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The exponential growth of connected devices on the Internet of Things (IoT) has
transformed multiple domains, from industrial automation to smart
environments. However, this proliferation introduces complex challenges in
efficiently managing limited resources—such as bandwidth, energy, and
processing capacity, especially in dynamic and heterogeneous IoT networks.
Existing optimization methods often fail to adapt in real-time or scale adequately
under variable conditions, exposing a critical gap in resource management
strategies for dense deployments. The present study proposes a granular
computing framework designed for dynamic resource optimization in IoT
environments to address this. The methodology comprises three key stages:
granular decomposition to divide tasks and resources into manageable grains,
granular aggregation to reduce computational load through data fusion, and
adaptive granular selection to refine resource allocation based on current system
states. These techniques were implemented and evaluated in a controlled
industrial IoT testbed comprising over 80 devices. Comparative experiments
against heuristic and AI-based baselines revealed statistically significant
improvements: a 25% increase in processing throughput, a 20% reduction in
energy consumption, and a 60% decrease in error rate. Additionally, quality of
service (QoS) reached 95%, and latency was reduced by 25%, confirming the
effectiveness of the proposed model in ensuring robust and energy-efficient
performance under varying operational loads.
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1 Introduction

In today’s digital era, the interconnection of smart devices through the Internet of
Things (IoT) has catalyzed significant transformations in multiple sectors, from the
manufacturing industry to the home environment (Catarinucci et al., 2015). The ability
of these devices to offer a diversity of applications, from remote monitoring to the
automation of complex processes, has opened new avenues for technological
innovation. However, the exponential growth in connected devices presents
unprecedented challenges in efficiently managing critical resources such as bandwidth,
power, and processing capacity. These challenges are especially pronounced in
infrastructure and resource-constrained environments, where operational efficiency and
service quality are critical (Abir et al., 2021).

The resource optimization problem in IoT networks has emerged as a crucial field of
study due to the need to maximize operational efficiency and guarantee service quality in
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these densely connected environments (Shwe et al., 2016). As IoT
applications continue to diversify and expand, it becomes
increasingly necessary to develop innovative approaches that
enable more efficient and adaptive management of available
resources (Neto et al., 2024).

However, despite the growing body of research, there remains a
critical gap in applying granular computing to real-time resource
optimization in dynamic IoT environments. Existing approaches
often rely on static or semi-static resource allocation schemes that
lack adaptability to fluctuations in network load, heterogeneity of
devices, and operational priorities. Furthermore, prior studies do not
sufficiently address the computational overhead, scalability trade-
offs, or dynamic reconfiguration required by dense IoT ecosystems.
This study directly tackles these challenges by proposing a granular
computing-based framework capable of decomposing and adapting
resource allocation across multiple abstraction levels in real time.

Although existing literature proposes various techniques and
strategies to address these challenges, many solutions face
limitations regarding scalability, flexibility, and adaptability to
changing environments. Granular computing is a promising
approach that can offer more flexible and adaptive solutions for
resource optimization in IoT networks (Motamedi et al., 2017).

In this work, granular computing is proposed as a tool for
resource management in IoT networks (Rani et al., 2023). Granular
computing, which relies on manipulating information at different
levels of granularity, is explored to manage and allocate resources
dynamically and efficiently. This methodology allows for adapting
resource allocation in real-time in response to the fluctuating
demands of the environment and connected devices (Mahan
et al., 2021). The study illustrates how granular computing can
significantly improve resource management through controlled
experiments and relevant case studies.

The study aims to develop a dynamic resource management
framework that uses granular computing techniques to adapt to
varying network conditions. This approach focuses on reducing
latency, improving energy efficiency, and enhancing IoT networks’
overall quality of service (QoS). In addressing these goals, the study
identifies and tackles key constraints inherent in IoT environments,
such as limited bandwidth, power, and processing capacity. These
constraints are critical for the effective implementation of resource
optimization strategies. The research is guided by optimizing
resource allocation while ensuring the system remains scalable
and robust under varying loads and network configurations.

Specific metrics, including latency reduction, energy efficiency
improvement, and error rate minimization, are established to
evaluate the effectiveness of the proposed solutions. These
metrics form the basis for comparing the performance of
granular computing techniques against traditional methods,
offering a clear perspective on the proposed approach’s benefits
and potential.

Granular computing has considerable potential to revolutionize
resource management in IoT networks, providing a viable solution
to the challenges imposed by modern applications’ increasing
complexity and demands (Webb et al., 2010; Panda and
Abraham, 2014). Additionally, areas for future research are
identified, particularly in integrating artificial intelligence and
machine learning with granular computing to foster even more
intelligent and autonomous systems (Wang et al., 2021).

Furthermore, this study explores applying granular computing
techniques to optimize resource allocation, improve energy
management, and enhance IoT networks’ QoS. The proposal
leverages granular decomposition, aggregation, and selection
algorithms to adapt to real-time network conditions and demands.

Despite reviewing works on IoT resource management,
integrating granular computing presents several innovative
aspects. This includes handling data and resource heterogeneity
more effectively and dynamically adjusting resource allocation based
on real-time network conditions. Furthermore, this approach
improves scalability and robustness, addressing the limitations of
existing methods. Predictive maintenance and health management
cannot be overlooked within the IoT paradigm—recent studies, such
as those by Zhu et al. (2023) and C.-G. Huang (Behzadidoost et al.,
2024) has demonstrated the practical importance of integrating IoT
with predictive health monitoring systems. These studies highlight
how IoT can be leveraged to predict equipment failures and optimize
maintenance programs, ultimately reducing downtime and
operational costs. Integrating granular computing with predictive
health management further enhances the ability to process large
volumes of sensor data, providing more accurate and timely
predictions.

Therefore, this work focuses on optimizing resource
management through granular computing while recognizing the
broader implications and potential integrations with healthcare
management systems in IoT. The aim is to provide a
comprehensive framework adaptable to various IoT applications,
improving operational efficiency and system reliability. The results
demonstrate that granular computing enhances energy efficiency,
reduces data transmission latency, and increases the processing
capacity of IoT systems without compromising service quality.
These findings are supported by detailed comparisons with
traditional techniques, highlighting the significant advantages of
granular computing regarding scalability and adaptability.

This research makes several significant contributions to the field
of IoT resource optimization. It introduces a novel application of
granular computing to dynamically adjust communication routes
and allocate resources based on IoT devices’ current workload and
capabilities. The study also proposes the integration of granular ball
computing (GBC) to enhance the precision and robustness of data
processing and classification, thereby improving the overall
efficiency of IoT systems. The study also develops and validates
multi-objective optimization algorithms that balance energy
efficiency and QoS, simultaneously addressing multiple goals.
Finally, the research presents a comprehensive framework for
implementing and evaluating granular computing techniques in
real-world IoT environments, demonstrating significant
improvements in operational performance and resource utilization.

2 Literature review

Numerous recent studies have addressed optimizing resource
allocation in IoT networks, especially with the emergence of
dynamic and intelligent systems that require real-time
adaptability. Although applicable in stable contexts, traditional
solutions based on heuristic models or predefined rules present
limitations in dynamic and heterogeneous environments
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(Demirpolat et al., 2021; Ansere et al., 2023). These constraints have
driven the adoption of more sophisticated approaches, including
predictive models and artificial intelligence (AI)-driven
optimization frameworks.

Recent contributions emphasize the integration of AI and
machine learning for intelligent resource allocation in IoT
systems. For example, Alghayadh et al. (2024) propose
reinforcement learning techniques to adaptively manage network
resources adaptively, offering high responsiveness under real-time
conditions. Likewise, Bolettieri et al. (2021) introduce predictive
allocation models that leverage edge computing capabilities to
reduce latency and improve scalability. Liu et al. (2024) present a
comprehensive review of AI-based dynamic resource management
techniques, reinforcing the trend toward autonomous and adaptive
IoT systems.

In manufacturing and industrial IoT, dynamic resource
allocation must consider operational constraints, energy
consumption, and service level objectives. Su et al. (2022)
demonstrate a model for dynamic allocation in production
environments, considering machine state transitions and
environmental impact. Delgado et al. (2017) extend this approach
by proposing a data-driven model that adjusts the performance of
NB-IoT networks based on the mobile context. These industrial
implementations provide a realistic framework for evaluating novel
methods such as granular computing.

Granular computing has emerged as a promising strategy for
improving adaptability and efficiency in distributed systems. Tang
et al. (2024) propose a unified framework based on implicational
logic, which enables flexible data processing at multiple levels of
abstraction. Loia et al. (2018) also explore granular methods to
discover periodicities in data, which is crucial for predicting system
demands and optimizing processing cycles. In the transportation
field, Wang and Guo (2022) show how multi-granular decision-
making improves performance under cognitive network paradigms,
reinforcing the versatility of granular computing in various domains.

Other studies support this trend by introducing collaborative
and energy-efficient mechanisms. Delgado et al. (2017) explore
energy-aware resource allocation in virtual sensor networks,
focusing on dynamic node coordination. Liu et al. (2024)
propose a cross-level optimization strategy to balance AI
processing between the edge and cloud layers, improving
performance in AIoT systems. These approaches align with our
research, which advocates granular computing to solve multi-tiered
dynamic resource optimization.

In addition to these advances, efforts have been made to design
joint optimization strategies. Lin, Cheng, and Li (Ansere et al., 2023)
present a topology and power control model that significantly
improves communication efficiency in IoT networks. Mele et al.
(2022) apply unsupervised clustering techniques (DBSCAN) in
infrastructure analysis, highlighting the relevance of adaptive
clustering techniques. These methodologies are technically related
to granular computing models’ decomposition and selection phases.

These studies validate the need for architectures capable of adaptive
resource allocation, real-time optimization, and multi-tiered data
processing, which are the main strengths of the granular computing
framework proposed in this work. Our research extends these
contributions by incorporating a layered decomposition-aggregation-
selection model experimentally validated in industrial IoT

environments, highlighting improvements in energy efficiency,
quality of service, and operational scalability.

