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With the advancement of Internet of Things (IoT) technology, the continuous
growth of IoT systems has resulted in the accumulation of massive amounts of
data. Consequently, there has been a sharp increase in network attacks,
highlighting the need for enhanced network security methods. Network
intrusion detection systems play a crucial role in network security. Compared
to the traditional approach of using single time-series models to process traffic
data, this study innovatively proposes an RMCLA (Residual Network and Multi-
scale Convolution Long Short-Term Memory with Attention Mechanisms)
network intrusion detection system optimized with attention and residual
mechanisms. This model converts traffic data into feature images and
enhances the feature contrast through histogram equalization. It then utilizes
the powerful performance of convolutional networks to extract abnormal feature
points. The attention module and residual network enhance the focus on
abnormal points, reducing feature loss and redundancy, thereby achieving
effective classification of traffic image processing. We conducted experiments
on the CIC-IDS2017 andUNSW-NB15 datasets and compared ourmodel with the
latest research models. This study highlights the potential of combining deep
learning techniques with advanced attention and residual networks to enhance
network security in IoT environments. The results show that combining image
recognition with attention-residual optimization can effectively improve network
intrusion detection capabilities.
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1 Introduction

With the rapid popularization of 5G and the swift development of smart devices, these
devices are now ubiquitous in daily life. The IoT market is currently growing at a rate of
16.7%, and its net value is expected to exceed $300 billion. The vast amount of data
transmission is accompanied by ever-present cybersecurity threats. Incidents of
information leakage, hacking, and data theft have become commonplace, resulting in
significant economic and privacy losses (Bataev et al., 2020).

As cyber-attack methods continue to evolve, designing the optimal ML (Machine
Learning) -based NIDS (Network Intrusion Detection System) model has become a
prolonged battle. Often, there’s a trade-off between high efficiency and insufficient
accuracy, or adequate accuracy but inadequate time efficiency. To optimize model
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performance, researchers have devised many approaches such as
feature selection, data augmentation, classification algorithms, and
hybrid algorithms, all aimed at achieving a more effective NIDS
model. With the development of deep learning (DL), the field of
image processing has blossomed, and researchers have gradually
begun exploring methods to apply image processing to NIDS. To
convert traffic data into image features, researchers have come up
with various methods. The most common approach is
transforming traffic data from one-dimensional arrays into
multidimensional matrices. For instance, the method used by Li
et al. (2023), while highly efficient, can harm the correlation
between features.

On the other hand, as noted by Rajaby and Sayedi (2022), the use
of Fourier domain-based image transformation for big data may
introduce complexity issues, increasing the difficulty of model
training and reducing the performance of prediction results.
Additionally, solving traffic detection problems through image
processing still has substantial room for improvement. Simple
lCNN (Convolutional Neural Network) layers have limited
receptive fields, making it difficult to learn deeper feature
relationships in traffic feature maps, ultimately constraining the
model’s performance.

This paper designs a new hybrid model named RMCLA
(Residual Network and Multi-scale Convolution Long Short-
Term Memory with Attention Mechanisms). It uses multi-
scale CNN to process traffic image features and BiLSTM
(Bidirectional Long Short-Term Memory) to handle traffic
time-series features. A residual network is incorporated to
enhance model stability and prevent information loss and
gradient explosion. Various attention hybrid modules are
integrated to improve the model’s learning and filtering
capabilities, increase focus on important features, and reduce
the weight of less significant features. The main contributions of
our work are summarized as follows:

1. The RMCLA hybrid model is designed to significantly enhance
the capability of traffic image processing. Themulti-scale-CNN
has a much broader receptive field compared to traditional
convolution layers of the same dimension, greatly improving
the ability to handle traffic images. By using BiLSTM to learn
the temporal features of traffic, the issue of losing feature
association information during the conversion of traffic data
to traffic images is resolved.

2. Histogram equalization is applied during the mapping of traffic
features to traffic feature images, greatly increasing the contrast
between traffic image features. This makes data features clearer
and easier for the model to extract and learn.

3. Residual network modules and various hybrid attention
modules are added to optimize the model. The residual
network enhances the model’s stability and ensures no loss
of information. The channel-spatial attention and temporal
attention modules effectively address the balance of different
channel features during image processing, accurately capturing
both local important information and global feature
information, and simultaneously strengthening the learning
of data feature connections. The self-attention module reduces
the model’s parameter dimensions, thereby improving the
overall convergence capability of the model.

The remainder of this paper is organized as follows: Section 2
provides a brief overview of related topics. Section 3 elaborates on
the network structure of the RMCLA model in detail. Section 4
introduces the experimental setup and dataset processing. Section 5
analyzes the experimental results. Finally, Section 6 concludes
the paper.

2 Related works

Traditional machine learning techniques have been widely
applied in the detection of anomalous network traffic.
Approaches such as naive Bayes (Huang, 2022; Zhang et al.,
2018), k-means (Wang L. et al., 2021; Khaoula and Mohamed,
2022), random forest (Farnaaz and Jabbar, 2016; Zhang et al., 2008),
support vector machine (Zhang et al., 2019; Ikram and Kumar,
2017), XGBoost (Le et al., 2022; Talukder et al., 2022), and decision
tree (Kevric et al., 2017; Louk and Tama, 2022) have demonstrated
success in the detection of anomalous network traffic. With the
advancement of internet technology, the scale of network traffic has
significantly increased and continues to grow rapidly. In the face of
such vast and complex network traffic, traditional machine learning
techniques are becoming increasingly limited, such as the limitation
of computing power, which makes it difficult to deal with high-
dimensional complex data, and the dependence on data structure
has poor scalability and generalization ability. With the success of
deep learning-based image processing methods in various fields, a
considerable number of image processing-based methods have
emerged in the field of traffic detection.

