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Blockchain and Artificial Intelligence (AI) technologies offer immense potential
when integrated with the Internet of Things (IoT) across multiple sectors,
including healthcare. Blockchain remains an active research topic, particularly
regarding its scalability and the time efficiency of its verification process.
However, limited attention has been given to the practical challenges of
integrating blockchain with AIoT (AI with IoT) in healthcare applications, that
face persistent privacy and security challenges due to the sensitive nature of
personal data. These challenges include time-consuming data retrieval and
increased memory usage, which impact the practical implementation of
blockchain-based AIoT systems. To address these challenges, this paper
proposes a platform framework that integrates edge AI with a sharding-based
proof-of-authority (PoA) blockchain for healthcare systems. The proposed
framework incorporates three key strategies for blockchain applications in
healthcare: 1) a blockchain version manager for AI adaptors, 2) IoT
preprocessing for blockchain data management, and 3) the Shall Fragment
Cube (SFC) approach for blockchain decision archiving. Theoretical analysis
demonstrates that the use of a sharding blockchain significantly enhances
memory efficiency and reduces data retrieval time in healthcare AIoT
applications. Moreover, simulation results indicate that the SFC approach
reduces data retrieval time by approximately 50%. Thus, the proposed system
design provides a practical and reliable solution for integrating blockchain into
future healthcare AIoT systems, unlocking transformative potential across
multiple application domains.
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1 Introduction

The Artificial-Intelligence-of-Things (AIoT) represents a powerful convergence of
advanced Artificial Intelligence (AI) and Internet-of-Things (IoT), offering
transformative potential to drive innovation and shape the future (Era et al., 2024;
Singh et al., 2020). Recent breakthroughs, exemplified by AI language models such as
ChatGPT and CoPilot, showcase AI’s rapid advancement toward human-like intelligence,
achieving remarkable accuracy when trained on extensive datasets. However, a critical
challenge in advancing AI lies in the substantial costs of generating or accessing the vast
amounts of data required for training. To addresses this challenge, IoT can provide the real-
world data necessary for AI training and decision-making. Recently, IoT systems have
increasingly been adapted for the AI implementation, unlocking their full potential by
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enabling smarter, more efficient, and autonomous operations, which
drive innovation across a wide range of applications. By integrating
real-time IoT data streams with AI’s analytical capabilities, AIoT
enables complex advisory and decision-making processes, delivering
optimized solutions across a range of fields. This synergy can create
more efficient AI systems that significantly enhance automation and
decision-making across various sectors, included in smart cities,
healthcare, and industrial operations. To address these issues,
blockchain technology emerges as a promising complementary
solution due to its secure, decentralized, and immutable nature in
managing digital records (Kilroy et al., 2023). Blockchain operates as
a distributed ledger that records transactions across a peer-to-peer
network, ensuring transparency and eliminating the need for
centralized control. Unlike traditional systems, blockchain
transactions are validated through consensus mechanisms,
enhancing security and trustworthiness. Despite its advantages,
blockchain remains an active research area, especially concerning
its scalability and the efficiency of its verification processes. Recent
studies (Pal et al., 2023; Kuznetsov et al., 2024; Salama et al., 2023)
have explored the integration of blockchain with AIoT applications,
highlighting its potential to enhance security, reliability, and
functionality. Notably, blockchain adoption is expected to
facilitate secure and responsible AIoT data management across
various sectors, including healthcare.

However, practical challenges persist when integrating
blockchain with AIoT in healthcare applications. Healthcare
AIoT systems must address critical issues such as data privacy,
security vulnerabilities, and operational efficiency. The sensitive
nature of healthcare data necessitates robust privacy safeguards,
yet AIoT systems remain susceptible to cyber threats, including data
leakage by querying on AI model. Additionally, blockchain’s
implementation in AIoT introduces challenges such as time-
intensive data retrieval and increased memory usage, which may
hinder real-time performance.

Overcoming these limitations is essential for the development of
scalable and secure AIoT solutions in healthcare. To tackle these
challenges, this study proposes a platform framework that integrates
blockchain with healthcare AIoT systems through three critical
design aspects: AI-driven privacy and security for healthcare
data, a blockchain-based efficient data retrieval framework, and
key strategies for seamless AIoT-blockchain integration. First, to
safeguard sensitive healthcare data, this study adopts an Edge AI
approach, which enables local data processing instead of relying on
cloud storage. By processing data closer to its source, Edge AI
enhances privacy protection, reduces latency, and minimizes
operational costs. Given the stringent privacy requirements in
healthcare, this localized approach mitigates data exposure risks
while ensuring secure storage and processing. Second, to optimize
blockchain performance in healthcare AIoT applications, this study
introduces a sharding-based PoA blockchain model. Unlike
traditional consensus mechanisms, sharding partitions the
blockchain into smaller, manageable segments, allowing parallel
processing to improve scalability and reduce latency.
Furthermore, the PoA consensus mechanism, which relies on
designated authorities for transaction validation, lowers
computational overhead while maintaining security. Third, to
enable seamless integration of blockchain with healthcare AIoT
systems, this study introduces three essential strategies in

blockchain: a Blockchain Version Manager for AI Adaptors to
facilitate dynamic optimization and data protection; IoT
Preprocessing for Blockchain Data Management to improve data
structuring; and The Shall Fragment Cube (SFC) Approach for
efficient data retrieval from blockchain decision archivier, making
AIoT applications more practical in real-time healthcare
environments.

This study contributes to the practical implementation of
blockchain within healthcare AIoT systems through the following
key contributions. First, it identifies and addresses the major
challenges of integrating blockchain with AIoT in healthcare,
particularly concerning data privacy, retrieval time, and memory
overhead. Second, It proposes a privacy-enhancing Edge AI
framework and a sharding-based PoA blockchain model to
optimize security and efficiency in healthcare applications. Third,
it introduces a structured approach for AIoT-blockchain
integration, featuring a blockchain version manager, IoT
preprocessing, and the SFC model to facilitate scalable and
effective data management.

The remainder of this paper is structured as follows: Section 2
discusses the evolution of AIoT data collection, IoT adaptation, and
their synergistic impact. Section 3 reviews existing challenges in
AIoT systems and the benefits of blockchain integration, along with
recent advancements in blockchain for IoT and AI. Section 4
presents the proposed platform framework and its key strategies
for blockchain adoption in healthcare. Section 5 evaluates the
proposed framework through simulations. Sections 6 and 7
provide a discussion of findings and conclude the study.

2 Background–AIoT systems

2.1 Data collection evolution for AI system
developments–IoT adaptation

The AI development process has been moved forward like the
following three stages, as shown in Figure 1. In the initial stage of
Figure 1A, AI developers lay the groundwork for the entire process.
This involves setting up methods for data collection, preprocessing
the collected data, and simulating AI models to define their potential
capabilities. This initial stage is pivotal for establishing a solid
foundation for the subsequent phases, ensuring clarity in goals
and workflows. During this phase, data collection involves
significant costs, primarily due to the setup and investigation
required to establish data collection mechanisms. In Figure 1B,
the developing stage transitions into active AI model
development and training. At this point, data collection often
becomes a separate process from the direct control of AI
developers, as research in AI model development has grown into
a highly active field. Data is sourced from various sectors and
undergoes preprocessing, a task handled by dedicated data
collection specialists, ensuring its quality and usability for AI
development. The developing stage’s AI development involves
building, training, and refining the AI model while its data
collection performs data collection, preprocessing, and annotation
to prepare high-quality datasets, where emphasizes standardized
data processing and comparison to evaluate the performance of
various AI models. In the final stage of Figure 1C, the research focus
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shifts to deploying the AI model into production environments and
ensuring its seamless integration with IoT systems. IoT devices
provide continuous data streams, supporting the model’s decision-
making and enabling real-time updates. Activities in this stage
include monitoring performance, gathering feedback. By
leveraging IoT-generated data for retraining, this stage provides
real-time and time-series data, enabling seamless adaptation of AI
models to practical, real-world scenarios. The outcome of this stage
is a fully operational and optimized AI system, designed for
sustained deployment and use.