3 Materials and methods

3.1 Data collection

The proposal for resource optimization in IoT networks is framed
in the industrial environment, where the interconnection of smart
devices and data collection in real-time is essential to improving
efficiency and productivity. IoT devices are strategically distributed
across various industrial facilities, including manufacturing plants,
warehouses, and production lines in this environment. The
distribution of these devices is designed to cover critical operational
areas, ensuring comprehensive data collection across different stages of
the industrial process (Acampora and Vitiello, 2023).

Data was sourced from multiple avenues to ensure the study’s
representativeness and relevance. Public datasets were retrieved
from academic repositories, and literature on IoT applications in
industrial contexts (Wang et al., 2023). Additionally, proprietary
data were collected directly from industrial environments,
employing advanced monitoring and control systems specifically
implemented to capture real-time operational metrics.

In manufacturing plants, IoT devices such as temperature
sensors, vibration sensors, and energy meters were deployed to
monitor equipment performance and energy consumption. These
sensors were placed at critical points like motor housing, electrical
panels, and conveyor belts to capture high-frequency data on
equipment health and operational efficiency (Hussein and
Mousa, 2020). In warehouses, RFID tags and environmental
sensors were used to monitor inventory levels, material flow, and
environmental conditions (temperature, humidity). The strategic
placement of these sensors ensures real-time tracking of inventory
movement and environmental control within the storage facilities.
High-resolution cameras and machine-learning algorithms were
installed along production lines to monitor product quality in
real-time. Additionally, actuators were used to control and adjust
machinery settings based on the data received from the sensors.

The data collected includes diverse variables essential for
optimizing resource management in industrial environments.
This encompasses machinery performance, including parameters
such as vibration amplitude, rotational speed, and load torque;
energy utilization data on power consumption, voltage, and
current from machinery and lighting systems; product quality
captured from the production line through high-resolution
images and defect detection metrics; logistics and material flow
data on the movement of goods within warehouses, including
timestamps, locations, and handling conditions; and
environmental monitoring data such as temperature, humidity,
and air quality from sensors distributed across the facilities to
ensure compliance with safety and operational standards.

The volume of data collected is substantial, totaling approximately
20 terabytes. The datasets range from 5 to 15 gigabytes on average, with
some datasets reaching several terabytes due to extended monitoring
periods and high sampling rates. The data were stored in formats
conducive to efficient analysis and processing, including comma-
separated values (CSV) for structured data from sensors and
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actuators, JavaScript Object Notation (JSON) for hierarchical and
complex data, particularly from monitoring systems, and relational
databases formanaging large-scale data frommultiple sources, enabling
efficient querying and analysis.

The careful design of the data collection process and the strategic
distribution of IoT devices ensures that the data gathered is
comprehensive, high-quality, and directly relevant to optimizing
resources in industrial settings. This data provides a robust
foundation for the subsequent analysis and application of
granular computing techniques to enhance operational efficiency
and productivity in IoT networks.

3.2 Data preprocessing

Preprocessing includes a series of steps to clean and prepare the
data before analysis to ensure its quality and integrity. The data-
cleaning process was methodically divided into multiple stages,
beginning with identifying and eliminating outliers that could
distort the analysis results. Outliers were detected using statistical
techniques, explicitly calculating the data’s standard deviation (σ)
and interquartile range (IQR). Observations falling beyond 3σ from
the mean or outside 1.5 times the IQR were classified as outliers and
subsequently removed (Rani et al., 2024), as presented in Equation 1

Outliers � x|x <Q1 − 1.5 × IQRorx>Q3 + 1.5 × IQR{ } (1)

Once the outliers were handled, missing values in the datasets
were identified and input using appropriate techniques tailored to
the nature of the data. Mean, median, or mode imputation was
applied for numerical variables depending on the data distribution.
For categorical variables, imputation was performed using rule-
based approaches or predictive modeling, such as k-nearest
neighbors (KNN) imputation, to preserve the distribution
characteristics and relationships within the data The imputation
process was formalized as presented in Equation 2:

x̂i � 1
k

∑
i∈KNN i( )

xj forKNN imputation (2)

Normalization techniques ensured comparability between
variables originally on different scales and ranges (LFAO et al.,
2023). Depending on the distribution of the variables, either min-
max scaling or z-score standardization was applied. Min-max
scaling transformed each variable x into a normalized variable x’
within the range [0,1], following the Equation 3:

�x � x − xmin

xmax − xmin
(3)

Alternatively, for normally distributed data, z-score
standardization was used to center the data around the mean
and scale it according to the standard deviation, as presented in
Equation 4

z � x − μ

σ
(4)

These transformations ensured that variables were uniform,
facilitating further analysis and improving the performance of
algorithms sensitive to variable magnitudes.

Additional data preprocessing techniques included eliminating
duplicate records to avoid introducing bias into the analysis.
Duplicates were detected using key identifier fields and were
removed systematically. Variables were also transformed using
logarithmic functions or similar methods to improve their
distribution, mainly when dealing with skewed data. The
logarithmic transformation as presented in Equation 5:

�x � log x + 1( ) (5)
This transformation reduced the data’s skewness, bringing it

closer to a normal distribution, which benefits many statistical
analyses and machine learning algorithms.

Categorical variables were encoded using one-hot or ordinal
encoding, depending on the nature of the categorical data. One-hot
encoding was applied to nominal variables, creating binary columns
for each category, while ordinal encoding was used for ordinal
variables, preserving the intrinsic order of the categories. For
instance, one-hot encoding transformed a categorical variable C
with three categories into three binary variables, following the
Equation 6:

C1, C2, C3 whereCi � 1 if C � i
0 otherwise

{ (6)

The choice of data preprocessing techniques was meticulously
aligned with the data’s nature and the subsequent analysis’s specific
requirements. The overarching goal was to preserve data integrity
while minimizing the introduction of bias during the cleaning and
preparation stages. Each preprocessing step was carefully validated
to ensure that it improved the overall data quality, thus enhancing
the reliability and validity of the results obtained in the study.

3.3 Clustering-based preprocessing for
granular computing

A clustering-based preprocessing phase was introduced as a
preparatory step before the core decomposition to reduce the
computational burden of granular computing in large-scale IoT
networks and improve its operational effectiveness. This stage is
critical in organizing the input data into homogeneous groups,
enhancing resource allocation and parallel processing efficiency
during granular decomposition.

The preprocessing began with aggregating real-time data
collected from distributed IoT nodes. This included metrics such
as device activity level, energy consumption rate, CPU usage,
memory occupancy, and frequency of network interactions. All
collected data underwent normalization using Z-score
transformation to ensure comparability across features and
devices and mitigate scale heterogeneity’s effect in subsequent
clustering.

Two unsupervised clustering algorithms, k-means and
DBSCAN, were evaluated. For k-means, the optimal number of
clusters (k) was determined using the elbow method, which analyses
the inflection point in the curve of the within-cluster sum of squares
(WCSS). The silhouette coefficient was employed to validate
clustering quality further, measuring clusters’ compactness and
separation.
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In parallel, DBSCAN was evaluated to determine whether a
density-based approach would provide better adaptability to
irregular device behavior and outlier identification. The
parameters ε (epsilon) and minPts were determined using
k-distance plots and density histograms, ensuring the chosen
values reflected natural density gaps and minimized
noise inclusion.

A grid search strategy was employed to tune the
hyperparameters of both algorithms. The performance of each
configuration was assessed according to three core criteria.

• Inter-cluster variance minimization is a proxy for intra-
cluster cohesion.

• Computational time reduction as a direct indicator
of efficiency.

• Decomposition efficiency improvement is based on how well
the clustering enhanced the subsequent granular resource
allocation process.

The final model configuration selected was k-means with k = 6,
which provided the best trade-off between performance,
computational cost, and segmentation quality. DBSCAN, while
effective in specific high-noise scenarios, exhibited higher
variability in cluster sizes and was less stable across IoT
environments with fluctuating data patterns.

Once optimized, this clustering stage was embedded as a
preprocessing module within the overall architecture. It enabled
grouping IoT devices with similar behavior profiles, which were
then subjected to granular computing processes in parallel,
significantly enhancing scalability. Furthermore, grouping
devices with similar load patterns allowed more targeted and
balanced resource optimization strategies to be deployed,
reducing redundancy and improving processing throughput in
distributed edge and fog layers. This stage’s technical
contribution lies in computational overhead reduction and
the alignment of data semantics, enabling more meaningful
and context-aware granular decompositions.

3.4 System architecture and functional
components

The proposed granular computing system for IoT networks’
architecture is structured to ensure efficiency, scalability, and
modularity. Figure 1 illustrates the complete system design,
encompassing edge and centralized processing, granular
operation monitoring, and external interfaces. The architecture
follows a layered and distributed paradigm that facilitates
localized decision-making and global optimization.

At the foundation are the IoTDevices, which include environmental
sensors, actuators, and embedded devices deployed across the network.
These devices serve as the primary data sources, continuously generating
readings such as temperature, humidity, motion, and system status
metrics. Each device can communicate essentially and is configured to
transmit data to edge nodes based on predefined protocols.

The Edge Nodes perform critical local preprocessing tasks,
including noise reduction, missing value imputation, normalization,
and clustering. These nodes execute lightweight versions of the granular
computing modules, offloading the central system and enabling real-
time responsiveness. ClusterEdge Nodes perform critical DBSCAN and
are applied to GRP-similar device profiles, enabling efficient data
handling and reduced redundancy.

Preprocessed and clustered data is forwarded to the Granular
Computing Engine, which encapsulates the core mechanisms of
Granular Decomposition, Aggregation, and Selection. This engine
operates on the edge and centralized levels depending on the
granularity required and the system load. It segments resources and
tasks into grains, fuses relevant data streams, and dynamically adjusts
the processing granularity using optimization techniques and Markov
Decision Processes (MDPs). It is the analytical core, adapting in real-
time to environmental conditions and network demands.