Chen et al. (2020) introduced a convolution-based model for
anomalous traffic detection. In their approach, they input features
into a module consisting of two convolutional layers and classified
them through a fully connected layer. The model achieved an
accuracy of 96.5% on the CIC-IDS2017 dataset. Their model is
characterized by its simplicity, utilizing only two convolutional
layers to capture spatial features, but it has the limitation of a
narrower receptive field.

Li et al. (2020) proposed a deep learning intrusion detection
method utilizing a multi-CNN fusion approach. This method
comprehensively learns spatial features at multiple scales and
demonstrates high accuracy and low complexity on the
NSLKDD dataset.

Sun et al. (2020) compared CNN image processing-based
models with traditional traffic sequence processing-based models.
They proved that CNN image processing methods have significant
advantages over traditional traffic sequence processing. They then
combined the two structures, first using CNN to process traffic
feature maps and then employing LSTM for temporal feature
extraction. The hybrid model was shown to have a clear
advantage over single processing models, achieving an accuracy
of 98.67% on the CIC-IDS2017 dataset. However, the design of the
model was overly simplistic, merely performing a straightforward
concatenation without further exploiting the advantages of the
hybrid model.

Bowen et al. (2023) introduced a hybrid model that first uses
CNN to process image features, then compresses the feature images
into sequence strings for BiLSTM to learn the relationships between
features. This method yielded positive results across five datasets,

Frontiers in Communications and Networks frontiersin.org02

Wang et al. 10.3389/frcmn.2025.1546936

https://www.frontiersin.org/journals/communications-and-networks
https://www.frontiersin.org
https://doi.org/10.3389/frcmn.2025.1546936


including UNSW-NB15 and CIC-IDS2017. Compared to the
previous research, this approach included more pooling layers,
batch normalization layers, and two BiLSTM layers to learn
sequence relationships. However, the use of CNN layers was
rather thin, resulting in a simplistic treatment of traffic
image features.

Halbouni et al. (2022) developed a hybrid CNN-LSTM model
that converts features into traffic feature maps, which are then
inputted into the CNN. After extracting spatial relationships from
the feature maps, LSTM layers are used to capture the sequence
relationships between features. Unlike the previous study, this
module is repeated three times, incrementally increasing the
kernel size each time to expand the model’s receptive field. The
final prediction results are output through a DNN layer and softmax.
This model’s effectiveness was validated on the CIC-IDS2017,
UNSW-NB15, and WSN-DS datasets. The issue is that the cross-
feature extraction might result in information loss and lacks
methods to filter between minor and major features.

Relevant research shows that traditional sequence models for
extracting traffic features are far less effective than converting traffic
data into traffic feature maps and extracting features through CNN
convolution. Furthermore, when learning relationships between
traffic image features, traditional CNN convolution has
limitations. It cannot capture and understand global and local
features effectively, and it struggles to learn their relationships,
leaving substantial room for improvement.

This paper proposes the RMCLA model, which enhances the
extraction capability of traffic image features through multi-scale
convolution and reinforces the relationship between local and global
features using attention mechanisms. It assigns weights to important
and less significant features.

3 Methodology

The overall structure of the RMCLAmodel is shown in Figure 1.
It mainly consists of two MCL (Multi-scale Convolutional Long
Short-TermMemory) modules, two Attention modules, two ResNet
(Residual Network) residual networks, a fully connected layer, and a
Softmax layer. The MCL module includes parallel multi-scale CNN
layers and BiLSTM layers, with the dimensions of the two MCL

modules increasing sequentially. To enhance the model’s deep
learning capabilities and prevent issues such as learning
degradation and gradient explosion, ResNet residual network
modules are incorporated. Additionally, to increase the weight of
important data features and reduce the learning of secondary
features, an Attention module is integrated after the MCL
module. Experimental results show that the model’s detection
performance surpasses most baseline models.

In existing research models, networks often consist solely of
either LSTM or CNN,making it difficult to comprehensively capture
spatiotemporal features. There are also hybrid models that
incorporate both LSTM and CNN. However, these models
typically first use CNN layers to extract spatial features and then
use LSTM layers to extract temporal features, which can lead to
insufficient temporal feature extraction and consequently affect the
model’s learning capability. Additionally, the insufficient depth of
the network model can reduce the ability to capture complex
relationships in traffic data structures. To address these issues, we
propose the MCL module, which includes parallel multi-scale CNN
convolution layers and a double-layer LSTM structure, enabling
more efficient capture of data features with differnt emotions as well
as temporal and spatial dimensions. The multi-scale CNN
convolution and double-layer LSTM structure are shown
in Figure 2.