2.2 AIoT systems’ synergies

2.2.1 The role of IoT in AIoT systems
IoT plays a pivotal role in enhancing the capabilities of AI by

providing vast amounts of real-world data and enabling AI systems
to interact with the physical environment (Baranwal Somy et al.,
2019). First, IoT sensors offer a practical solution for balancing cost-
effectiveness with enhanced AI system capabilities. Traditional
methods of data collection require significant initial investments
in infrastructure and devices, along with ongoing maintenance and
upgrades for additional AI model training. IoT sensors reduce the
randomness of data collection processes while providing reliable and
scalable data inputs, lowering the cost barriers associated with
infrastructure setup. Second, Big data is an essential component
of AI system development, and IoT addresses challenges in data

collection by generating large volumes of real-world, real-time data
from various sensors. This data serves as the foundation for AI
systems to analyze patterns, derive insights, and make predictions.
By offering diverse and abundant data sources, IoT strengthens the
ability of AI to perform complex decision-making and improve
model accuracy. Third, IoT environments act as dynamic, real-
world testing platforms for AI algorithms and models. Through
constant streams of user-generated data, IoT enables AI systems to
learn, adapt, and improve continuously in response to new contexts.
This real-time feedback loop ensures that AI models evolve and
remain relevant in changing environments. Thus, integrating IoT
networks, AI systems gain access to critical data, fostering
advancements in training, analysis, and adaptation for real-world
applications.

2.2.2 The role of AI in AIoT systems
AI enhances IoT systems by analyzing data, predicting trends,

and enabling autonomous decision-making, optimizing efficiency
and reducing human intervention (Singh et al., 2020; Sherin et al.,
2023). First, AI can forecast trends, predict potential issues, and
identify maintenance needs based on sensor data from IoT devices.
Building on its data analysis, AI offers predictive capabilities that are
especially vital for smart systems, such as smart agriculture, where
anticipating conditions like weather changes, soil health, or
equipment failures can lead to more informed decision-making
and resource optimization. Second, AI transforms IoT systems by
enabling automatic management and autonomous decision-making.

FIGURE 1
(A): Initial Stage–AI developers design the AI model and conduct preliminary testing using data they have collected themselves. (B): Developing
stage–The AImodel is developed with the support of an independent DataWarehouse resource specializing in data collection, ensuring high-quality and
relevant data for the model. (C): Final Stage–IoT sensors are integrated to supply real-time, practical data to the developed AI model, enabling it to
function effectively in real-world applications.
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Based on the insights and predictions derived from IoT data, AI
reduces the need for human intervention in repetitive and
exhaustive tasks. This streamlined decision-making process not
only saves time and costs but also facilitates the development of
smarter, more efficient systems for future applications, ensuring
scalability and reliability in diverse domains. Third, AI plays a
critical role in enhancing IoT systems by processing the vast
amounts of data generated by IoT devices and extracting
meaningful insights. By analyzing and identifying unusual
patterns in IoT data streams, AI can distill valuable information
into compressed parameters, making data storage and retrieval more
efficient. This ability to process and summarize large datasets allows
IoT systems to function more intelligently and efficiently in real-
world applications. Thus, incorporating AI into IoT systems unlocks
their full potential by enabling smarter, more efficient, and
autonomous operations, while the convergence of AI and IoT
drives innovation across diverse industries including Healthcare.
In conclusion, exploring the synergies of integrating AI and IoT
technologies highlights that AIoT holds promise for the future, with
its ability to operate autonomously with human-like intelligence,
and significantly enhance efficiency while reducing
operational costs.

3 Literature review

It is found that AIoT technology is a promising future
technology by integration of AI and IoT technologies. Despite of
its immense potential, AIoT systems face dominant challenges from
IoT-related limitations and AI-related limitations.

3.1 AIoT systems’ challenges

3.1.1 AI-related challenges in AIoT systems
AIoT systems face several critical limitations in their AI

components that must be addressed to ensure reliability,
adaptability, and security in dynamic and interconnected
environments (Kawamoto and Kobayashi, 2020). First, reliable AI
systems are essential for building user trust and meeting regulatory
compliance. These systems must not only meet technical standards
but also align with socially responsible principles such as safety and
accountability. This includes addressing risks associated with
accidents or incorrect decisions to reduce unexpected failures and
enhance the practical utility of AI in real-world applications. Second,
AIoT systems need to maintain AI model for system adaptability in
dynamic, real-world contexts. Adapting to changing environments
and infrastructure, AI systems are susceptible to model and data
drift over time, as changes in data distribution or user behavior can
degrade their performance. Furthermore, managing multiple
versions of AI models is particularly complex in distributed AIoT
systems. Robust mechanisms are needed to address these challenges
to maintain system reliability. Third, the interconnected and
dynamic nature of AIoT systems exposes them to evolving
threats and adversarial attacks. Ensuring the security of AI
systems, AIoT systems can remain resilient, trustworthy, and
capable of adapting to emerging challenges in a rapidly changing
threat landscape. Addressing these limitations is crucial for the

sustainable development and widespread adoption of AIoT
systems. Thus, AIoT systems must address limitations in
reliability, adaptability, and security by ensuring trustworthiness,
managing model drift and updates, and implementing robust
cybersecurity measures to thrive in dynamic and interconnected
environments.

3.1.2 IoT-related challenges in AIoT systems
The rapid expansion of IoT systems brings immense potential

for innovation but also introduces critical challenges in data
privacy, management, and security that must be addressed to
ensure their reliability and user trust (Wu et al., 2022;
Douligeris and Mitrokotsa, 2004; AuthorAnonymous et al.,
2023). First, IoT data management presents significant privacy
challenges as sensitive information transmitted between IoT
devices can be intercepted if robust security measures are not
implemented. Many IoT devices lack the processing power
required to support advanced security protocols, making them
susceptible to unauthorized access. The collection of vast amounts
of personal data further amplifies these privacy concerns. To gain
user trust and ensure effective IoT data collection, it is crucial to
prioritize robust data privacy measures and implement
comprehensive security frameworks. Second, the hybrid nature
of IoT data, encompassing structured, unstructured, and semi-
structured formats, adds complexity to data management in AIoT
systems. This heterogeneity, combined with the sheer volume of
data from diverse sensors and devices, poses challenges for efficient
processing, storage, and analysis. Robust frameworks capable of
managing data variability and ensuring scalability are essential for
IoT systems to deliver timely and reliable decision-making
capabilities. Without these solutions, IoT networks may face
significant bottlenecks, reducing their effectiveness and
performance. Third, IoT devices are inherently vulnerable to
cyberattacks due to their limited security features and
interconnected nature. These vulnerabilities allow hackers to
exploit unsecured devices, gain control of entire networks,
launch large-scale attacks, or spy on users. The openness and
heterogeneity of IoT systems further exacerbate these risks by
creating multiple points of entry for potential breaches.
Strengthening IoT security through advanced protection
measures, such as access control, data encryption, and intrusion
detection, is critical to maintaining user trust and ensuring the
resilience of AIoT systems in the face of evolving threats. Thus,
effective IoT implementation requires addressing challenges in
data privacy, hybrid data management, and cybersecurity to ensure
secure, efficient, and reliable systems.