The Central Control System is responsible for task
orchestration, global resource management, and cross-grain
coordination. It integrates results from the granular engine and
orchestrates task allocation strategies across the system. It uses
scheduling algorithms such as Earliest Deadline First (EDF) and

FIGURE 1
Functional architecture of the system for resource optimization in IoT networks through granular computing.
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load balancing schemes like Weighted Round Robin (WRR) to
prevent bottlenecks and optimize energy consumption. This layer
also controls the execution of adaptation policies triggered by system
state changes.

Supporting the control system, the Data Storage and Analytics
module serves as a persistent layer for historical data, training sets,
and model checkpoints. It facilitates long-term analysis, pattern
detection, and training of predictive models using supervised and
unsupervised learning techniques. This module enables using
passata for simulations, forecasting, and continuous system
refinement. Historical data, training sets, model checkpoints, and
MoniMonitoringayer. This component enforces data
encryppredictive model training integrity validation throughout
the lifecycle of data and computations. It applies anomaly
detection to identify unusual patterns in data streams. It
implements redundancy mechanisms to maintain system
resilience and monitoring interfaces with external actor data
encryption, access control, integrity validation monitoring
dashboards, and notification services that expose system status,
performance metrics, and alerts to administrators, engineers, and
other integrated applications. These interfaces support RESTful
communication and are integrated with visualization tools for
real-time feedback and control.

This architectural model enables distributed intelligence,
ensures low-latency responses at the edge, and facilitates holistic
coordination at the central level. The modular separation of roles
across components supports scalability, fault tolerance, and
maintainability, making the system suitable for deployment in
large-scale, heterogeneous IoT environments.

3.5 Granular computing algorithms for
resource optimization in IoT networks

Granular computing is a methodology that allows the processing
of information at different levels of granularity, which is particularly

useful for handling complex and dynamic problems present in IoT
networks. This concept uses granular computing to optimize
resource management, offering flexible and adaptable solutions.
Figure 2 illustrates the overall structure of the granular
computing algorithm and outlines the sequential phases applied
to optimize resource usage in IoT environments. This representation
provides a clear overview of the interactions between preprocessing,
decomposition, aggregation, selection, and vulnerability
management, which are further developed in the following
subsections.

3.5.1 Granular decomposition
Granular decomposition is a process by which resources and

tasks are divided into smaller units, called “grains,” that can be
managed independently. This process is carried out using an
algorithm that identifies the characteristics and requirements of
each task and resource and then groups them into
homogeneous subsets.

The available devices and resources, including sensors,
actuators, processing and storage devices, and the data they
generate, must first be identified to implement granular
decomposition in an IoT network. These devices and resources
are then characterized based on their capabilities, geographic
locations, and energy and processing requirements.

The next step involves creating a granularity model, which
defines the levels of granularity necessary for decomposition. For
example, in an environmental monitoring system, temperature
sensors can be grouped based on their geographic proximity and
the temperature range they cover. Clustering algorithms such as
k-means or DBSCAN are commonly used to group sensors into
clusters based on the similarity of their data and locations. The
similarity computation used for clustering is detailed in Section 3.7,
where a Euclidean distance-based approach is applied to the
multidimensional attribute space of the devices.

K-means is particularly effective in scenarios where the number
of clusters is predefined and where clusters exhibit spherical

FIGURE 2
Functional architecture of the granular computing process for resource optimization in IoT networks.
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symmetry, which is common when sensors have similar roles in
spatially bounded regions. Additionally, its computational efficiency
O (n·k·t), where n is the number of points, k clusters, and t iterations,
makes it well-suited for scalable implementations. On the other
hand, DBSCAN is selected for its robustness to noise and its ability
to detect clusters of arbitrary shapes without requiring a pre-
specified number of clusters. This is especially relevant in
dynamic IoT deployments with uneven device density and
connectivity.

Although hierarchical clustering methods (e.g., agglomerative
clustering) provide detailed tree-based relationships among devices,
their computational complexity (O (n3)) makes them less suitable for
real-time, large-scale IoT scenarios. Moreover, their sensitivity to
noise and the lack of reusability in incremental scenarios limit their
practicality in the context of granular decomposition for
adaptive systems.

Once the granularity groups are established, specific tasks are
assigned to each grain. Task allocation is dynamically managed
based on resource availability and current demand, ensuring optimal
resource usage. For instance, when a group of sensors in a specific
area detects temperature variation, a detailed analysis task can be
assigned to identify the cause and adjust environmental control
systems accordingly. This dynamic allocation ensures that resources
are optimally used, and tasks are performed efficiently, reducing the
risk of resource underutilization.

3.5.2 Granular aggregation
Granular aggregation is the process of combining individual

grains into larger sets to perform joint processing. This process
reduces computational complexity, improves system efficiency, and
ensures consistent data synchronization in parallel computing
environments. Granular aggregation employs algorithms that
identify grains that can be processed together based on their
characteristics and the nature of the tasks while ensuring that
resources are utilized efficiently and consistently across the system.

The first step in granular aggregation is collecting data from
individual grains. In an IoT network, this involves gathering data
from sensors, actuators, and other connected devices. This data is
stored in a centralized or distributed database depending on the
system architecture. Synchronization mechanisms such as
distributed locks or consensus algorithms (e.g., Paxos, Raft) are
applied to maintain data coherence across multiple nodes. These
mechanisms ensure all nodes can access consistent and up-to-date
information, preventing issues such as stale data or race conditions
during aggregation.

Once the data is collected, data fusion algorithms, such as
Kalman filters or particle filters, combine the information from
individual grains. These algorithms include statistical and machine
learning techniques to identify patterns and correlations between
data, ensuring that the aggregation process is efficient and preserves
the integrity and relevance of the data. For example, in an energy
management system, energy consumption data from different
devices can be merged using a Kalman filter to provide an
accurate and synchronized estimate of total energy usage,
reflecting the system’s most accurate and current state.

After data fusion, joint processing of the aggregated data is
performed. This step may include trend analysis, predicting future
demands, and optimizing resource allocation. The synchronization

of parallel tasks is managed using barrier synchronization or task
scheduling algorithms such as the Earliest Deadline First (EDF)
algorithm. These methods minimize idle time for computational
resources, ensuring CPU and memory are utilized optimally during
the aggregation and processing stages. For instance, in an HVAC
system, temperature and humidity data from multiple sensors are
aggregated and analyzed simultaneously, with parallel tasks being
synchronized to adjust heating and cooling systems more efficiently
and without resource underutilization.

The results of joint processing are used to make informed
decisions about resource management, such as reassigning tasks,
adjusting operating parameters, and implementing energy-saving
strategies. Granular aggregation allows for maximizing available
data and improving operational efficiency while ensuring the
system’s parallel computing components remain synchronized
and coherent, preventing resource wastage and maintaining high
system performance.

3.5.3 Granular selection
Granular selection is a process that determines the most

appropriate level of granularity for processing based on current
needs, system constraints, and the requirements for maintaining
data synchronization and coherence in a parallel computing
environment. This process is essential for the system’s dynamic
adaptation to changing environmental conditions and for
optimizing the use of available resources without causing
resource bottlenecks or idle states.

The granular selection process begins with continuously
monitoring system health and environmental conditions. This
includes collecting data on workload, resource availability, power
consumption, and quality of service. The collected data is analyzed
in real-time using algorithms such as Markov Decision Processes
(MDP) that determine the optimal granularity level and manage the
synchronization of tasks across different processing nodes. Load
balancing and dynamic task allocation algorithms, such as the
Weighted Round Robin (WRR) algorithm, ensure that resources
such as CPU and memory are evenly distributed and fully utilized,
reducing the likelihood of resource contention or idle times.

Based on this analysis, granular selection algorithms determine
the optimal granularity level for processing. These algorithms
incorporate mathematical optimization techniques and heuristics,
considering multiple factors such as task priority, data criticality,
resource constraints, and maintaining synchronization across the
system. For example, in a high-workload IoT network, the algorithm
may select a coarser granularity level to reduce the amount of data
processed and improve response speed while ensuring that all
processing tasks remain synchronized and coherent. Conversely,
during periods of low activity, the algorithmmay opt for a finer level
of granularity to perform more detailed analysis and optimize
system performance, ensuring that resources are not underutilized.

Once the optimal level of granularity is determined, the system’s
operating parameters are adjusted to reflect this selection. This may
include reconfiguring communication paths, redistributing tasks,
allocating additional resources, or scaling down resource usage to
match the selected granularity level. Throughout this process,
synchronization mechanisms are maintained to ensure that all
system components operate coherently, with tasks executed in
parallel without causing inconsistencies or resource
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underutilization. Granular selection ensures the system can
dynamically adapt to changing conditions, maintaining an
optimal balance between efficiency, service quality, and resource
utilization, even in complex parallel computing environments.

The Pseudocode below illustrates the algorithm implemented
for dynamic granular selection. This approach leverages real-time
system monitoring and combines Markov Decision Processes
(MDP) with heuristic rules to determine the optimal level of
granularity. The objective is to balance computational efficiency,
service quality, and system responsiveness.

Pseudocode: Granular Selection Algorithm Based on MDP and
Heuristics

Algorithm GranularitySelection
Inputs:
- SystemState ← {CPU_Load, Memory_Usage, QoS_Level,
Resource_Availability}

- CurrentGranularityLevel.
- HeuristicRules ← {HighLoadThreshold, LowQoSThreshold,
MemoryThreshold}

- MDPModels ← possible system state transitions.
Outputs:
- OptimalGranularityLevel

Begin:
1. Monitor current SystemState in real-time
2. Evaluate MDP_Reward ← function (Efficiency,

QoS, Latency)
3. For each possible GranularityLevel do:

a. Simulate state transitions using MDP
b. Compute ExpectedReward for that level.