3.1 Multi-scale convolution

CNNs are capable of capturing local features within data,
meaning they can effectively handle input data with spatial
correlations, such as adjacent pixels in images. Compared to
traditional CNN structures, the MCL utilizes an updated multi-
scale convolutional structure, which employs convolutional kernels
of different sizes simultaneously to extract multi-scale features,
thereby capturing more detailed information and contextual
relationships. Traditional CNN structures typically use a single
kernel size per layer, resulting in relatively limited feature
extraction capabilities. By processing multiple convolutional
kernels and pooling operations in parallel, MCL can integrate
various spatial features and demonstrate stronger learning
abilities in handling complex network traffic data. Compared to

FIGURE 1
Overall structure of the model.

Frontiers in Communications and Networks frontiersin.org03

Wang et al. 10.3389/frcmn.2025.1546936

https://www.frontiersin.org/journals/communications-and-networks
https://www.frontiersin.org
https://doi.org/10.3389/frcmn.2025.1546936


deeper and larger convolutional layers capable of dealing with more
complex data traffic features, MCL consumes less hardware
performance and requires less time. Taking the one-dimensional
convolution as an example, the calculation formula is as follows
Equation 1, where s represents the output feature map, w represents
the convolution kernel, andm and n represent the length and width
of the convolution kernel, respectively.

xl
k � f ∑N

i�1x
l−1
i × wl

ik + blk( ) (1)
In this context: xl

k denotes the kth feature map at the lth layer. frepresents
the activation function. N stands for the number of input feature maps.
The symbol × indicates the convolution operation.wl

ik is the weight of the
i-th operation corresponding to the k-th convolution kernel at the l-th
layer. blk is the bias of the k-th convolution kernel at the l-th layer.

FIGURE 2
Structure of the multi-scale convolution.

FIGURE 3
Channel spatial attention mechanism.
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3.2 Attention mechanisms

Due to the model’s parallel simultaneous use of BiLSTM and
Multi-Scale Convolutional Neural Networks (MCNN), it
comprehensively extracts traffic data, making it less prone to
missing crucial features. However, this design choice also
introduces the challenge of parameter explosion. The model’s
convergence is highly challenging; therefore, we propose an
optimization scheme using attention mechanisms. After
extracting spatial features with MCNN, we link the channel
spatial attention mechanism to perform weight selection on the
spatial features, increasing the weight of important features and
reducing the attention to secondary features. After BiLSTM extracts
the temporal features, a temporal attention mechanism is applied to
perform weight selection on the temporal features, similar to the
spatial features. Finally, to reduce the number of parameters and
improve the model’s convergence capability, a self-attention
mechanism is introduced. This mechanism performs another
round of feature selection on temporal and spatial features,
focusing more on the correlations between the data, thereby
enhancing the model’s ability to learn deeper links within the
data. The flow structure of these attention mechanisms is shown
in Figures 3, 4.

3.2.1 Channel spatial attention mechanism
The process of the channel spatial attention mechanism is

as follows:

W1 � AvgPool F( ) (2)
W2 � MaxPool F( ) (3)

The input features F are initially passed through the channel
attention module. The two channel data features are derived by
compressing the spatial features through global maximum pooling
and global average pooling, as outlined in Equations 2, 3.
Subsequently, these features are combined into a two-layer MLP
to learn the relationship between the channel data features. Finally,
the two data features are merged and outputted through the sigmoid
activation function to obtain the channel attention weights Mc(F),
as illustrated in Equation 4.

Mc F( ) � σ MLP W1 F( )( ) +MLP W2 F( )( )( ) (4)
F′ � Mc F( ) ⊗ F (5)

The subsequent multiplication of the channel attention weights
Mc(F) with the input original feature F yields the channel
attention-enhanced feature F′ Equation 5. Continuing the
process, the feature F′ is fed into the spatial attention module
through a maximum pooling layer with a size of (1, channel) and
an average pooling layer to obtain two spatial features compressed
with the channel features. These features are then concatenated and
the relationship between spatial feature data is learned through a 7 ×
7 convolutional layer. Subsequently, the spatial attention feature
weights Ms(F′) are generated through the sigmoid activation
function Equation 6.

Ms F′( ) � σ f7×7 W1 F′( )[ ]; W2 F′( )[ ]( )( ) (6)
F” � Ms F′( ) ⊗ F′ (7)

Finally, the spatial attention feature weightsMs(F′) and the original
feature F′ are multiplied to obtain the final channel spatial attention-
enhanced feature F” Equation 7.

FIGURE 4
Temporal attention and Self-attention mechanism.
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3.2.2 Temporal attention mechanism
Here’s the translation of the process of the time attention

mechanism: First, attention weights are generated through a
Dense layer. The output dimension of this layer is 1, with a tanh
activation function. Apply the Softmax activation function to the
flattened attention to normalize the attention weights, ensuring that
their sum equals 1, which enhances the model’s stability. Allocate
weights to the feature dimensions. Adjust the dimensions of
attention to match the input dimensions through another Dense
layer, and use the Softmax activation function. This step ensures that
the dimensions of the attention weights match the number of input
features, and the weights are normalized through Softmax so that
they can be safely applied to the input features. Use a Multiply layer
to multiply the input by the attention weights to generate the
weighted output.