With the understanding of challenges and opportunities in AIoT
systems, the discussion naturally transitions to blockchain
technology, a transformative innovation that addresses key issues
such as security, transparency, and data integrity.

3.2 Blockchain overview

Blockchain technology, first introduced with Bitcoin in 2008 by
an individual under the pseudonym Satoshi Nakamoto, has evolved
into a revolutionary framework for secure and decentralized data
management (Bodkhe et al., 2020; Ferdous et al., 2020; Deng et al.,
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2022; Chen et al., 2018). At its core, blockchain operates as a
distributed ledger where data is organized into immutable blocks
linked sequentially in a chronological chain. Each block contains
essential components: transaction data, a timestamp, and a
cryptographic link to the previous block (called a hash) as shown
in Figure 2. Blockchain’s operation relies on decentralized nodes that
validate and record transactions, ensuring transparency and security
without the need for centralized oversight. Consensus algorithms are
fundamental to maintaining the trust and immutability of
blockchain networks (Zoican et al., 2018). These algorithms,
including Proof of Work (PoW), Proof of Stake (PoS), and
Delegated Proof of Stake (DPoS), validate and confirm
transactions by requiring agreement among network participants
before appending new blocks, while Proof-of-Authority (PoA)
(Hammad et al., 2023) has a limited pre-approved number of
trusted authorities valide new blocks (Ferdous et al., 2020; Deng
et al., 2022). Two primary types of blockchain networks facilitate
different use cases: public blockchains, which are open and
permissionless, allowing anyone to participate (e.g., Bitcoin and
Ethereum); and private blockchains, which are permissioned,
restricting access to specific organizations or users for enhanced
control and privacy. A key feature of blockchain is the integration of
smart contracts—self-executing agreements with terms encoded
directly into their structure (Baranwal Somy et al., 2019; Salama
and Al-Turjman, 2022). Smart contracts enable automatic,
transparent, and tamper-proof execution of processes, such as
financial transactions, supply chain management, and digital
identity verification, reducing the need for intermediaries. This
automation enhances blockchain’s ability to deliver efficient and
secure operations across a wide range of applications (Douligeris
and Mitrokotsa, 2004; Chaganti et al., 2022; Mollah et al., 2021).
Blockchain technology is built on a structured architecture with five
hierarchical layers (Uddin et al., 2021): Data layer securely stores
transaction records in an immutable, tamper-resistant ledger.
Network Layer facilitates communication and synchronization
among decentralized nodes. Consensus Layer validates
transactions using robust consensus algorithms. Execution layer
processes smart contracts, enabling automated and programmable
functions. Application layer provides user-facing functionalities and
interfaces for various use cases. Together, these layers form a
versatile and robust architecture capable of supporting a wide
range of industries and applications.

Blockchain technology offers a range of significant benefits,
making it a powerful solution for various industries (Sherin et al.,
2023; Harris and Waggoner, 2019; Salama and Al-Turjman, 2022;

Saad et al., 2020; Li et al., 2020). One of its key advantages is
immutability, ensuring that once data is recorded in a blockchain, it
cannot be altered or deleted, fostering trust and accountability.
Transparency is another vital feature, as blockchain allows all
authorized participants to access the same version of the ledger,
reducing information asymmetry and enhancing trust. Additionally,
traceability enables precise tracking of transactions and assets, which
is particularly valuable in industries like supply chain management
and finance. Blockchain also provides robust security against
cyberattacks, including Distributed Denial of Service (DDoS)
attacks, by leveraging decentralized nodes and cryptographic
algorithms to prevent single points of failure. Finally, the
inclusion of smart contracts automates processes and enforces
agreements without intermediaries, ensuring efficiency, accuracy,
and tamper-proof execution. Together, these features make
blockchain a secure, transparent, and efficient technology for
applications demanding trust and reliability.

Based on the unique characteristics, blockchain technology
builds users’ trust in AI-driven decision-making due to offer

FIGURE 2
Single-chain blockchain structure: A single-chain blockchain is a linear, sequential structure where blocks are added in a continuous chain, one after
another. Each block contains a hash of the previous block. This type of blockchain is widely used in cryptocurrencies like Bitcoin and Ethereum,
prioritizing security and decentralization.

FIGURE 3
Blockchain strengthens IoT by addressing data privacy, access
control, data management, and cybersecurity, while also supporting
AI with improved reliability, system management, and context
awareness. Integrating blockchain technology, AIoT systems
achieve greater stability and enhanced services.

Frontiers in Communications and Networks frontiersin.org05

Jun 10.3389/frcmn.2025.1538965

https://www.frontiersin.org/journals/communications-and-networks
https://www.frontiersin.org
https://doi.org/10.3389/frcmn.2025.1538965


greater opportunities, and it is expected to support robust and secure
AI system in future in (Kilroy et al., 2023). Furthermore, the
blockchain technology’s functions seems to be a good answer for
these challenges of future AIoT systems.

3.3 Blockchain adaptation to overcomes
AIoT challenges

Blockchain technology presents a promising solution for
addressing the critical challenges faced by AIoT systems,
mentioned in Section 3.1 as shown in Figure 3, including data
privacy, security, adaptability, and transparency, enabling more
efficient and reliable operations in dynamic environments.

The integration of AI and blockchain has garnered significant
research attention in recent years. For instance, (Harris and
Waggoner, 2019), proposes a blockchain-based platform for
smart contracts that integrates machine learning and blockchain
frameworks, enabling continuous updates to AI models. A key
challenge identified in this study is maintaining model integrity
in the presence of low-quality or ambiguous data. To address this,
the authors highlight the need for mechanisms to recover corrupted
AI models, identifying this as a critical area for future research.
Similarly, (Kawamoto and Kobayashi, 2020), introduces an AI
pedigree verification platform built on blockchain technology.
This system tackles the challenges of reproducing AI models,
even when using identical datasets and algorithms, by providing
a blockchain-backed solution to improve reproducibility. By
ensuring comprehensive data verification, the platform addresses
a fundamental barrier to developing trustworthy AI systems.
Furthermore, (Salama and Al-Turjman, 2022), proposes an
innovative AI-based blockchain data processing approach aimed
at facilitating real-time learning within distributed big data
frameworks. While this study focuses on AI’s potential to
enhance blockchain systems, it also underscores the reciprocal
benefits of using blockchain to strengthen AI systems in terms of
security, privacy, and traceability.

Recent research has increasingly explored the integration of
blockchain technology with AI to address vulnerabilities in IoT data
collaboration and enhance AI model performance. (Chavali et al.,
2020). emphasize the complementary relationship between AI and
blockchain, highlighting how blockchain can resolve several critical
challenges in AI development, including accessing large datasets,
ensuring unbiased learning, and safeguarding privacy. The study
demonstrates blockchain’s potential to improve AI transparency,
facilitate decentralized data sharing, and create secure audit trails.
Together, these findings envision a long-term symbiotic relationship
between AI and blockchain, paving the way for mutually
transformative advancements in both technologies.