4. Select GranularityLevel with highest ExpectedReward
5. Apply HeuristicRules:

a. If CPU_Load > HighLoadThreshold → select coarse
granularity

b. If QoS_Level < LowQoSThreshold → select fine
granularity

c. If Memory_Usage > MemoryThreshold → decrease
granularity

6. Adjust OptimalGranularityLevel based on MDP_Reward
and heuristics

7. Reconfigure the system with OptimalGranularityLevel
8. Return OptimalGranularityLevel

End

3.5.4 Managing complexity and
development efforts

Implementing granular computing algorithms in IoT networks
introduces increased task and resource management complexity,
requiring a structured approach to their development and
maintenance. Modular decomposition techniques were employed
to manage this complexity, dividing the system into smaller, more
manageable components, each focused on a specific granular
computing task.

During development, continuous testing was implemented
through an automated testing framework that allowed validation
at each level of granularity. This ensures that errors are detected
early in the development process, minimizing the risk of these errors

impacting system performance in production. In addition, periodic
reviews of system components were performed, allowing any
changes to the architecture or algorithms to be assessed
regarding their impact on system complexity and efficiency.

Quality control models are implemented, focusing on test
automation and peer review of critical modules. These reviews
included verifying the consistency of granular operations and
validating the results obtained at each processing stage.

The system incorporates edge computing strategies to address
the computational overhead inherent in granular computing
processes, particularly in large-scale and dynamic IoT networks.
Specific tasks—such as local clustering, anomaly detection, and
early-stage decision-making—are offloaded to edge nodes and
gateway devices. This distributed processing architecture
alleviates the load on central systems and enables faster, localized
responses. Additionally, lightweight versions of the granular
computing modules are deployed at the edge, allowing
preliminary analysis and data reduction before forwarding to
centralized systems. The system employs adaptive buffering
mechanisms, load-aware scheduling, and task prioritization
strategies to manage sudden spikes in device connectivity or data
volume. These mechanisms ensure service continuity and prevent
bottlenecks, even under volatile network conditions.

3.5.5 Mitigation of vulnerabilities
The increase in complexity in systems that employ granular

computing also increases the possibility of vulnerabilities. To mitigate
these risks, several measures were adopted to ensure the integrity and
security of the system. One of the main strategies was data integrity
validation, which was performed after each granular processing stage.
This validation ensured the data was not incorrectly compromised or
altered during decomposition, aggregation, or selection.

Additionally, redundancy was implemented in the system’s
critical modules to ensure its failure resilience. This redundancy
allows that, if one component fails, another can take over its
functions without interrupting the system’s overall processing. In
addition, a thorough peer review of the most vulnerable parts of the
code was performed, which helped to identify potential errors or
security flaws before implementation in real environments.

Finally, data encryption techniques were applied in transit and at
rest to protect the confidentiality and integrity of the information
managed by the system. These techniques were complemented by
strict access controls, ensuring that only authorized users and
processes could interact with critical system components.

3.6 Experimental design

The experimental design was developed to investigate how the
application of granular computing techniques can improve the
efficiency and performance of IoT devices in industrial
environments (Pop et al., 2021). This process was carried out by
conducting a series of carefully designed and controlled
experiments, which allowed the collection of relevant data to
evaluate the proposal. Figure 3 details the experimental design
through the general process followed in the experiments.

The figure describes the process followed in the experimental
design to evaluate the proposal for using granular computing in
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resource optimization in IoT networks. It starts with the initial
configuration of IoT devices, followed by the implementation of
experiments, where relevant data is monitored and recorded.
Subsequently, performance evaluation is carried out, followed by
results analysis to interpret the findings. Finally, the results are
validated using verification and cross-validation techniques to
guarantee the robustness and reliability of the results obtained.

The experiments evaluate how the application of granular
computing techniques impacts the efficiency and performance of
IoT devices in industrial environments. It specifically sought to
improve resource allocation, energy management, and quality of
service in IoT networks. Various IoT devices representative of
industrial environments was used, including 50 temperature
sensors, 20 control actuators, 10 process monitoring devices, and
five communication equipment. These devices were selected to
represent different aspects of the IoT infrastructure and allow a
comprehensive evaluation of the granular computing proposal.

The experiments considered multiple variables, including the
workload of IoT devices, network resource availability, energy
efficiency, and quality of service. These variables were monitored
and recorded during the experiments to evaluate their impact on
system performance. The experimental design was divided into
several stages, including the initial configuration of the devices,
the execution of the experiments under different conditions, and the
collection of data for subsequent analysis (Pop et al., 2021).
Communication protocols and data collection methods were
established to ensure consistency and reproducibility of results.
Experiments were designed to run 24-hour cycles over 6 weeks
to accumulate sufficient data to evaluate long-term
patterns robustly.

To further detail the experimental configuration, the following
specific steps and techniques were implemented.

• The initial configuration involved setting up the IoT devices and
ensuring their connectivity using standardized communication
protocols such as MQTT and CoAP. These protocols facilitated

reliable data transmission between the devices and the central
processing unit. The granular computing techniques applied
included granular decomposition, where IoT devices were
clustered based on attributes like processing capacity, energy
consumption, and location. The k-means clustering algorithm
was used to create these clusters.

• During the data collection phase, granular aggregation
techniques combined data from multiple devices, reducing
computational load and improving data coherence. The
collected data was stored in a time-series database to
facilitate efficient querying and analysis. Granular selection
algorithms dynamically adjust the level of granularity in real-
time based on system demands and resource availability. This
involved multi-objective optimization to balance energy
efficiency and quality of service, using algorithms that
considered multiple performance metrics simultaneously.

• The performance evaluation phase involved analyzing key
metrics such as energy consumption, processing latency,
classification accuracy, and resource utilization. Energy
consumption was calculated using the formula mentioned
previously in the “Implementation of Granular Computing”
section. Processing latency was measured as the time
difference between data receipt and response generation,
detailed in the previous section. Classification accuracy was
assessed using the precision metric with the earlier formula.
Resource utilization was determined by the proportion of
resources used relative to the total available resources.

The results were validated through testing, including
performance testing under various conditions, scalability testing
to ensure the system could handle increasing numbers of devices,
and interoperability testing to confirm seamless integration with
existing platforms and protocols. This thorough evaluation ensured
that the proposed granular computing techniques effectively
enhanced the efficiency and performance of IoT devices in
industrial environments.

FIGURE 3
Experimental process flow for resource optimization in IoT networks.
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3.7 Implementation of granular computing

The implementation of granular computing was carried out in
several stages, where the initial configuration of the IoT network was
carried out, which included identifying and registering devices and
configuring network parameters. Resource allocation policies were
defined to specify how the available resources in the IoT network
should be allocated based on the needs and priorities of the system.
Resource management algorithms were integrated into the existing
system using specific software modules developed to execute these
algorithms. These steps ensured a robust framework for the dynamic
allocation and management of resources within the IoT network. A
granular approach was adopted for resource management, where
IoT devices were grouped into homogeneous sets, and tasks were
assigned according to their capabilities and characteristics (Lee and
Lee, 2022).

For this, various algorithms and techniques were used tomanage
resources in IoT networks efficiently. Among them, algorithms were
implemented that dynamically adjust communication routes
depending on the workload of IoT devices. These algorithms
allow you to optimize the use of network resources and minimize
congestion. Heuristic techniques were developed to allocate
resources, considering processing capacity, energy consumption,
and network resource availability (Alshawi et al., 2024).
Optimally, these techniques allow you to maximize network
efficiency and improve the performance of IoT devices. Multi-
objective optimization algorithms were implemented to optimize
energy efficiency and quality of service in IoT networks. These
algorithms allow finding solutions that balance multiple objectives,
such as minimizing energy consumption and maximizing network
performance.

Two baseline models were implemented for comparative
purposes to validate the effectiveness of the granular computing
proposal. Model 1 is a heuristic-based approach using static
allocation policies adapted from commonly deployed energy-
aware protocols in IoT networks. Model 2 integrates a
lightweight reinforcement learning agent (Q-learning) for
dynamic resource assignment, simulating an AI-driven adaptive
strategy. These models were selected due to their representativeness
in literature and complementary characteristics. While the heuristic
model emphasizes deterministic behavior with minimal overhead,
the AI-based model introduces adaptive learning at the cost of
increased computational demand. All models, including our
granular computing framework, were deployed under identical
experimental conditions and evaluated using the same
performance metrics to ensure a fair comparison.

A preprocessing step involving clustering techniques was
introduced to enhance the efficiency of the granular computing
process and mitigate computational overload. This preprocessing
stage aims to organize the IoT data into manageable clusters,
facilitating more effective resource allocation and management.
The clustering process begins by collecting data from various IoT
devices, which typically includes metrics such as device activity,
resource consumption, and network interactions. This data is then
standardized and normalized to ensure consistency across
different sources.

We employ the k-means clustering algorithm, a widely used
method due to its simplicity and efficiency, to partition the IoT

devices into k clusters. The k-means algorithm works by
initializing k centroids randomly and iteratively refining them
by assigning each data point to the nearest centroid and then
recalculating the centroids based on the designated points. The
objective is to minimize the within-cluster variance achieved
when the centroids stabilize. This clustering process results in
clusters, each grouping IoT devices with similar resource usage
patterns and network behaviors. This organization allows for
more efficient granular decomposition, as similar devices are
processed together, reducing the computational complexity of
subsequent steps.

A clustering-based preprocessing stage was introduced to
improve the efficiency of granular computing and mitigate
computational overhead. This stage organizes raw IoT data into
homogeneous groups based on resource usage patterns and device
interactions. By structuring the input space, this step enhances the
decomposition process and facilitates task allocation.

The implementation of granular computing was carried out in
several stages, where the initial configuration of the IoT network was
carried out, which included identifying and registering devices and
configuring network parameters. Resource allocation policies were
defined to specify how the available resources in the IoT network
should be allocated based on the needs and priorities of the system
(Rani and Chauhdary, 2018). Resource management algorithms
were integrated into the existing system using specific software
modules developed to execute these algorithms. Tests were
carried out to validate the performance of the granular
computing algorithms in real environments. This included
performance testing, scalability testing, and interoperability
testing with existing devices and platforms.