3.2.3 Self-attention mechanism
The process structure of the self-attention mechanism is as

follows: Import the input data features into three dense layers to
generate the query vector (Q), key vector (K), and value vector
(V). These layers use the ReLU activation function. Calculate the
dot product based on the values of Q and K as shown in
formula 8.

Attention(Q,K,V) � sof tmax(QK
T

dk
)V (8)

Use the softmax function to normalize the attention score matrix,
enhancing the model’s stability. Finally, use the attention weights to
perform a weighted sum on the value vector, obtaining the weighted
sum, which represents the data features after processing by the self-
attention mechanism.

3.3 Residual network

The ResNet module achieves residual connection by
concatenating the input tensor and the convolutional feature
map. This retains input information, prevents gradient
vanishing problems, and enhances feature extraction
capabilities, thereby improving the model’s performance and
stability. The first convolutional layer uses 64 filters, each with
a size of 3, and the output tensor’s spatial dimensions are the same
as those of the input tensor. This layer extracts local features from
the input tensor. Batch normalization is applied to standardize the
convolutional output, stabilize data distribution, accelerate
training convergence, and improve the model’s generalization
ability. Subsequently, the ReLU activation function introduces
non-linearity to the model, helping it learn more complex
features. The Dropout layer with a dropout rate of 0.2 prevents
overfitting, forcing the model to learn more robust features. The
second convolutional layer uses 32 filters, each with a size of 3,
maintaining the same spatial dimensions as the input tensor. Batch
normalization is applied again to stabilize the data distribution.
The input tensor is then concatenated with the output features of
the previous convolutional layers along the last dimension. This
concatenation retains input information while introducing new
features. The final convolutional layer uses 64 filters to process the
concatenated feature map again.

4 Experiment setup

In this section, we outline the hardware and software
configurations employed for the experiments, detail the chosen
dataset for our investigation, and elucidate the methodology
adopted for dataset preprocessing.

4.1 Experiment configuration

Our experiments were conducted on a computer equipped
with an AMD Ryzen 596,00X processor and an Nvidia GeForce
RTX 4070 graphics card. The system had 32 GB of RAM and ran
on the Windows 11 operating system. We implemented the
proposed model using TensorFlow 2.6.0. Python 3.9.0 was
chosen as the programming language for executing the
program, and the main software packages utilized included
Numpy, Keras, Pandas, Sklearn, and Matplotlib. The model was
trained over 10 epochs, with a dropout rate of 0.4, a learning rate of
0.001, and a batch size of 32. The optimization algorithm used was
Adam. The parameters of the MCNN module are referenced as
shown in the structural diagram. The hidden layer of BiLSTM has
64 units. In the channel attention module, the parameters of the
dense layers are channels//8 and channels, respectively. In the
spatial attention module, the kernel sizes of AvgPool2D and
MaxPool2D are (1, channels) with strides of (1,1). The output
of the two-dimensional convolutional layer is 1, with a kernel size
of 7 × 7. In the self-attention module, the dense layers for
computing Q, K, and V use ReLU activation functions, with an
output size of 32.

4.2 Dataset

Compared to the widely used NSL-KDD and KDD
CUP99 datasets in many studies, we have chosen more recent
datasets that frequently appear in the latest research findings, as
they are often used to demonstrate the latest achievements in deep
learning anomaly traffic detection. Additionally, this choice allows
for a more direct and meaningful comparison with other state-of-

TABLE 1 UNSW-NB15 dataset analyzed.

Category Total Percent

Normal 93000 36.09%

Generic 58871 22.85%

Exploits 44525 17.28%

Fuzzers 24246 9.41%

DoS 16353 6.35%

Reconnaissance 13987 5.43%

Analysis 2677 1.04%

Backdoor 2329 0.90%

Shellcode 1511 0.59%

Worms 174 0.07%
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the-art models across various performance metrics. The UNSW-
NB15 Dataset is a compilation of raw network data packets crafted
by the University of SouthWales. This dataset is designed to create a
blend of modern normal network activity and synthetic
contemporary attack behavior. It encompasses nine types of
attacks, including Fuzzers, Analysis, Backdoors, DoS, Exploits,
Generic, Reconnaissance, Shellcode, and Worms, resulting in a
total of 10 classes of traffic and 49 features. We have
summarized and analyzed the raw data, presenting the findings
in the following Table 1.

The CIC-IDS2017 dataset was curated by the Canadian Institute
for Cybersecurity (CIC) using the B-Profile system, which simulates
a network environment with a continuous variety of traffic attacks
over a 5-day period. This dataset serves as a popular training
resource, containing both benign and up-to-date common
attacks, resembling real-world data (PCAPs). It encompasses a
total of 15 labels, including 14 network attacks and normal
traffic, such as Botnet, Web Attack Brute Force, DoS, DDoS,
Infiltration, Heartbleed, Bot, PortScan, and other common
attacks based on the McAfee report of 2016. Furthermore, it
includes 15 labels for traffic based on the results of network
traffic analysis performed by CICFlowMeter. The analysis
incorporates labeled flows derived from timestamps, source and
destination IP addresses, source and destination ports, protocols,
and attacks, all presented in CSV files. We also have summarized
and analyzed the raw data, presenting the findings in the
following Table 2.

The method for converting traffic data into traffic images in this
paper is as follows:

Step 1: Slice traffic packets Split the PCAP file to extract various
features of network traffic data, such as packet length, timestamp, IP
address, port number, protocol type, etc.