The integration of blockchain technology supports the creation
of secure, shared marketplaces for exchanging data, models, and
computational resources, positioning AI and blockchain as central
drivers of digital transformation and intelligence augmentation.
Blockchain’s decentralized architecture offers a secure and
transparent framework that addresses critical challenges such as
ensuring data quality, mitigating bias, and protecting privacy. For
instance, (Baranwal Somy et al., 2019), explores the use of
blockchain to build trust in an AI marketplace for collaborative

machine learning. Their proposed platform enables secure data
sharing and collaborative model training by recording all
transactions on a blockchain. This approach ensures transparency
in processes such as data partitioning, distribution, and training
scheduling while safeguarding the confidentiality of data and
models. Similarly, (Dinh and Thai, 2018), highlights blockchain’s
transformative potential for AI through secure data marketplaces.
They propose that blockchain empowers users by granting them
control over their data, allowing it to be monetized via smart
contracts without intermediaries. This not only mitigates privacy
risks but also enhances AI training by ensuring access to abundant,
high-quality data. Collectively, these studies emphasize the
importance of blockchain-enabled AI data provisioning platforms
as foundational tools for future advancements in AI.

These foundational studies highlight the transformative
potential of integrating AI, IoT, and blockchain, while also
identifying key challenges and opportunities for future research.
By leveraging blockchain’s capabilities, trustworthy AIoT
infrastructures can be developed, enabling these technologies to
reach their full potential across diverse applications, including
healthcare, supply chain management, and smart cities.

For instance, (Alrebdi et al., 2022; AuthorAnonymous et al.,
2023; Haleem et al., 2021; Shmatko and Kliuchka, 2022),
demonstrate how blockchain streamlines medical record
management and supply chain processes, empowering patients
with greater control over their data. Similarly, (Sherin et al.,
2023), explores the integration of AI and blockchain to create
intelligent supply chains, where AI analyzes large datasets to
identify patterns and anomalies, and blockchain ensures
traceability and transparency, thereby enhancing efficiency. In the
context of smart cities, (Singh et al., 2020), proposes a blockchain
framework that incorporates IoT within AI systems to improve
urban management and functionality. Additionally, studies such as
(Mollah et al., 2021; Wang et al., 2017; Gai et al., 2019) showcase
blockchain’s role in smart grid systems, where it enhances data
security, facilitates decentralized energy trading, and optimizes grid
management efficiency. The integration of blockchain with AIoT
(AI and IoT) presents a promising avenue for addressing critical
challenges, particularly in mitigating cybersecurity risks. While
significant progress has been achieved, further research is needed
to fully harness the synergistic benefits of these technologies,
ensuring their transformative impact across industries.

Finally, (Pal et al., 2023; Kuznetsov et al., 2024; Salama et al.,
2023), highlight that while blockchain holds significant potential to
enhance the security of AI agents and IoT sensors, there remains a
notable gap in comprehensive research on this topic. They
emphasize the urgent need to investigate how blockchain
platforms can be effectively utilized to develop secure and
responsible AIoT systems.

3.3.1 Key benefits of blockchain in AIoT
applications

First, blockchain technology offers powerful solutions to address
key challenges in AIoT systems, particularly those related to data
privacy, security, adaptability, and transparency (Uddin et al., 2021).
By enabling pseudonymous transactions, blockchain protects user
identities while facilitating secure data exchange. Users can define
permissions for data access, ensuring sensitive information is only
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available to authorized parties. This approach enhances data security
and trust, promoting data integrity and encouraging collaborative
AI development across different organizations. These capabilities
are especially critical in AIoT environments, where vast amounts of
data must be shared responsibly to support AI model training and
decision-making. Second, smart contracts, a core feature of
blockchain, can automate essential processes in AIoT systems,
such as device authentication, data exchange, and payment
settlements. By reducing reliance on intermediaries and manual
operations, blockchain-driven automation lowers operational costs
and minimizes delays. This efficiency is vital for managing the
complex and dynamic nature of AIoT systems, where seamless
coordination between devices and systems is required. Smart
contracts also enhance system reliability by ensuring that
predefined conditions are automatically executed, reducing the
risk of human error. Third, blockchain’s cryptographic
techniques address security vulnerabilities in AIoT systems by
securing data transmission between IoT devices and reducing the
risk of unauthorized access (Sengupta et al., 2020). Once data is
recorded on the blockchain, it becomes immutable, ensuring the
integrity of information collected by IoT devices. This feature is
critical in AIoT applications, where accurate and reliable data is
essential for training AI models and generating meaningful insights.
By securing the data pipeline, blockchain prevents tampering and
fosters trust in AI-driven outcomes.

Furthermore, another major benefit of blockchain is its ability to
enhance transparency and accountability (Chavali et al., 2020).
Every transaction or data input recorded on the blockchain is
traceable, providing a clear audit trail for AI decision-making
processes. This transparency is crucial for industries that require
compliance with regulations and ethical standards, such as
healthcare, finance, and autonomous systems. By enabling
detailed monitoring of how AI algorithms reach their
conclusions, blockchain ensures that AIoT systems operate with
greater accountability and reliability. Lastly, blockchain can support
better AI model management (Kawamoto and Kobayashi, 2020) and
data quality in AIoT systems (Harris and Waggoner, 2019). By
leveraging decentralized networks, AI models can be trained and
deployed without the risk of single points of failure, ensuring
continuous availability even in distributed environments. This
decentralization also enables edge computing, allowing AI models
to process data closer to the source. This proximity improves
response times, reduces latency, and enhances the overall
efficiency of AIoT systems. By integrating blockchain, AIoT
systems can overcome critical challenges and unlock their full
potential for innovation and reliability.

3.4 Additional blockchain contributions

Blockchain plays an auxiliary role in AIoT systems by supplying
contextual data, enabling AI systems to make more informed
decisions. While IoT devices provide real-time data streams,
blockchain can add layers of contextual information like age,
gender, occupation, or preferences, enhancing AI’s ability to
tailor personalized services for users. For example, in healthcare,
blockchain securely provides additional personal data, while IoT
devices may monitor biometric and vital signs such as heart rate and

blood pressure, to help AI deliver more accurate diagnostics or
treatment recommendations. This synergy improves AI’s accuracy
and effectiveness in creating user-specific experiences across various
applications.

Also, blockchain supports the training and adaptation of AI
models in AIoT systems by enabling decentralized learning
methods, such as federated learning (Salama and Al-Turjman,
2022). IoT devices generate a continuous flow of data that allows
AI models to learn and adapt in real time. Blockchain can facilitate
the training of these models across multiple devices without the need
to share raw data, preserving user privacy and ensuring data
security. This decentralized approach allows multiple parties to
contribute to and benefit from shared AI models, fostering
innovation through collaborative development. By promoting
collective efforts, blockchain enables more efficient AI model
training and enhances the scalability of AIoT systems.

Blockchain can facilitate secure and decentralized data sharing
among entities while ensuring data privacy and ownership
(Baranwal Somy et al., 2019). Blockchain’s immutable ledger
ensures that data cannot be tampered with, providing a secure
and trustworthy source for AI to analyze. This can be
particularly useful in sectors where AI data integrity and sharing
is crucial, such as finance, healthcare, and supply chain
management.