Various considerations were considered during the
implementation process, such as system scalability,
interoperability with existing devices and platforms, and data
security. Significant challenges were faced, such as managing IoT
device heterogeneity, minimizing computational overhead, and
optimizing processing latency.

The granular decomposition begins with identifying and
registering IoT devices in the network, considering a set of
devices D = {d1, d2,. . .., dn}. In this formulation, each attribute
aik represents a specific characteristic of the device di. These
attributes include processing capacity (MHz), memory availability
(MB), energy consumption (W), communication range (m), latency
tolerance (ms), and data generation rate (bytes/s), which are critical
for granular classification. The input to this process is the set of
devices and their attributes. The objective is to group these devices
into homogeneous subsets G = {g1, g2, . . . , gk}, where each group
maximizes internal similarity and minimizes similarity with other
groups. The steps include characterizing the devices based on their
capabilities and requirements, creating a granularity model, and
assigning specific tasks to each grain based on resource availability
and demand.

This implementation includes heuristic resource allocation
models and multi-objective optimization strategies, which are
compared in the evaluation phase against alternative AI-based
methods to assess the effectiveness and adaptability of the
granular computing framework. This can be mathematically
formulated as a clustering problem using similar metrics such as
Euclidean distance, as presented in Equation 7
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Sim di, dj( ) � ������������∑m
k�1

aik − ajk( )2√√
(7)

The objective is to minimize the total cost function J, which
quantifies the internal dissimilarity within each cluster, where gj
denotes a cluster, and di and dl are devices within that cluster. Sim
(di,dl) is computed as previously defined in Equation 7, using the
Euclidean distance between the device attribute vectors. The
clustering algorithm aims to group devices to maximize each
group’s overall similarity (or inverse dissimilarity), effectively
reducing the total cost J, as presented in Equation 8.

J � ∑k
j�1

∑
di∈gj

∑
dl∈gj

Sim di, dl( ) (8)

Granular aggregation involves combining data from multiple
devices to perform joint processing. The input includes data from
devices X = {x1, x2,. . ., xp} be the set of data collected from the devices,
where each xi represents a sensor reading or an actuator measurement,
and the output is an aggregate value A represents a coherent
combination of the data. The steps involve collecting data from
devices, applying data fusion algorithms, and joint processing for
analysis and optimization. Aggregation is performed by calculating
an aggregate value A for a data set X, as presented in Equation 9.

A � 1
p
∑p
i�1
xi (9)

This allows a more manageable and coherent representation of
large volumes of data. For example, temperature data from multiple
sensors can be aggregated to obtain an average temperature for a
specific region.

Based on system needs and constraints, granular selection
determines the optimal granularity level for processing. The input
includes the set of formed groups G = {g1, g2,. . ., gk} be the set of
groups formed by decomposition granular and data on the conditions
of the system. The output is the optimal granularity level g. The steps
include continuous system status monitoring, analyzing data to identify
changes and trends, and applying selection algorithms to determine the
optimal level of processing, followed by adjusting system operating
parameters. These steps ensure that the implementation of granular
computing in IoT networks is efficient and dynamic, adapting to
changing environmental conditions and optimizing available
resources, following the Equation 10.

g* � arg max
g1∈G

ResourceUtilization gj( )
EnergyConsumption gj( )⎛⎝ ⎞⎠ (10)

To further enhance the performance in resource optimization, it
is proposed that the granular computing model based on granular
balls be explored. GBC represents an innovative approach to data
processing and knowledge representation, replacing traditional
information granule inputs with granular balls. These granular
balls are spherical structures that encapsulate data, allowing for a
more flexible and accurate representation of knowledge. This
approach has developed several fundamental theories and
methods, such as granular ball clustering, granular ball classifier,
and granular ball neural network. Implementing GBC in IoT

networks begins with defining and creating granular balls, where
relevant data is identified and encapsulated in these spherical
structures using clustering techniques. Data from sensors,
actuators, and other IoT devices is collected and organized into
granular balls, facilitating more coherent and manageable
management of large volumes of data.

Mathematically, a granular ball B is defined as a pair (c, r), where
c is the center of the ball and r is its radius, covering a set of data X, as
presented in Equation 11.

B � x ∈ X: x − c‖ ‖≤ r{ } (11)
Subsequently, granular ball classifiers are developed that use

these structures to improve the accuracy and robustness of data
classification. This is essential to improve the efficiency of control
and monitoring systems in IoT. Granular ball neural networks
combine the advantages of traditional neural networks with the
flexibility of granular balls, enabling more efficient and scalable
learning and improving the ability of IoT systems to adapt to
dynamic changes in the environment. An example of this
implementation can be seen in energy management systems in
factories using IoT sensor networks, where energy consumption
data is encapsulated in granular balls and processed to identify usage
patterns and areas of high demand. Processing results are used to
adjust operating parameters and optimize resource usage,
demonstrating GBC’s ability to improve operational efficiency
significantly. Related works, such as graph-based representation
for granular ball-based images (Shuyin et al., 2023), three-way
classifier with approximate sets of uncertainty-based granular ball
neighborhoods (Yang et al., 2024), and granular computing
classifiers with balls for efficient, scalable, and robust learning
(Zhang et al., 2021), illustrate how GBC can improve accuracy
and robustness in various applications.

3.8 Evaluation metrics

Several key metrics are used to evaluate operational efficiency in
IoT networks using granular computing. Three core metrics were
selected to support the experimental evaluation in industrial
environments: operational performance (ops/s), power efficiency
(W), and quality of service (%). These metrics reflect system
behavior under variable loads and are commonly used in real-
world IoT deployments to assess throughput, energy
management, and user satisfaction.

Operational performance is measured in ops/s and represents
the system’s throughput when handling tasks under different load
conditions. It is derived from computing the number of successful
operations executed in a fixed time window. This metric is essential
for quantifying the IoT system’s processing capacity. Power
efficiency is evaluated by measuring the total power consumed by
all IoT devices in a specific period. The equation for energy
consumption (E) is Equation 12.

E � ∑n
i�1
Pi · ti (12)

Where Pi is the power consumed by device i and ti is the
operation time of device i. Power efficiency is inversely related to
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the total energy consumed per operation, indicating system
sustainability and optimization under granular computing.

QoS is a percentage (%) and measures the proportion of
completed operations meeting predefined latency and correctness
thresholds. It reflects the system’s ability to deliver services reliably
and efficiently. QoS is computed as presented in Equation 13.

QoS � Number of Successful OperationsMeetingCriteria( )
Total Operations

× 100%

(13)
Additional evaluation metrics were considered to support

specific components, such as:
Processing latency (L) is measured as the time elapsed from

receiving a request until the request is processed. The equation for
processing latency is Equation 14:

L � tend − tstart (14)

Where tstart is the time, the request is received and tend is the time
processing is completed. Processing latency is essential for
evaluating how quickly the system responds to requests,
especially in real-time applications.

Classification accuracy (A) is evaluated using the precision
metric, which measures the proportion of correct classifications
made by the system. The equation for precision is Equation 15

A � TP + TN

TP + TN + FP + FN
(15)

TP is the number of true positives, TN is the number of true
negatives, FP is the number of false positives, and FN is the number
of false negatives. This metric is crucial to evaluate the accuracy of
granular ball-based classifiers in pattern identification and
decision-making.

Resource utilization (U) is measured as the proportion of
resources used compared to resources available. The equation for
resource utilization is Equation 16

U � ∑n
i�1Ri

Rtotal
(16)

Where Ri is the resource used by device i and Rtotal is the total
resources available in the IoT network. This metric is essential to
evaluating the efficiency of allocating and utilizing resources within
the network.

The process of using these metrics involves several steps. First,
the necessary data is collected during the operation of the IoT
network. This includes power consumption measurements,
processing times, classification results, and resource usage. The
equations above are then applied to calculate each specific metric.
The results obtained allow a quantitative analysis of the system
performance to be carried out.

For example, data is collected on each IoT device’s power and
operating time when evaluating energy consumption. This data is
used in the energy consumption equation to calculate the total
consumption. Similarly, the start and end times of request
processing are recorded for processing latency, and the latency is
computed using the corresponding equation. The classification
accuracy is evaluated by comparing the results with the actual
labels and applying the accuracy equation. Resource utilization is

measured by recording resource usage by each device and
calculating the proportion of resources used.

Analyzing these metrics allows us to identify areas for
improvement and optimize the performance of the IoT network.
For example, if high power consumption is observed, power
management policies can be adjusted, or additional optimization
techniques can be implemented (Hussein and Mousa, 2020). If
processing latency is high, methods can be explored to improve
processing speed and system efficiency. Continuous evaluation of
these metrics ensures that implementing granular computing in IoT
networks is efficient and effective, providing a solid framework for
constant system improvement.

4 Results

4.1 Results of recommendation models

The results obtained are presented in Table 1. These results
reflect the conditions of a typical industrial environment, where an
IoT network is deployed to monitor and control various aspects of
the environment. In this case, the environment could represent a
warehouse, production facility, or smart building, where collecting
accurate and timely data is crucial to ensure operations’ efficient and
safe running.

The variation in sampling frequency between different data
types reflects the specific monitoring needs in that environment.
For example, temperature and humidity may require a higher
sampling rate to detect rapid environmental changes. At the
same time, luminosity and motion may be monitored less
frequently due to their less variable nature.

While significant, the volume of data collected is manageable
and represents a typical data load for an IoT network in an industrial
environment. These simulated data sets provide a solid foundation
for evaluating the granular computing proposal in resource
optimization in IoT networks in a realistic industrial context.

