used in the FL system is also a
challenge that should be addressed by investigating methods for
addressing the non-i.i.d. nature of the data, such as data pre-
processing techniques or modifying the FL algorithms themselves
to better handle non-i.i.d data. In addition, real-time model
adaptation remains critical, requiring FL algorithms that can
dynamically adjust to changes in environmental conditions while
balancing computational efficiency and performance.

6.3 Sensing nodes

One of the key challenges that need to be addressed in the
proposed system is designing and implementing energy-efficient
SNs that can operate for prolonged periods in remote and harsh
environments. Ensuring the robustness and reliability of data
collection from these SNs is also crucial, which includes
addressing issues such as sensor failure and missing/incomplete
data. The impact of different sensor configurations, such as the
number of sensors, the types of sensors, and the placement of

sensors, on the system’s overall performance needs to be
investigated.

Additionally, methods for pre-processing and selecting features
at the sensor level can improve the performance of the FL model by
reducing the amount of data transmitted. The use of machine
learning techniques for data processing and analysis at the sensor
level is an active area of research that can further improve the
system’s efficiency, e.g., refer to (Warden, 2022).

7 Conclusion

In conclusion, this paper proposes a novel environmental
monitoring system that integrates advanced technologies,
including aerial access networks (AAN), federated learning (FL),
and hybrid LoRa P2P/LoRaWAN communication. It examines FL
and aerial FL, highlighting their strengths and limitations. The initial
simulation results validate the feasibility and effectiveness of the
proposed system, showcasing improved coverage and performance
in large-scale and extreme environments. Furthermore, the research
highlights the challenges and identifies potential research directions
in AANs, aerial FL, and sensing nodes. The proposed system offers a
promising approach to address the limitations of conventional
monitoring systems and contributes to the advancement of
environmental monitoring technologies.

Future work involves deploying the proposed UFEM system in
real-world environments, such as Malaysia’s National Park, which
served as a case study for this research. These deployments aim to
validate the system’s performance under dynamic environmental
conditions, including varying terrain and weather, while also
offering critical insights into optimizing its scalability and
reliability for large-scale monitoring in challenging environments.
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