Step 2: Clean up the flow Remove IP addresses, MAC addresses,
duplicate data, missing data, and other redundant information.
Convert character-type data into numerical values using one-hot
encoding to facilitate model computation. Apply max-min
normalization to scale all data to the range of 0–1.

Step 3: Generate images Multiply the normalized data by 255 to
facilitate conversion into image data. The data is then sliced into
N bytes (where n is the edge length of the grayscale image, N = n2). If
the file length is greater than N, it is truncated; if less than N, zero-
padding is applied. The one-dimensional data of length N is then
converted into an n*n two-dimensional grayscale image.

Step 4: Histogram equalization Certain areas in the original
image may have details that are not apparent due to grayscale values
being concentrated in a narrow range. Histogram equalization
optimizes the original traffic feature map by redistributing the
grayscale values, making them more uniform. This enhances the
image contrast, clarifying details and better reflecting the
information within the data.

Below is the calculation process of histogram equalization
Equation 9: Firstly, calculate the cumulative histogram of the
original traffic image. Here, h(k) represents the histogram,
indicating the frequency of each grayscale level k, and cdf(k)
represents the number of pixels with grayscale values less than or
equal to k.

CDF k( ) � ∑
k

i�0
H i( ) (9)

Then, normalize the cumulative histogram. To map the
grayscale values to a new range, the cumulative distribution
function CDF(k) needs to be normalized. Assuming the image
has N pixels, the normalized value CDFnorm(k) can be calculated
using formula 10, where CDF(k)min is the minimum value in the
cumulative histogram.

CDFnorm k( ) � CDF k( ) − CDFmin

N − CDFmin
(10)

Finally, map to new grayscale values. The final equalized image
grayscale value I′(x, y) can be obtained using formula 11.

Ii x, y( ) � round 255 × CDFnorm I x, y( )( )( ) (11)

As shown in Figure 5, using the CIC-IDS2017 dataset as an
example, the differences between the original traffic images and the
histogram-equalized traffic images are illustrated. The first row
displays the original traffic feature images, while the second row
shows the traffic feature images after enhancement. It is evident that
the enhanced feature images have higher contrast and clearer details,
which better reflect the information contained in the data.

In addition to the conversion of traffic images, the extreme
imbalance of the dataset is also a characteristic of traffic data. Some
specific anomalous traffic samples are very rare, making it difficult
for the model to learn. For example, in the CIC-IDS2017 dataset, the
sample proportions of Heartbleed, Infiltration, and DoS are very
low. Therefore, this paper uses the Borderline-SMOTE
oversampling method to adjust the data distribution of the
dataset. In our experiments, we used 60% of the data as the
training set, 20% as the validation set, and 20% as the test set.

TABLE 2 CIC-IDS2017 dataset analyzed.

Category Total Percent

BENIGN 2095057 83.11%

DoS Hulk 172846 6.86%

DDoS 128014 5.08%

PortScan 90694 3.60%

DoS GoldenEye 10286 0.41%

FTP-Patator 5931 0.24%

DoS slowloris 5385 0.21%

DoS Slowhttptest 5228 0.21%

SSH-Patator 3219 0.13%

Bot 1948 0.08%

Web Attack Brute Force 1470 0.06%

Web Attack XSS 652 0.03%

Infiltration 36 < 0.01%

Web Attack Sql 21 < 0.01%

Heartbleed 11 < 0.01%
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4.3 Evaluation

We use accurac Equation 12, precision Equation 13, recall
Equation 14, and F1 score Equation 15 to evaluate the
effectiveness of the model. The specific formulas for these metrics
are as follows:

Accuracy � TP + TN
TP + FP + TN + FN

(12)

Precision � TP
TP + FP

(13)

Recall � TP
TP + FN

(14)

F1 � 2*Precision*Recall
Precision + Recall

(15)

These metrics are calculated using the following variables:True
Positives (TP): Positive samples correctly predicted as positive by
the model. False Positives (FP): Negative samples predicted as
positive by the model. False Negatives (FN): Positive samples
predicted as negative by the model. True Negatives (TN):
Negative samples correctly predicted as negative by the model.

5 Experiments and analysis of results

We conducted binary and multi-class classification
experiments on our model using the UNSW-NB15 and CIC-
IDS2017 datasets. The confusion matrices for different datasets
were presented, and data comparisons were made with existing
research models. The results demonstrate that our model achieves
the best performance compared to current research models.
Additionally, on the CIC-IDS2017 dataset, we performed
ablation experiments on the spatiotemporal fusion model
without the attention mechanism. The comparison shows that
the attention mechanism significantly enhances the model’s
performance.

5.1 Analysis of classification results

5.1.1 Analysis of binary classification results
The binary classification results of our experiments on the CIC-

IDS2017 dataset are shown in Table 3. The overall accuracy for
binary classification reached 99.86%. The performance is
outstanding with a precision of 99.31%, recall of 100%, and an
F1-score of 99.66%.

5.1.2 Analysis of multi-class classification results
As shown in Table 4, the classification performance of the

model for all traffic categories on the CIC-IDS2017 dataset is
impressive. For the majority class samples, the results are
particularly outstanding, with the precision for the benign class
reaching 99.89%, recall at 99.71%, and F1 score at 99.8%. For
DDoS, DoS Hulk, and PortScan classes, all three metrics
are around 99%.