By addressing the inherent challenges and additional
contributions for AIoT systems, blockchain paves the way for
more reliable and trustworthy AIoT applications. This synergy
not only optimizes device performance but also fosters
innovation and growth in various industries leveraging AIoT
technologies.

4 Platform framework for healthcare:
blockchain-enhanced AIoT system

This section introduces a platform framework designed to
enhance healthcare AI systems through blockchain-integrated
AIoT. As illustrated in Figure 4, the proposed framework
leverages synergistic interactions between healthcare data, AI
systems, and IoT devices. By integrating blockchain into
healthcare AIoT, AI-driven healthcare applications can securely
access personal medical records stored on the blockchain and
manage access control for data obtained from personal IoT
sensors. While healthcare AIoT focuses on personal data privacy,
protection from data thieves, and need-based data sharing, smart
cities and other AIoT applications prioritize trust in digital data,
prevention of manipulation (e.g., 51% attack), and real-time data
sharing as given in Table 1. Thus, to enhance data privacy,
healthcare AIoT systems prefer Edge AI over Cloud AI.

Existing blockchain approaches encounter major challenges
when applied to healthcare AIoT, particularly in terms of
memory overhead and data retrieval time, as outlined below.

First, memory efficiency is a bottleneck for large-scale healthcare
data. Unlike conventional blockchain applications such as
cryptocurrency transactions, which deal with small, discrete data
records, healthcare AIoT systems handle massive and continuously
generated medical data from electronic health records and IoT-
based health monitoring devices. The sheer volume and rapid
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generation of personal medical data introduce memory overhead
challenges for blockchain-based storage at nodes. Thus, it is essential
for efficient architecture of data memory utilization in order to
ensure the feasibility of scalable Healthcare AIoT applications.

Second, the time efficiency of data retrieval is a critical concern
in healthcare AIoT applications. While traditional blockchain
solutions focus on optimizing transaction verification time for
cryptocurrency and smart contracts, they do not address the
latency issues associated with retrieving past medical records. In
healthcare settings, AI models continuously require access to
historical patient data for training and real-time decision-making.
Delays in retrieving medical data from a blockchain hinder AI
system performance and reduce the system’s practical usability
for medical providers and patients.

Third, beyond blockchain security, AI models and IoT devices
introduce additional security vulnerabilities that must be addressed.
AI models processing sensitive medical data are susceptible to data
exposure risks, where private information can be inferred from

model queries. Public blockchain architectures, while ensuring
decentralized security, do not inherently provide protection
against AI-specific threats such as model inversion attacks or
data leakage. Similarly, IoT sensors collecting personal health
data are prone to unauthorized access and malicious tampering.
Therefore, a robust security framework is necessary to protect
patient privacy and AI model integrity while integrating
blockchain with healthcare AIoT.

To address these challenges, this paper proposes an edge AI
system architecture with blockchain and IoT integration, offering a
scalable and efficient solution for healthcare AIoT systems. The
designed framework aims to optimize memory usage for storing and
retrieving large-scale medical data in a blockchain-based
environment, improve data retrieval efficiency by leveraging
sharding and structured storage techniques to minimize latency
when accessing historical records, and enhance security by
protecting sensitive patient data while maintaining the
decentralized benefits of blockchain technology.

FIGURE 4
The architecture of blockchain-enhanced healthcare AIoT systems consists of three sharding blockchains integrated with the healthcare AIoT
framework. It incorporates edge AI, which interfaces with local IoT devices. A blockchain-based datamanager securely connects the IoT database with AI
agents operating locally or in the cloud. Additionally, a blockchain AI model manager oversees AI model management, considering AI model licenses and
medical data expiration. Lastly, a blockchain decision archiver, validated through proof-of-authority (PoA) consensus, records the decision-making
processes of AI assistants and medical providers.

TABLE 1 Key aspects of healthcare and smart cities and other applications in terms of data privacy, security concerns, data sharing needs, and AI system
architecture. To prioritize data privacy, the AI system in healthcare AIoT is preferred to Edge AI rather than Cloud AI.

Healthcare Smart cities and other applications

Data Privacy of personal information Trust on digital data

Security agenda Data thieves (e.g., extraction attacks) Data manipulation (e.g., 51% attack)

Data Share In needs In real time

AI system architecture Edge AI Cloud AI
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4.1 Edge AI system for healthcare
applications and blockchain

This paper considers the Edg AI system as the appropriate
architecture in health AIoT applications while it has been considered
that cloud AI system gets benefits from blockchain directly because
blockchain can plays a pivotal role in AI systems by addressing data
ownership and privacy concerns while ensuring secure data
provenance. For example, when the AI system is developed using
federated learning in the distributed network, blockchain empowers
data owners with full control over their personal and IoT-generated
data, enhancing privacy and security through blockchain-enabled
access control mechanisms. Additionally, it facilitates secure data
sharing and supports decentralized marketplaces via smart
contracts, enabling data owners to monetize their data while
maintaining privacy.

However, the cloud AI system is not preferable environment in
healthcare applications for the following reasons. First, one of the
benefits of this edgeAI system in healthcare, rather than cloudAI, is que
to patients’ privacy and data security of querying sensitive healthcare
information in AI system. The well-known act of extracting or stealing
sensitive information from anAImodel through queries is calledModel
Extraction Attacks: In Membership Inference Attack, the attacker
queries the model to determine whether specific data points were
part of the training dataset, potentially leaking sensitive user
information; In Data Reconstruction Attack, the attacker exploits
query responses to reconstruct actual training data, leading to data
leakage; In Adversarial Attacks, carefully crafted queries manipulate the
model to reveal sensitive patterns or decision boundaries. Due to the
sensitive healthcare data and critically of impacts of AI decisions in
healthcare application, the healthcare AI application need to locally be
generated in edge-computing environment, and expired an instance of
as shown in Figure 5.Moreover, healthcare applications need to operate
seamlessly without delay in emergent situations, while additionally
connected by heavy IoT sensors’ data. The transactions of IoT-
generated data are relatively too large compared to cryptocurrency’s
transaction data, where the conventional blockchain has occupied, and
thus, it cause heavy overheads in distributed network and hugememory
amount to each node in the network.

Considering this edge AI system and its interaction with IoT-
generated data, our platform framework in healthcare AIoT
applications is design considers how to the blockchain fit into
AIoT applications ensure the privacy and security issues as
shown in Figure 4.

First, the blockchain system needs to manage local AI models’
instances efficiently while ensuring traceability and their life cycle
control. In order to avoid model extraction attack mentioned above,
global AI models are deployed locally, and generate individual
instances for a patient—referred to as AI adapters—are fine-
tuned to adapt to specific individual and environmental contexts
as given in Figure 5. As AI adapters evolve, multiple versions of AI
models are generated, requiring systematic management by the
Blockchain AI-Model Manager, depicted as the middle
blockchain subsystem in Figure 4.

Second, the blockchain system needs to frequently handle locally
updated data from IoT-generated data from patients. The Blockchain
DataManager, represented as the left blockchain subsystem in Figure 4,
By ensuring efficient and secure data transactions, the Blockchain Data

Manager fosters trust and provides high-quality, reliable data for AI
applications, establishing itself as a foundational component for future
AIoT ecosystems.