The results in the table show a systematic collection with specific
sampling frequencies and data volumes for each type of
measurement. For example, a sampling rate of 5 times per
minute is recorded for temperature readings, suggesting regular
data capture to monitor changes in environment temperature with
high precision. This sampling frequency can be crucial to detecting
rapid temperature variations that could affect industrial processes.
In the case of humidity, a slightly lower sampling rate of 7 times per
minute is observed, indicating continued attention to the humidity
conditions in the environment. This frequency may be sufficient to
capture significant changes in relative humidity, which is vital for
maintaining optimal conditions in specific industrial processes.

Additionally, luminosity readings are taken at a sampling rate of
10 times per minute, reflecting constant monitoring of lighting in
the environment. This frequency can be essential to adjust artificial
lighting according to natural conditions. Finally, motion detection is
performed with a sampling rate of 3 times per minute, suggesting
continuous monitoring of activity in the environment. This
frequency can be essential to identify movement patterns and
optimize safety and efficiency in the industrial environment.
Together, this data provides a detailed view of the operational
and environmental conditions in the environment, which can
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guide decision-making for resource optimization in the
IoT network.

4.2 Data preprocessing

Several standard data preprocessing techniques were applied
before the experiments were executed to obtain the results. These
techniques were carried out following industry best practices and
using well-established data analysis tools and libraries. First, a data
cleaning process was performed to remove any noise or outliers that
could affect the data quality. This included identifying and
eliminating duplicates and correcting formatting errors or
inconsistencies in the data.

Imputation of missing values was then performed to address any
missing data in the data set. Techniques such as mean or nearest
neighbor imputation were used to appropriately estimate and fill
missing values. Subsequently, variable normalization was applied to
standardize the scales of the different characteristics in the data set.
This ensured that all variables contributed equally to the analysis
without being affected by differences in units of measurement.

Additionally, dimensionality reduction was carried out to
decrease the complexity of the data set, which helped improve
computational efficiency and reduce the risk of overfitting in
subsequent models. Techniques such as principal component
analysis (PCA) or feature selection were used to reduce the
number of variables while preserving relevant information. These
data preprocessing techniques were systematically applied to ensure
the quality and suitability of the data for further analysis and
modeling (Lee and Lee, 2022).

The results of data preprocessing are presented in Table 2, which
shows the significant impact of the applied techniques on the quality
of the data and the preparation of the data set for subsequent
analysis. The first technique, data cleaning, demonstrated an evident
improvement in data quality by removing duplicates and correcting
formatting errors, leading to a model precision of 95.2%. This
improvement in data quality is essential to ensure the reliability

of the results of subsequent analyses. The imputation of missing
values also improved data quality, although it had a slightly lower
model precision of 92.5%. Imputation of missing values allowed for
adequate completion of the data set, which is crucial to avoid loss of
information and bias in subsequent analysis.

Normalization of variables showed a further improvement in
model precision, reaching a value of 93.8%. This technique helped
standardize the scales of the different characteristics in the data set,
making it easier to compare and interpret the results. For its part,
dimensionality reduction improved the model’s precision, reaching
94.6%. Although the improvement was relatively small compared to
the other techniques, dimensionality reduction is crucial to
decreasing the complexity of the data set and improving
computational efficiency in subsequent analyses. The data
preprocessing results reflect the applied techniques’ positive
impact on the quality and preparation of the data set for
subsequent analysis.

4.3 Implementation of granular computing

For the implementation, algorithms were used to dynamically
adjust the communication routes depending on the workload of the
IoT devices. These algorithms optimize the use of network resources
and minimize congestion. These techniques allow you to maximize
network efficiency and improve the performance of IoT devices.
Multi-objective optimization algorithms were implemented to
optimize energy efficiency and quality of service in IoT networks.
These algorithms allow finding solutions that balance multiple
objectives, such as minimizing energy consumption and
maximizing network performance.

For this, a preprocessing step involving clustering techniques
was introduced to improve the efficiency of the granular computing
process and mitigate the computational overhead. This
preprocessing stage organizes IoT data into manageable groups,
facilitating more effective resource allocation and management. The
clustering process begins by collecting data from multiple IoT

TABLE 1 Data set used in digital forensic analysis.

Type of data Sampling rate (per minute) Data volume (GB) Description

Temperature 5 3 Temperature readings

Humidity 7 2 Humidity readings

Brightness 10 2 Brightness readings

Motion 3 3 Motion detection

TABLE 2 Impact of data preprocessing techniques on model quality and precision.

Preprocessing technique Effect on data quality Model precision (%) Processing time (seconds)

Data Cleaning Improvement 95.2 120

Imputation of Missing Values Improvement 92.5 185

Normalization of Variables Improvement 93.8 160

Dimensionality Reduction Improvement 94.6 215
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devices, which typically includes metrics such as device activity,
resource consumption, and network interactions. This data is then
standardized and normalized to ensure consistency across different
sources. Comparative experiments were performed with and
without the clustering stage before granular computing to
evaluate the impact of clustering preprocessing. The results
demonstrate that cluster preprocessing significantly improves
system efficiency in several key aspects.

Comparative experiments were performed with and without the
clustering stage before granular computing to evaluate the impact of
preprocessing using clustering. The results demonstrate that
preprocessing using clustering significantly improves system
efficiency in several key aspects.

An average computational load reduction of 15% was
observed during IoT data processing. This reduction is
attributed to the efficient management of similar devices
grouped in clusters, which reduces redundancy and improves
resource management. Clustering also increased the efficiency of
granular decomposition by 20%, allowing devices with similar
resource usage patterns to be processed together, thus optimizing
task and resource allocation.

When clustering was applied to preprocessing, the total
processing time was reduced by 10%. This improvement in
processing time is attributed to the more structured and
manageable data organization before granular computing. Service
quality improved from 85% to 95%, corresponding to a relative
improvement of approximately 11.8%. This improvement is based
on latency and error rate reductions, the key components used to
quantify QoS in this study. This study quantifies QoS as a composite
metric based primarily on latency and error rate, reflecting the
system’s ability to maintain service continuity and responsiveness.
The QoS percentage represents the proportion of successful
operations under defined latency and error thresholds across all
tested devices.

Two clustering algorithms, k-means and DBSCAN, were
evaluated during the preprocessing stage. For k-means, the
optimal number of clusters (k) was selected using the elbow
method, which analyzes the within-cluster sum of squares
(WCSS) to identify the inflection point that balances model
complexity and segmentation quality. The silhouette score was
also applied to validate cluster cohesion and separation. For
DBSCAN, the ε (epsilon) parameter and minPts were determined
using k-distance graphs and density-based analysis to capture
natural structures in the IoT data distribution.

A grid search strategy was employed to perform hyperparameter
tuning for both algorithms. The selection criteria were based on
minimizing inter-cluster variance and maximizing decomposition
efficiency while maintaining low computational costs. The final
clustering configuration was selected based on its contribution to
improved system performance, as reflected in reduced processing
time and improved service quality.

These results are summarized in Table 3, which compares the
results with and without clustering. The results demonstrate that
preprocessing through clustering not only improves the efficiency of
the granular computing process but also significantly contributes to
reducing the computational load and improving the quality of
service in IoT networks.

4.4 Experimental evaluation of the granular
computing proposal

The experimental design was structured in several stages. First,
an infrastructure representative of industrial environments was
configured, which included 50 model XZ-200 temperature
sensors, 20 model AC-500 control actuators, ten process
monitoring devices model MP-1000, and five communication
devices model EC-300.

This configuration was selected to reflect realistic small-to-
medium-scale industrial IoT deployment, such as pilot
environmental monitoring and automation system. The
distribution of 50 temperature sensors, 20 actuators, and
10 process monitoring units ensures sufficient node density for
testing load-balancing, task allocation, and granular adaptation
strategies in real-time constraints scenarios. Moreover, this setup
allows for evaluating the behavior of the granular computing
algorithms under varying network complexities while staying
within manageable hardware and logistical requirements for
controlled experimentation.

Then, we implemented the experiments under different
conditions and test scenarios. Three other test scenarios were
designed and executed to evaluate the system’s performance in
varied situations. These experiments were conducted within a
real industrial IoT environment deployed over 12 months,
ensuring the evaluation reflects operational constraints and real-
world dynamics.

During the execution of the experiments, several variables were
measured and recorded, including the workload of the IoT devices,
the availability of network resources, the energy efficiency of the
devices, and the quality of service provided by the IoT network. The
infrastructure used included a diverse set of IoT devices mentioned
above, a central server for monitoring and managing the devices, a
high-speed Ethernet communication network, and software tools for
real-time monitoring and data collection data.

Subsequently, an analysis of the data collected during the
execution of the experiments was performed to interpret the
findings and draw meaningful conclusions. The results obtained
in different test scenarios were compared to identifying relevant
patterns and trends in system performance. Finally, validation of the
results obtained was carried out using verification and cross-
validation techniques to guarantee the robustness and reliability
of the findings.

The results obtained in the experiments respond to the different
test scenarios designed to evaluate the granular computing proposal
in optimizing resources in IoT networks. Scenario A represents a
high-load environment where IoT devices are expected to handle
many simultaneous requests. This scenario aims to evaluate the
system’s ability to maintain high operational performance without
compromising energy efficiency or quality of service.

On the other hand, Scenario B simulates a moderate workload
decrease compared to Scenario A. This reduced workload is
expected to affect the system’s operational performance and
influence energy efficiency and quality of service. Scenario C
represents an optimized “system conf” duration in which
granular computing techniques have been applied to improve
performance, energy efficiency, and quality of service. This
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scenario seeks to demonstrate the potential of the resource
optimization proposal in industrial IoT environments.

Table 4 summarizes these three experimental conditions. It
provides a structured overview of each scenario, highlighting its
distinctive characteristics and specific evaluation objectives.

Table 5 presents the results obtained during the experiments
carried out in different test scenarios to evaluate the granular
computing proposal in resource optimization in IoT networks. In
the first test scenario, “Scenario A,” a high operational performance,
operations per second (ops/s) of approximately 5,000 is observed,
with a power efficiency of 120W and a high quality of service of 95%.
These results indicate the system can handle a considerable
workload with relatively low power consumption and high
service satisfaction.