For the mid-frequency traffic categories, the model still
demonstrates good classification performance. The three metrics
for DoS GoldenEye, DoS Slowhttp, and DoS Slowloris are all above
96%. The classification performance for FTP-Patator is excellent,
indicating that the features of this category are highly distinctive and
well captured by the model, with precision, recall, and F1 scores
reaching 99.69%, 99.81%, and 99.75%, respectively. The
classification performance for SSH-Patator is also very good, with
all three metrics around 98%.

After oversampling the six minority class labels, most of
them showed satisfactory performance. For the bot class, the
precision, recall, and F1 scores reached 90.03%, 89.8%, and
91.02%, respectively. The Heartbleed class achieved 100% in all
three metrics. For the Infiltration class, the precision, recall,
and F1 scores reached 99.75%, 98.75% and 99.25%,
respectively.

WA Brute, WA Sql, and WA XSS classes are similar types of
traffic data and their distinction tests the model’s performance. Two
of them performed well; the WA XSS class had precision, recall, and

FIGURE 5
Original traffic image and equalized grayscale image.
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F1 scores of 70.76%, 96.63%, and 81.74%, respectively, while theWA
Sql class had scores of 92.74%, 89.38%, and 91.02%, respectively,
both around 90%. TheWABrute class had a precision of 97.30%, but
only a recall of 13.50%, indicating that while most predictions for
WA Brute were correct (low false positives), the model missed many
actualWA Brute samples (high false negatives). This overall suggests
that there are few false positives for WA Brute, but many samples of
this class are missed, likely due to confusion with the other two
WA classes.

The UNSW-NB15 dataset has been available for quite some
time, but due to the extreme imbalance in the number of classes
and the lack of distinctive features in the class data, multi-class
classification testing on this dataset has always been a challenging
task. According to Table 5, the multiclassification accuracy is
86.1%, and the weighted averages of precision, recall, and F1 are
94.32%, 86.1%, and 87.9%, respectively. Given the nature of
multiclassification, the overall indices can be influenced by
both a small number of samples and the majority of samples.
Therefore, it is crucial to examine the performance of each class
individually.

Observing the results, the accuracy for normal traffic is 100%,
with precision, recall, and F1 all exceeding 99%. The generic class
attack, representing the majority class sample, also achieves

precision, recall, and F1 scores above 99%, indicating effective
detection for the majority class.

For minority samples, using the Borline-SMOTE oversampling
algorithm can generate boundary samples to extend their number
in the training sample. Experimental results show that most
minority samples exhibit good detection effectiveness, with
recall values of 100% for Worms and Shellcode. Additionally,
the recall values for Backdoor, Reconnaissance and Analysis
surpass 75%, demonstrating effective detection for these
minority classes as well.

TABLE 3 Comparison of binary classification experiments with other
models.

Algorithm Year Data ACC

RMCLA Proposed Model UNSW-NB15 99.46%

CIC-IDS2017 99.41%

Altunay and Albayrak (2023) 2023 CIC-IDS2017 93.21%

Ravi et al. (2022) 2023 CIC-IDS2017 99%

UNSW-NB15 99%

Wang et al. (2022) 2022 CIC-IDS2017 98.41%

Wu et al. (2022) 2022 CIC-IDS2017 99.17%

Binbusayyis and Vaiyapuri (2021) 2021 UNSW-NB15 94.28%

Kanna and Santhi (2021) 2021 UNSW-NB15 96.33%

Kaur and Singh (2020) 2019 CIC-IDS2017 99.1%

Sayegh et al. (2024) 2024 CIC-IDS2017 99.34%

Ho et al. (2022) 2022 CIC-IDS2017 98.5%

UNSW-NB15 96.3%

Zhang et al. (2023) 2023 CIC-IDS2017 99.08%

Gou et al. (2023) 2023 CIC-IDS2017 96.5%

Wang et al. (2021b) 2021 CIC-IDS2017 72.56%

UNSW-NB15 70.89%

Al-Turaiki and Altwaijry (2021) 2021 CIC-IDS2017 90.95%

UNSW-NB15 88.21%

Said et al. (2023) 2021 CIC-IDS2017 81.22%

UNSW-NB15 80.11%

TABLE 4 Multi-class classification results on the CIC-IDS2017 dataset.

Class Precision Recall F1 Support

BENIGN 99.89% 99.71% 99.80% 454264

DoS Hulk 98.79% 99.48% 99.13% 46025

DDoS 99.94% 99.89% 99.92% 25605

PortScan 99.32% 99.94% 99.63% 31761

DoS GoldenEye 96.63% 97.47% 97.05% 2058

FTP-Patator 99.69% 99.81% 99.75% 1587

DoS Slowloris 96.23% 99.22% 97.71% 1159

DoS Slowhttp 96.37% 94.09% 95.22% 1100

SSH-Patator 97.64% 98.22% 97.93% 1180

Bot 90.03% 92.13% 91.02% 800

WA Attack Brute Force 97.30% 13.50% 23.71% 800

WA Attack XSS 70.76% 96.63% 81.74% 800

Infiltration 99.75% 98.75% 99.25% 800

WA Attack Sql 92.74% 89.38% 91.02% 800

Heartbleed 100.00% 100.00% 100.00% 800

Weighted avg 99.61% 99.54% 99.52% 569539

TABLE 5 Multiclass classification on the balanced UNSW-NB15 dataset.