Third, healthcare AI assistant application needs to retrieve
frequently a patient’s medical records from multiple resources
such as previous hospitals’ blockchain decision archiver. and IoT-
generated current data for fine-tuning. Blockchain Decision
Archiver records the decision-making processes of AI agents
programs and medical providers, ensuring transparency and
accountability. Moreover, this system clarifies responsibility by
enabling the identification of whether errors stemmed from
human input, machine processing, or a combination of both. By
mitigating reliability risks, this feature is especially valuable for real-
world AI deployments, where understanding the origin of faults is
essential for resolution and prevention.

Thus, these three blockchain systems can be integrated with
edge AI system environments with IoT sensors for healthcare
application to address the privacy and security challenges in AI
systems, and data overhead issues in IoT sensors. The medical
records is locally updated and operated in a medical institute such
as hospital while the records can be retrieved from external
requests in needs.

4.2 Theoretical analysis of the proposed
framework: time and memory efficiency in
edge AI system architecture

This section presents a mathematical analysis of memory usage
and data retrieval efficiency in a blockchain-based healthcare AIoT
system. The analysis compares conventional public blockchains with
sharding blockchain architectures in an edge AI system
environment, demonstrating the potential efficiency
improvements of the proposed framework.

For this analysis, we define the following key parameters:
hospitals H in H � {h1, h2, . . . , hn, . . . , hN}, where N is the total
number of hospitals in the network; patient P in
P � {p1, p2, . . . , pk, . . . , pK, }, where K represents the average
number of patients in each hospital; and medical records R in Rj �
{r1, r2, . . . , rl, . . . , rL} where L represent the average number of
records per patient.

When a patient visits a hospital, the healthcare AI assistant
accesses previous medical records stored in other hospitals through
a secure blockchain network. The total number of records stored on
the blockchain is given by Ltotal � ∑hn∈H∑pk∈PLk. The expected total
number of medical records is.

E[L] � N · K · E[Lk] � N ·K · L.

4.2.1 Memory requirements in blockchain
architectures
4.2.1.1 Conventional blockchain memory usage

In a public blockchain, if there are D nodes participating in the
distributed network, the memory required per node is Θ(N ·K · L)
Table 2. In a public blockchain, if there are D nodes participating in
the distributed network, the memory required per node is
Θ(D ·N · K · L).
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4.2.1.1.1 Observations on practical data range. First, given
thatN · K represents the total number of patients, this figure can
be hundreds of millions in large-scale national healthcare
systems (e.g., the U.S.). Second, to ensure security and
resistance to cyberattacks such as the 51% attack, a
blockchain network requires a minimum number of
participating nodes. For example, Bitcoin’s PoW requires at
least 15,000 nodes, and Ethereum’s PoS requires at least
6,000 nodes. Third, the number of hospitals in the U.S. is a
few thousand, and L (number of medical records per patient) is
continuously increasing due to the digitization of
healthcare records.

Given these constraints, storing all patient records in a
conventional blockchain introduces severe memory challenges.
For instance, assuming each block is 512 kB and L = 1 (a highly
conservative estimate, as real-world L is much larger). The total
memory requirement in a conventional blockchain is estimated to be

at least hundreds of petabytes (1015 bytes). In addition, since medical
data is generated daily, the actual L value is much greater than 1,
further exacerbating storage limitations. This demonstrates the
practical infeasibility of using a conventional blockchain for a
nationwide healthcare AIoT system due to the high cost and
resource demands.

4.2.1.2 Sharding blockchain memory efficiency
In contrast, a sharding blockchain architecture significantly

reduces memory requirements by storing only relevant medical
records in specific shards rather than replicating all data across
the entire network. The memory required per hospital is Θ(K · L).
The total memory required across the network is Θ(N ·K · L).

4.2.1.2.1 Example calculation. For instance, Assuming the
same block size (512 kB) and L = 1, the total memory usage
across the sharded blockchain network is approximately
hundreds of terabytes instead of hundreds of petabytes in a
conventional blockchain.

Each hospital only needs less than a terabyte of memory storage,
making blockchain integration practically feasible for healthcare
AIoT applications.

This theoretical analysis provides a strong foundation for the
simulation results and validates the efficiency improvements
demonstrated by the proposed framework.

FIGURE 5
A representative scenario of a blockchain-enhanced healthcare AIoT system unfolds when a patient visits a hospital. The hospital can retrieve (1)
personal information, (2) past medical records, and (3) medical examination and test results through blockchain technology. A healthcare AI assistant
supports the medical doctor by generating (4) an AI adapter–a newly instantiated healthcare AI model tailored to the patient’s case using the acquired
data from (1), (2), and (3). Subsequently, (5) themedical doctor makes the final diagnosis based on all relevant data and insights and (6) authorizes the
information to be recorded in the decision archiver.

TABLE 2 Theoretical analysis table.

Memory Data retrieval time

Conventional blockchain Θ(D ·N · K · L) Θ(N ·K · L)

Sharding blockchain O(N ·K · L) O(K · L)
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4.2.2 Data retrieval time from blockchain
An essential factor in evaluating the efficiency of a

blockchain-integrated healthcare AIoT system is the data
retrieval time, as it directly impacts AI-driven medical
decision-making and real-time access to patient records. The
primary bottleneck in data retrieval stems from the search
complexity involved in locating stored medical records across
the blockchain network. Medical records are frequently accessed
by healthcare providers and AI systems while new records are
continuously generated for each patient case.

4.2.2.1 Data retrieval time in a conventional blockchain
In a conventional blockchain, retrieving a medical record

requires searching through all stored records across the
distributed network. The retrieval time is given by O(N · K · L).
If the blockchain operates as a single-chain ledger, the retrieval time
is Θ(N · K · L). For a Directed Acyclic Graph (DAG)-based
blockchain, which optimizes data retrieval through a structured
search mechanism (e.g., balanced binary tree indexing), the best-
case retrieval time is Ω(logN + logK + logL) which significantly
improves efficiency but still scales with network size.

4.2.2.2 Data retrieval time in a sharding blockchain
In contrast, a sharding blockchain significantly optimizes data

retrieval by restricting the search space to only the relevant hospital
shards rather than scanning the entire network. Since a patient
already knows which hospital shard contains their medical records,
the retrieval time is reduced to O(K · L). If each shard functions as a
single-chain blockchain, the data retrieval time is Θ(K · L), which is
independent of the total number of hospitals (N) in the network,
making it considerably more efficient than a conventional
blockchain.

Thus, these findings confirm that a sharding blockchain
architecture provides a practical and scalable solution for
integrating blockchain with healthcare AIoT systems.

4.3 Strategies for blockchainmanagement in
healthcare AIoT applications

4.3.1 AI adaptor system for edge AI in healthcare
and blockchain AI management
4.3.1.1 Blockchain AI-model manager: efficiently managing
AI models and digital assets

As illustrated in Figure 6, the global AI model—hosted on cloud
servers—oversees synchronization and resets of local AI models to
ensure compliance throughout their lifecycle. Essential metadata,
including AI model IDs, lifetimes, versions, licenses, expiration
dates, policies, and regulatory information, is securely stored on
the blockchain when AI models are transferred from cloud to local
edge AI systems.