In the second scenario, “Scenario B,” a slight decrease in
operational performance is observed to approximately 4,500 ops/
s, accompanied by an increase in energy efficiency to 150 W and a
slight reduction in quality of service to 90%. This variation suggests
that although the system can maintain acceptable performance with
a slightly reduced workload, there is a trade-off in terms of energy
efficiency and quality of service.

In the third test scenario, “Scenario C,” an improvement in
operational performance is observed at approximately 4,800 ops/s,
accompanied by a power efficiency of 130 W and a quality of
service of 92%. These results indicate that the system can be
adapted and optimized to improve performance without significantly
compromising energy efficiency and quality of service. These findings
are fundamental to under-standing the impact of the granular

computing proposal on resource optimization in IoT networks and
can guide future research and development in this field.

Figure 4 shows three graphs illustrating the trends of
performance, energy efficiency, and quality of service metrics in
three different test scenarios. Each line on the graphs represents one
of the scenarios (A, B, C), clearly visualizing how each setting affects
the metrics evaluated across 15 data points.

The performance graph shows considerable fluctuation over
time for all scenarios. Scenario A generally shows the highest
performance, although it experiences significant drops, especially
towards the endpoints. Scenario C also shows high performance but
with fewer fluctuations than Scenario A, suggesting more excellent
stability. On the other hand, Scenario B, although it starts with a
lower performance, shows improvements and surpasses Scenario C
towards the end of the evaluated period. These trends indicate how
different configurations and workloads affect the system’s
throughput.

The energy efficiency graph reveals that Scenario C tends to have
the best energy efficiency, with lower values and fewer peaks than the
other scenarios. This suggests that the optimizations in Scenario C
are effective in maintaining low power consumption despite
variations in workload. Scenario A shows the highest and most
volatile energy efficiency, which could be attributed to its high
performance and associated energy demands. Scenario B shows
moderate variability, balancing performance, and energy
consumption.

Regarding service quality, Scenario B stands out for consistently
improving, reaching, and maintaining the highest levels towards the

TABLE 3 Comparison of results with and without clustering.

Metric Without clustering With clustering Improvement (%)

Computational Load (ms) 500 425 15%

Decomposition Efficiency 80% 96% 20%

Processing Time (ms) 1,000 900 10%

Quality of Service (QoS) 85% 95% 12%

TABLE 4 Description and objectives of the experimental scenarios.

Scenario Description Objective of evaluation

A High-load environment where IoT devices handle many simultaneous
requests

Evaluate system performance under peak load while maintaining efficiency
and QoS

B Moderate workload with reduced demand compared to Scenario A Assess the system’s response to lower load and its impact on energy and QoS

C Optimized configuration with applied granular computing techniques Demonstrate improvements in performance and efficiency after optimization

TABLE 5 Comparison of performance metrics in test scenarios.

Test scenario Performance (ops/s)a Energy efficiency (W) Quality of service (%)

Scenario A 5,000 120 95

Scenario B 4,500 150 90

Scenario C 4,800 130 92

aPerformance (ops/s): Operations per second, indicating the system’s processing capacity.
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end. Scenario A, although starting strong, shows a noticeable
decrease in service quality, which could be related to drops in
performance and power demands. Despite its good energy
efficiency, Scenario C fails to sustain the highest levels of service
quality, which could indicate compromises in other aspects of
the system.

The results in these graphs suggest that while Scenario C offers
the best energy efficiency and Scenario B offers the best quality of
service at the end of the evaluated period, Scenario A provides the
highest performance but with associated costs in terms of energy
efficiency and quality of service. These results identify the impact of
granular computing configurations and the importance of balancing
different aspects of system performance in industrial IoT
environments.

4.4.1 Evaluation of impact and post-
implementation results of granular computing
techniques

After evaluating the three test scenarios, where various granular
computing configurations and strategies were explored to optimize
performance, energy efficiency, and quality of service in IoT
environments, the research progressed towards practically
implementing the most advanced techniques promising in a real
operating environment. The selection of strategies for
implementation was based on the quantitative and qualitative
results obtained, which demonstrated the significant advantages
of specific configurations in handling intensive workloads,
minimizing energy consumption, and improving service quality.

The transition from controlled experiments to implementation
in a single environment involved detailed adaptation of the

parameters and granular computing techniques that proved the
most effective. This implementation was carried out in an advanced
manufacturing plant, characterized by its high dependence on
automated systems and a complex network of IoT devices that
manage everything from internal logistics to quality control and
predictive maintenance. The environment was selected for its ability
to significantly benefit from improvements in resource management
and operational efficiency, particularly in areas where critical
processes depend on the speed and precision of response from
IoT devices.

The existing infrastructure at the plant includes various
interconnected systems, such as automated assembly lines, real-
time monitoring systems for machine conditions, and data analysis
platforms for production optimization. These systems were tuned to
incorporate granular computing algorithms, allowing for finer
resource allocation and utilization optimization. With these
adaptations, a notable improvement in operational efficiency was
achieved, reducing latency in communication between devices and
reducing the error rate in critical processes.

Additionally, improvements were implemented to the central
control interface, allowing plant operators to obtain real-time views
of operational efficiency and make proactive adjustments to
machine scheduling and material logistics. This not only
optimized the operation at each stage of the production process
but also improved the overall sustainability of the system by
reducing energy consumption and material waste.

The implementation also involved integrating monitoring and
analysis systems to continually evaluate the impact of granular
computing techniques. Key metrics were established to measure
operational performance, energy efficiency, and quality of service

FIGURE 4
Performance, energy efficiency and service quality trends in different test scenarios.
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before and after implementation, thus allowing for a direct and
objective comparison of results.

Table 6 presents a detailed comparison of the key metrics before
and after implementing granular computing. The inclusion of these
metrics was motivated by the need to measure fundamental aspects
that directly influence the efficiency and effectiveness of the
industrial environment.

• Throughput (ops/s): This metric reflects the system’s ability to
process operations per second. A 25% increase in throughput
after implementation indicates a significant improvement in
plant processing capacity, facilitated by granular resource
optimization that enables faster and more effective
responses to operational demands.

• Energy Efficiency (W): The 20% reduction in energy
consumption highlights how granular computing has
optimized energy use. The plant has reduced its operating
costs and environmental impact by reducing unnecessary
consumption and improving load allocation between devices.

• Service Quality (%): The 11.8% increase in this metric suggests
an improvement in meeting service requirements, including
the precision and reliability of plant operations. This
improvement can be attributed to the greater precision in
data handling and the reduction of errors thanks to the
implementation of granular algorithms.

• Network Latency (ms): Decreasing latency by 25% is
particularly relevant in IoT environments where speed of
response is critical. This improvement underscores the
effectiveness of granular computing in optimizing
communication between devices.

• Error Rate (%): A 60% reduction in error rate indicates a more
robust and less failure-prone system, directly improving
operations’ continuity and safety.

• Resource Sustainability: The increase in efficient resource
utilization by 28.6% reflects an improvement in the plant’s
overall sustainability, demonstrating that granular computing
optimizes performance and contributes to more sustainable
resource management.

These results demonstrate that implementing granular
computing techniques has improved considerably in all aspects
evaluated. The ability to process more operations with fewer
resources and reduce critical errors optimizes production and
sets a precedent for future innovations in the industry.

Figure 5 presents the post-implementation results considering
“before” as the initial period before implementing the
improvements. At the same time, “after” reflects the continuous
evolution and stabilization of the metrics from the beginning of the
implementation to the present, covering 12 months. This time
perspective lets us observe improvements’ immediate impact,
adaptation, and sustainability.

Following the implementation of granular computing on the factory
floor, significant improvements were observed in several key metrics,
reflected over a 12-month time series. Energy efficiency showed a notable
reduction, dropping from approximately 120 to 105 W, evidenced by a
12.5% decrease in energy consumption. This change marks effective
optimizations in energy management, crucial for reducing operating
costs and promoting sustainability. Although fluctuations were initially
experienced in the error rate, with a notable peak in the fourth month,
possibly due to technical adjustments and system adaptations, the rate
generally decreased from 3% to around 1%. This 66.7% decrease in
errors reflects a substantial improvement in the precision and reliability
of the system, which is vital to maintaining continuity and safety in
industrial operations.

System availability also improved, rising from 92% to 98%,
indicating an increase of 6.5%. This metric demonstrates that
granular computing has contributed to a more robust and less
failure-prone environment, ensuring critical processes remain
operational without significant interruptions. Response time has
been significantly optimized, reducing from 200 milliseconds to
150 milliseconds, representing a 25% improvement. This reduction
is crucial in an industrial environment where rapid responses are
essential for production efficiency and reacting to emergencies.

Meanwhile, memory usage became more efficient, reducing
from 75% to 65%, indicating an improvement of 13.3%. This
setting improves the system’s ability to handle large volumes of
data without compromising performance, facilitating greater
processing capacity and storage of critical data.

4.5 Comparative analysis of granular
computing versus alternative models in
the industry

We selected two alternative technology models recognized for their
effectiveness in similar industrial environments to evaluate our granular
computing implementation. This allowed us to establish a robust
comparative framework highlighting our solution’s advantages.

TABLE 6 Comparison of key metrics before and after the implementation of granular computing.

Metrics Value before implementation Value after implementation Percentage change

Performance (ops/s) 4,000 5,000 +25%

Energy Efficiency (W) 150 120 −20%

Quality of service (%) 85 95 +11.8%

Network Latency (ms) 100 75 −25%

Error Rate (%) 5 2 −60%

Resource Sustainability 70% utilization 90% utilization +28.6%
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The first model is based on heuristic algorithms designed for
resource allocation and optimization in industrial IoT
environments, as detailed in Dehury et al. (2024). This system is
characterized by its focus on linear programming and heuristics
adjusted to static operating conditions, with fixed parameters that do
not dynamically adapt to changes in the production environment.
This model was evaluated by reviewing case studies and research
articles documenting its application and results in industrial
environments, allowing us to compare its overall performance,
efficiency, and operational flexibility with our system.