Class Precision Recall F1-score Support

Normal 100% 99% 99% 20000

Generic 99.55% 98% 99% 20000

Exploits 85.7% 55% 67.1% 8905

Fuzzers 87.8% 81% 84.3% 4849

DoS 76.6% 5% 9.5% 3271

Reconnaissance 90.1% 75.3% 82% 2798

Analysis 14.25% 42.3% 21.3% 2000

Backdoor 6.4% 90.1% 12% 2000

Shellcode 38.9% 100% 56% 2000

Worms 23.6% 100% 38% 400

Weighted avg 94.32% 86.1% 87.9% 66223
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We present the confusion matrices both with and without the
added attention mechanism. Figure 6 illustrates the confusion
matrix for the CIC-IDS2017 dataset using the RMCLA model
after incorporating the attention mechanism. The matrix exhibits a
distinctly clear diagonal, indicating that nearly all categories
achieve satisfactory classification results. Figure 7 displays the
confusion matrix without the inclusion of the attention
mechanism. By comparing these two figures, it is evident that
the model’s performance prior to adding the attention mechanism
was suboptimal, with numerous misclassification issues observed.
Following the integration of the attention mechanism, the
classification performance across all categories, including the
minority class, demonstrates significant improvement. The
recognition rate of minority class samples improved
significantly, with bot reaching 0.78, heartbleed 1.00, infiltration
0.99, and substantial improvements in the classification
performance of the three web attack labels: WA Sql improved
from 0.57 to 0.91, WA Brute from 0.27 to 0.55, and WA XSS
from 0.54 to 0.75.

5.2 Ablation experiments

5.3 Comparison classification with
other models

We conducted ablation experiments on our model and
additionally tested the multi-class performance of models without
the attention module, without the spatial attention module, without
the channel attention module, without the temporal attention
module, without the self-attention module, and without data
balancing. The results are shown in Table 6. It can be observed
that after removing the entire attention module, the model
performance significantly declined, with accuracy (acc) dropping
to 99.73%, precision dropping to 97.5%, and recall dropping to
97.2%. When either the channel attention mechanism or the spatial
attention mechanism was removed, the performance difference was
not substantial, with both fluctuating around 99%. However, after

FIGURE 6
Confusion matrix for CICIDS2017.
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removing the temporal attention mechanism, the model’s ability to
learn temporal features decreased, leading to a noticeable decline in
overall model performance, with most metrics falling below 99%.
We also examined the impact of dataset balancing methods on
model performance. The results indicate that severe data imbalance

greatly affects the training effectiveness of the model, with a metric
gap of about 2% before and after balancing.

We also compared the multi-class classification results of the
two datasets from existing research. As shown in Table 7, we listed
the experimental results both with and without the attention

FIGURE 7
Confusion matrix for CICIDS2017 without attention mechanism.

TABLE 6 Different Versions of the Model for temporal attention module on CIC-IDS2017 Dataset.

Model version ACC Precision Recall F1-score

Original Model 99.54% 99.61% 99.54% 99.52%

Without Attention Mechanism 97.30% 97.50% 97.20% 97.35%

Without Temporal Features 99.10% 99.20% 99.05% 99.12%

Without Spatial Features 98.90% 99.00% 98.80% 98.90%

Without Channel Features 99.00% 99.15% 99.05% 99.10%

Without Data Balancing 97.00% 97.80% 97.20% 97.50%
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mechanism. It can be seen that on the CIC-IDS2017 dataset, most
models can achieve accuracy rates above 90%, but few reach above
99%. The RMCLA model achieved an accuracy of 99.54%, which is
the best among the many models. The performance on the UNSW-
NB15 dataset varied greatly, with significant differences, for
example, DNN only achieved 66% accuracy, while HC-DTTSVM
reached 81.7%. This demonstrates that training on the UNSW-
NB15 dataset is very challenging, especially in the field of multi-class

classification where it is difficult to achieve 90%. The RMCLAmodel
achieved an accuracy of 86.1%, placing it at the forefront.

5.4 Comparison of training times

We have also listed the training times of our model and the
training times of models from other literature, as shown in Table 8. It
can be seen that our training time has certain advantages when
compared with larger models, such as LeNet: 1411s, CNN-LSTM:
1229s, CNN-BILSTM: 2000s. Our model takes less time than these.
However, compared to smaller models with fewer parameters, the
training time is relatively longer, such as CNN: 297s. Nevertheless, as
demonstrated in the experimental comparisons in previous chapters,
our model has certain advantages over many of the latest models, and
its accuracy has been affirmed. In comparison, the accuracy of CNN is
far inferior to ours, making the longer training time worthwhile.