As AI adaptors evolve, multiple versions of AI models are
generated, requiring systematic tracking to ensure traceability and
integrity. The Blockchain AI-Model Manager leverages a Directed
Acyclic Graph (DAG)-based blockchain (Figure 7) instead of a
traditional single-chain blockchain (Figure 2), as DAG-based
structures offer higher scalability, efficiency, and throughput. This
architectural shift makes DAG-based blockchains ideal for

managing the complex lifecycle of AI models, including
versioning, ownership tracking, and adaptation to
regulatory changes.

The Blockchain AI-Model Manager performs three core
functions: version tracking, ownership and lifecycle control, and
specialized AI agent management. First, The system tracks AI model
versions, securely storing updates on the blockchain to ensure
authenticity and traceability. Second, AI models ensure licensing
and expiration date protection, and private data is not reused
without explicit authorization. Third, the system coordinates
multiple task-specific AI agents, ensuring seamless operation,
maintenance, and interoperability for scalable healthcare AI
applications.

Thus, the Blockchain AI-Model Manager thus ensures efficient
AI model lifecycle management, strengthens trust in AI-driven
healthcare, and provides a scalable solution for AIoT applications.

4.3.2 IoT system preprocessing and
dimensionality reduction
4.3.2.1 Preprocessing IoT data for blockchain-integrated
AI systems

Preprocessing IoT sensor data is critical for handling large
volumes of real-time time-series data generated by healthcare
monitoring devices. These data sources include 1D signals (e.g.,
heart rate, respiratory rate, EEG, ECG) and 2D data (e.g., medical
imaging, motion sensor outputs).

As depicted in Figure 8, the preprocessing pipeline includes
Feature extraction. Feature Extraction–Identifies meaningful data
patterns using basic (e.g., mean, standard deviation) and advanced
(e.g., PCA, ICA, n-grams) techniques, reducing dimensionality
while retaining essential information.

4.3.2.2 Post-processing for AIoT system monitoring
and feedback

Post-processing analyzes AI decision-making history, allowing
refinements in preprocessing pipelines. If certain extracted features
contribute less to decision accuracy, feature extraction methods can
be adjusted accordingly. This iterative process improves model
reliability through anomaly detection, AI decision transparency
with blockchain-backed verification, and overall AIoT system
security by mitigating emerging risks.

Thus, post-processing plays a key role in AI model
enhancement, error analysis, and real-time blockchain-based
decision tracking.

4.3.3 Blockchain decision archiver and shell
fragment cubes (SFC) approach
4.3.3.1 Blockchain decision archiver: secure AI-
collaborated medical records

The Blockchain Decision Archiver securely maintains patients
information, medical examination and results, symptoms, and AI
models and output advice, and medical providers’ information and
diagnosis. Then, medical providers authorized under Proof-of-
Authority (PoA) verification store decisions in the blockchain.

While using Blockchain Decision Archiver to retrive medical
records from previous hospitals, retrieving high-dimensional
medical data remains a challenge. The complexity of healthcare
records—spanning patient details, diagnoses, treatments, test
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results, AI analysis, and medication history—leads to slow data
retrieval times when querying medical archives.

4.3.3.2 Shell fragment cubes (SFC) approach for efficient
data retrieval

To improve data retrieval time, this paper applies SFC approach
—- a data partitioning technique used in high-dimensional
databases like data warehouses. The SFC method balances query
efficiency and storage optimization by selectively materializing
fragmented data cubes.

As illustrated in Figure 9, the SFC-based system operates in
two distinct phases. During the Index List Generation Phase
(Factory Mode), the system scans blockchain decision archives
to generate index lists for each medical data attribute,
partitioning these lists into F fragments. It then constructs
intersected lists for each attribute tuple set. In the Searching
Phase (Field Mode), queries retrieve only the matched tuple set of
attributes, utilizing its index list to search for the queried medical
data, thereby minimizing the search space and reducing data
retrieval time.

FIGURE 6
The Blockchain AI Model Manager oversees themanagement of AImodels. A local AImodel is initialized by downloading the latest AImodel from the
cloud to a local device, along with essential metadata—including AI versions, licenses, expiration dates, policies, and regulatory details. Once deployed,
these AI models, referred to as AI adapters, are customized to individual contexts. As they adapt using personal medical data, multiple AI model versions
are generated and systematically managed by the AI Model Manager, ensuring compliance throughout their lifecycle.

FIGURE 7
DAG-based blockchain architecture:A Directed Acyclic Graph (DAG)-based blockchain organizes data in a graph structure, where transactions are
linked directly without forming a linear chain. Unlike single-chain blockchains, DAGs allow multiple transactions to be processed simultaneously,
improving scalability and transaction throughput.
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By applying the SFC approach, the system reduces search
complexity when retrieving records from multiple hospital
shards, and thus enhances overall efficiency in blockchain-
integrated healthcare AIoT systems by reducing retrieval times
for AI-driven decision-making.

5 Simulation

To evaluate the efficiency of integrating sharding blockchain
into healthcare AIoT systems, two simulations were conducted. The
first simulation aimed to assess the impact of sharding blockchain on
memory usage and data retrieval speed compared to a conventional
blockchain. The second simulation further explored the effectiveness

of the SFC approach in optimizing data retrieval times for healthcare
records stored in a sharding blockchain framework.

5.1 Simulation settings

5.1.1 Hardware configuration
The simulations were conducted on Google Colab Pro, which

offers enhanced computational resources compared to the standard
free-tier version. The runtime environment dynamically allocated
Intel or AMD CPU cores and NVIDIA GPUs for accelerated
processing. The system specifications included 51.0 GB of RAM,
225.8 GB of disk storage, and a Linux-based Google Cloud Virtual
Machine (VM) as the operating system.

FIGURE 8
Preprocessing IoT sensor signals on IoT devices is essential for managing the high volume of real-time and time-series data generated by these
sensors. Before storing the data, it undergoes preprocessing steps, including feature extraction. In the preprocessing, feature extraction is the process of
transforming raw data into a set of informative and relevant features (attributes or variables) that can be used for machine learning or data analysis tasks.
These processes reduce data complexity, enhance storage efficiency, and prepare the data for further analysis.

FIGURE 9
The SFC approach consists of the Index List Generation Phase and the Searching Phase.
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5.1.2 Software setup
Google Colag Pro supports Jupyter Notebook, in which the

software environment for the simulation was set up using Python
3.10+ along with the following essential libraries including NumPy
and hashlib (SHA-256 hashing for blockchain).

5.1.3 Dataset for simulation
To replicate real-world healthcare data storage scenarios, a

synthetic dataset of medical records was generated. Each record
contained attributes such as hospital ID, patient ID, patient name,
address, contact details, medical history, and more. After appending
a timestamp and cryptographic hash, the final computed size of each
record was approximately 512 kB.

5.1.4 Simulation 1: evaluating sharding blockchain
for edge AI system in healthcare AIoT applications

As shown in Figure 5, the first simulation focused on testing how
sharding blockchain improves data retrieval efficiency in a
distributed healthcare network. The scenario involved an AI-
powered medical assistant, called AI adaptor, and retrieves a
patient’s past medical records from different hospital shards. To
compare performance, a conventional blockchain was used as the
control group, where all participating hospitals shared and stored
medical records across a distributed ledger.

The experiment simulated an increasing number of hospitals in
the blockchain network, ranging from 10 to 10,000 nodes. Each
hospital (node) maintained 100,000 medical records, with
1,000 records per block. Across 200 simulated samples, the
memory consumption per hospital and the average data retrieval
time were measured.

5.1.5 Simulation 2: impact of SFC approach on data
retrieval efficiency

In the second simulation, the SFC approach was applied to
further optimize data retrieval within the sharding-based blockchain
for healthcare AIoT system. The goal was to evaluate whether this
method could further reduce data retrieval time as the volume of
patient records per hospital increased.

The experiment simulated variations in patient records, with the
number of patients per hospital increasing from 10 to 5,000, and the
number of medical records per patient ranging from 10 to 5,000.
Each scenario was repeated 10 times, measuring the average data
retrieval time both with and without the SFC approach. For this
simulation, a default fragmentation factor of F = 2 was applied to
analyze its impact on retrieval speed.

5.2 Simulation results

In Figures 10, 11, simulation results are illustrated in terms of
memory overhead and data retrieval time, respectively, to provide
insights into the efficiency of sharding blockchain compared to
conventional blockchain for healthcare AIoT applications.

5.2.1 Simulation 1: memory consumption per
hospital (node)

Our theoretical analysis (Section 4.2) predicts that memory
consumption in a conventional blockchain scales with the

number of participating nodes, whereas a sharding blockchain
remains unaffected by network growth. Specifically, in a
conventional blockchain, each hospital acts as a full node, storing
an increasing amount of data as the number of hospitals in the
network grows (expected complexity: Θ(D ·K · L), where D is the
number of hospitals,K is the number of blocks, and L is the number
of records per block). In contrast, for a sharding blockchain,
hospitals store only the relevant shard data (expected complexity:
Θ(K · L)), significantly reducing memory overhead.

The simulation results in Figure 10 indicate that in a
conventional blockchain, the memory required per hospital
increases as the network expands (i.e., as more hospitals join the
system). In contrast, the memory usage in a sharding blockchain
remains stable regardless of network size.

These results align with our theoretical analysis, and confirm
that sharding blockchain is more memory-efficient than
conventional blockchain, making it a more scalable solution for
healthcare AIoT applications.

5.2.2 Simulation 1: medical record retrieval time
The simulation results in Figure 11 also demonstrate that data

retrieval time increases with network size in a conventional
blockchain but remains constant in a sharding blockchain.

This is because, in a conventional blockchain, searching for a
patient’s medical records requires scanning all medical data
distributed across the entire network. In contrast, a sharding
blockchain limits the search scope to the specific hospital shards
where a patient’s records were previously stored, significantly
reducing search time.

These findings validate that sharding blockchain enhances time
efficiency, making it a practical and scalable solution for real-time
medical data retrieval in AIoT healthcare systems.

5.2.3 Simulation 2: impact of SFC approach on data
retrieval time

The simulation results, presented in Figure 12, show that as the
total number of records increases, data retrieval time also increases.
However, a key finding is that applying the SFC approach nearly
halves the data retrieval time compared to the standard sharding
blockchain across all test cases.

Both scenarios (with and without SFC) demonstrate increasing
retrieval time as K (number of blocks) and L (records per block)
grow. However, due to the high-dimensional nature of medical
records, the SFC approach improves search efficiency by segmenting
and structuring the stored data more effectively.

These results confirm that SFC enhances retrieval performance,
making it a valuable optimization technique for managing large-
scale healthcare records within a sharding blockchain framework.

6 Discussion

The results from the simulations provide valuable insights into
the impact of integrating a sharding-based blockchain and the SFC
approach into a healthcare AIoT system. The findings indicate that
these enhancements significantly improve memory overhead and
data retrieval times compared to conventional blockchain
implementations.
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In the first simulation, Sharding blockchain significantly
reduces memory overhead and improves data retrieval speed
compared to conventional blockchain, making it a more
scalable and efficient solution for healthcare AIoT. The
decentralized nature of traditional blockchains often results in
significant storage overhead, particularly in data-intensive
domains such as healthcare AIoT systems. By partitioning the
blockchain into smaller, manageable shards, the system effectively
distributes storage and processing loads, leading to a reduction in
overall memory consumption. Moreover, the simulation results
confirmed that sharding enables parallel processing of
transactions, thereby expediting data retrieval times as it limits

the search scope to relevant hospital shards instead of scanning the
entire network. This efficiency is particularly crucial for healthcare
applications where timely access to patient records is vital for
decision-making.

In the second simulation, the SFC approach further improves
retrieval performance, reducing data retrieval time by approximately
50%, making it highly effective for managing large-scale medical
records. This technique further refines data retrieval by organizing
healthcare records of a high-dimensional data into structured
fragments, allowing for more efficient querying and reduced
access latency. The results demonstrated that, when compared to
a sharded blockchain alone, the SFC approach significantly

FIGURE 10
Memory required for each hospital (node) in a traditional blockchain (blue) and a shared blockchain (red).

FIGURE 11
Medical record retrieval time in a traditional blockchain (blue) and a shared blockchain (red).
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decreases data retrieval times. This enhancement is particularly
advantageous for AIoT healthcare systems that require real-time
data access, such as remote patient monitoring and predictive
analytics applications.

Overall, the simulations provide strong empirical evidence
highlight the practical benefits of integrating sharding blockchain
and SFC into healthcare AIoT systems, paving the way for more
efficient, secure, and scalable medical data management solutions.

FIGURE 12
The average data retrieval time for a single blockchain using Brute Force approach (Upper) and the SFC aproach (Lower), both plotted on the
same scale.
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7 Conclusion

This paper investigate the integration of blockchain with
Artificial-Intelligence-of-Things (AIoT), in a particular
focus on healthcare applications. There has been limited
attention given to the practical challenges of integrating
blockchain with AIoT in healthcare systems, where sensitive
personal data, high memory consumption, and time-consuming
data retrieval pose significant obstacles. To address these
challenges, this paper proposes a platform framework that
combines edge AI with a sharding-based proof-of-authority
(PoA) blockchain. The framework incorporates three key
strategies to enhance the efficiency of blockchain applications
in healthcare: Blockchain Version Manager for AI
Adaptors–Ensures AI adaptors are securely updated and
resistant to data leakage; IoT Preprocessing for Blockchain
Data Management–Reduces redundancy and optimizes data
storage before recording it on the blockchain; Shall Fragment
Cube (SFC) Approach for Blockchain Decision
Archiving–Improves data retrieval efficiency by structuring
stored medical records more effectively. Theoretical analysis
confirms that sharding blockchain significantly improves
memory efficiency and reduces data retrieval time.
Simulation results further validate these benefits, showing
that the SFC approach reduces data retrieval time by
approximately 50 Thus, this study has the transformative
potential to develop secure, efficient, and scalable smart
systems of integrating AIoT and blockchain. This study
underscores the critical role of blockchain technology in
enabling next-generation AIoT systems, paving the way for
more secure, scalable, and high-performance
intelligent solutions.

This study does not cover the security aspects of IoT devices
within AIoT systems. While blockchain security and AI
vulnerabilities are discussed, IoT devices introduce additional
risks that require further investigation. Specifically, IoT sensors
collecting personal health data are susceptible to unauthorized
access and malicious tampering, posing significant threats to
patient privacy and data integrity. Therefore, future research
should focus on developing a comprehensive security
framework to safeguard IoT device data and AI model
integrity while integrating blockchain into healthcare
AIoT systems.
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