6 Conclusion and future work

This paper proposes and designs the RMCLA network intrusion
detection system, which first converts traffic data into grayscale
images, followed by histogram equalization, significantly enhancing
the contrast of the traffic feature images. This makes the data
features clearer and easier for the model to extract. To address
the loss of data association information, a BiLSTM layer is added to
effectively solve this issue. To overcome the simplistic convolution
extraction methods, the paper designs a multi-scale convolution
module. Compared to convolution layers at the same level, this
module has a wider receptive field, achieving results that would
otherwise require deeper convolution layers, while significantly
reducing the number of parameters. Subsequently, the residual
network mechanism is added to prevent information loss while
enhancing model stability and preventing gradient vanishing or
explosion. Additionally, multiple attention mechanisms are
incorporated to filter and select the features extracted by the
convolutions, increasing the model’s focus on important features
and reducing the weight of less significant ones, greatly improving
the model’s accuracy. Finally, the self-attention mechanism reduces
the overall parameters of the model, improving its operational
efficiency. Experimental results demonstrate that the proposed
model outperforms the vast majority of existing models. On the
CIC-IDS2017 data set, the accuracy of binary classification

TABLE 7 Comparison of multiclass classification experiments with other
models.

Algorithm Year Data ACC

RMCLA Proposed Model UNSW-
NB15

86.1% ± 0.3%

CIC-IDS2017 99.54% ± 0.3%

RMCL Proposed Model UNSW-
NB15

82.5% ± 0.3%

CIC-IDS2017 97.3% ± 0.3%

Bowen et al. (2023) 2023 CIC-IDS2017 93.2% ± 0.3%

Zhang et al. (2023) 2023 CIC-IDS2017 99.08% ± 0.3%

Zhang et al. (2023) 2023 CIC-IDS2017 97.94% ± 0.3%

Gou et al. (2023) 2023 CIC-IDS2017 96.5% ± 0.3%

Wang et al. (2021b) 2023 UNSW-
NB15

66.6% ± 0.3%

Said et al. (2023) 2023 CIC-IDS2017 84.23% ± 0.3%

Halbouni et al. (2022) 2022 UNSW-
NB15

82.41% ± 0.3%

Jiang et al. (2020) 2020 UNSW-
NB15

77.16% ± 0.3%

Vinayakumar et al. (2019) 2019 CIC-IDS2017 96% ± 0.3%

UNSW-
NB15

66% ± 0.3%

Hussain and Hnamte (2021) 2021 UNSW-
NB15

81.7% ± 0.3%

Atli et al. (2018) 2018 UNSW-
NB15

66.33% ± 0.3%

Hosseini and Seilani (2021) 2018 CIC-IDS2017 97% ± 0.3%

Roopak et al. (2019) 2019 CIC-IDS2017 87.2% ± 0.3%

Yao et al. (2018) 2018 CIC-IDS2017 53.1% ± 0.3%

Belarbi et al. (2022) 2022 CIC-IDS2017 94% ± 0.3%

Paracha et al. (2023) 2023 CIC-IDS2017 99.27% ± 0.3%

Yulianto et al. (2019) 2019 CIC-IDS2017 81.83% ± 0.3%

Andresini et al. (2021) 2023 CIC-IDS2017 98% ± 0.3%

Guizani and Ghafoor (2020) 2020 UNSW-
NB15

70% ± 0.3%

Zou et al. (2023) 2023 UNSW-
NB15

81.21% ± 0.3%

Mebawondu et al. (2020) 2020 UNSW-
NB15

76.96% ± 0.3%

TABLE 8 Comparison of training times with other models.

Algorithm Year Data Times

RMCLA Proposed Model UNSW-NB15 373s

CIC-IDS2017 1479s

Al-Turaiki and Altwaijry (2021) 2023 UNSW-NB15 1411s

Al-Turaiki and Altwaijry (2021) 2023 UNSW-NB15 1229s

Al-Turaiki and Altwaijry (2021) 2023 UNSW-NB15 297s

Kevric et al. (2017) 2022 UNSW-NB15 450s

CIC-IDS2017 2000s
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experiment results of the model reached 99.86%, the precision rate
was 99.31%, the recall rate was 100%, and the F1 score was 99.66%.
The weighted precision rate, the recall rate and the F1 score of the
multi-classification experiment results reached 99.61%, 99.54% and
99.52%, respectively. The vast majority of abnormal traffic accuracy
is more than 96%. For the UNSW-NB15 dataset, the weighted
precision rate, recall rate and F1 score reached 94.32%, 86.1%
and 87.9%, respectively. The accuracy rate of identifying normal
traffic reached 100%, and the accuracy rate, recall rate and F1 score
were all above 99%. On these data sets, the model can effectively
identify the abnormal attack traffic. The model effectively identifies
anomalous attack traffic across these datasets, demonstrating
superior generalization and robustness.

At present, although the model has achieved high accuracy in most
categories, it is still inadequate in a fewminority classes of attacks, such as
WA Brute, WA XSS in CIC-IDS2017 and Backdoor, Analysis and
Worms in UNSW-NB15. This is mainly because the features of a few
class samples are hard to distinguish,making it challenging for themodel
to capture the complex patterns of these classes during training. Future
work will focus on further improving themodel’s ability to identify a few
types of attack traffic, as well as optimizing the model’s ability to detect
and prevent new attacks in real time. Future workwill consider the use of
more advanced techniques to increase the diversity of a few class
samples, as well as the continuous optimization of the model
structure and the addition of new modules to improve its recognition
accuracy, which will be the focus of future research directions.
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