On the other hand,model two presents anAI-based system that uses
advanced machine learning and neural network techniques (Kumar
et al., 2021) It is designed to continuously learn from operational data
and adjust its algorithms in real-time. This approach allows for much
more flexible adaptation and response to changing conditions in the
manufacturing environment. We evaluated this model by analyzing
technical documentation and results from similar implementations in
the industry, focusing on its ability to improve energy efficiency, reduce
latency, and decrease the operational error rate.

The benchmarking used included analyzing key operationalmetrics
such as performance, energy efficiency, quality of service, latency, error
rate, and system availability. To strengthen comparative study, statistical
methods such as t-tests and confidence intervals were employed to
evaluate the significance of the differences observed between models.
Quantitative data from reliable sources was collected and analyzed using
these statistical techniques to ensure an objective and fair comparison
between the models.

Table 7 compares our granular computing implementation
against alternative models regarding several critical operational
metrics. Regarding operational performance, our implementation
shows a higher value of 5,000 operations per second, compared to
4,500 and 4,800 ops/s of Models 1 and 2, respectively. This result,

which represents an improvement of 4.2% and 10% over the
comparative models, marks the ability of granular computing to
process data and execute operations more efficiently, a crucial aspect
in intensive production environments.

Energy efficiency, measured in watts, highlights another strong
point of our technology. With a consumption of 120 W, our
improvement improves by 20% and 14.3% compared to the
150 W and 140 W of Models 1 and 2. This improvement was
further validated by a linear regression analysis, showing a strong
correlation (R2 = 0.89, p = 0.002) between the efficiency gains and the
technological advancements in our model.

Regarding theQoS, our system achieved 95%, compared to 90% and
92% inModels 1 and 2. This reflects a relative improvement of 5.6% and
3.3%, respectively. In this context, QoS is calculated as a weighted index
combining network latency, error rate, and system availability,
representing the system’s capability to meet predefined performance
thresholds under load. These values were derived under identical test
conditions to ensure fairness in the comparison. The improvements were
statistically validated through t-tests with a significant level of p = 0.01.

Network latency analysis also offers important insights. With a
latency of 75 m, our technology improves response times by 25% and
16.7% compared to the 100m and 90m recorded by alternativemodels.
This reduction in latency was statistically significant, as indicated by the
ANOVA test results (F = 3.80, p = 0.025), confirming that our system
offers superior real-time performance. The error rate, which reflects the
system’s precision and efficiency in task execution, shows that our
implementationmaintains a low% error rate of 2%, considerably better
than the 5% and 4% of comparative models, highlighting a 60% and
50% reduction in errors. This improvement was supported by a logistic
regression analysis, which indicated that our model’s configuration
significantly reduces the likelihood of mistakes under varying operating
conditions (Odds Ratio = 2.5, p = 0.015).

FIGURE 5
Temporal evolution of post-implementation metrics of granular computing.
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The results obtained from operational metrics demonstrate that
granular computing is efficacious in improving performance and
efficiency compared to other established systems. Still, it also shows
how these improvements can translate into tangible and sustainable
benefits for industrial operations.

Figure 6 presents a radar chart consolidating all the critical
metrics into a single visualization to provide a comprehensive visual
comparison. This allows for a direct comparison of each model’s
strengths and weaknesses, highlighting the extensive advantages of
our granular computing implementation.

Figure 7 presents three violin plots, each corresponding to a specific
metric evaluated: operational performance, energy efficiency (W), and
error rate (%). These graphs visualize our system’s full distribution of
results and the two comparative models. The plots offer a view of the
probability density of the data, where the width of each violin at
different heights shows the concentration of values around a point.

In operational performance, the graph illustrates how the number of
operations per second is distributed between the various systems,
highlighting each model’s variability and central tendency.

The energy efficiency graph shows the dispersion of energy
consumption in watts, allowing you to visualize how efficient the
systems are in average terms and their general behavior. We notice
that the Y-axis includes negative values in the error rate, whichmay seem
unusual given that an error rate cannot conceptually be less than zero.
However, this graphing feature does not reflect negative values in the
data; instead, it is a visual representation generated by probability density
estimation, used in violin plots to show the data distribution. Violin plots
employ kernel density estimation to smooth the distribution of data,
providing a complete representation of the variability and shape of the
data distribution by creating a continuous curve from a discrete data set.
This curve straddles the central axis of the violin, and its amplitude at any
point reflects the relative probability of finding an observation in that

TABLE 7 Comparison of key metrics between the implementation of granular computing and alternative models.

Evaluated metric Granular computing Heuristic model (greedy + Lp) AI model (MLP neural network)

Performance (ops/s) 5,000 4,500 4,800

Energy Efficiency (W) 120 150 140

Quality of service (%) 95 90 92

Network Latency (ms) 75 100 90

Error Rate (%) 2 5 4

System Availability (%) 98 95 96

FIGURE 6
Multimetric comparison of granular computing and alternative models.
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area. When the density estimate extends beyond the minimum or
maximum range of the actual data, it can result in violin plot
“whiskers” crossing the zero axis and entering hostile territory. This
does not imply that accurate data is harmful; instead, it is a visual art
resulting from smoothing on accurate data near zero.

Negative values should not be interpreted as actual error values
but rather as an extension of the visualization technique. Analysts
and stakeholders must understand that these chart elements are
merely representative and not indicative of negative error values.
The graphs in the figure present significant differences in the
distribution of the results between our system and the
comparative models. Our system shows lower variability in
operational performance and a narrower distribution in energy
efficiency and error rates, indicating greater consistency and
reliability than the other models. This consistency is especially
notable in the error rate graph, where our system exhibits a
higher concentration of low values, underscoring its superiority
in maintaining accurate and efficient operations.

Both baseline models were implemented and evaluated under the
same experimental conditions used for the granular computing system
to ensure a consistent and unbiased comparison. For Model 1, the
heuristic approach was based on a greedy optimization algorithm with
adaptive linear programming components, commonly applied in
industrial logistics and manufacturing resource planning. For Model
2, a multilayer perceptron (MLP) neural network architecture was used,
trained with stochastic gradient descent, and configured for continuous
feedback-based learning, as described in implementation frameworks
found in previous industry case studies. These models were trained
using the same dataset and operational scenarios defined in our IoT
environment, allowing for a fair evaluation of performance, efficiency,
and service quality across all systems.

4.6 Statistical analysis of performance
metrics between models

This analysis aimed to determine whether variations in these
metrics could be attributed to differences in model configurations or
were due to random variability. We used ANOVA to compare the

performance of three different models. This analysis helped identify
whether differences in mean performance between models were
statistically significant, considering a variety of operating system
configurations and processing capabilities (Goli et al., 2020).

To further validate these findings, we employed paired t-tests to
compare specific metrics directly between our granular computing
model and each alternative. The results of these t-tests provided
additional confirmation of the statistical significance of our findings,
particularly in metrics such as energy efficiency and error rate.
Additionally, we calculated 95% confidence intervals for the mean
differences in key metrics, providing a clearer understanding of the
precision and reliability of our results.

Linear regression was applied to explore the relationship
between energy efficiency and factors such as processor size and
technology. This method allowed us to evaluate the direct influence
of these independent variables on the measured energy efficiency.
Additionally, we performed a logistic regression analysis to
determine the probability of errors based on the intensity of use
and operating conditions. This model provided insights into the risk
factors that increase the likelihood of mistakes in each model.

Table 8 summarizes the statistical tests performed to evaluate the
significance of differences in key performance metrics between the
models. This includes ANOVA results for latency, t-tests for energy
efficiency and QoS, and logistic regression for error rate. The
ANOVA test yielded an F value of 5.12 with a p-value of 0.007,
indicating statistically significant differences in latency across the
models. Linear regression analysis showed a coefficient of
determination (R2) of 0.89 with a p-value of 0.002, confirming a
strong relationship between processor characteristics and energy
efficiency. The paired t-test for energy efficiency between the
granular computing system and the AI model yielded a p-value
of 0.01 and a Cohen’s d effect size of 1.28, indicating a significant
improvement. The logistic regression for error rate showed an odds
ratio of 2.5 with a p-value of 0.015, suggesting that error likelihood is
significantly reduced under the granular configuration. These results
confirm that the improvements observed are statistically significant
and practically relevant. Including effect sizes and confidence
intervals strengthens the validity and robustness of
comparative analysis.

FIGURE 7
Comparative analysis of distributions: Performance, energy efficiency and error rate between Models.
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5 Discussion

This study is developed within an active and evolving field of
research, where efficient resource management has become a critical
priority due to the increase in connected devices. As discussed in previous
works, such as those of Lehocine and Batouche (2018) and Minhaj et al.
(2023), resource optimization has traditionally been addressed using
techniques that do not dynamically adapt to changing network
conditions. In contrast, our application of granular computing
introduces significant flexibility, allowing real-time adjustments that
respond to workload and resource availability variations.

Unlike more static approaches reported in the literature, our
method can improve operational efficiency and service quality in
IoT environments (Goli et al., 2020). The experimental results,
detailed in Table 4 and Figure 4 of the Results section, highlight
a notable improvement in resource allocation and utilization,
directly translating into reduced latency and increased network
stability. Thus, the system meets the demands of critical
industrial applications that depend on fast and reliable responses.

Previous research has explored various approaches to resource
optimization in IoT networks, such as heuristic methods for
resource allocation, multi-objective optimization algorithms, and
machine-learning techniques (Motamedi et al., 2017). While these
methods have provided valuable insights and advances, they often
face scalability, adaptability, and robustness limitations when faced
with heterogeneous and dynamic IoT environments. The graphical
comparisons in Figure 4 clearly show how the proposed method
outperforms these traditional approaches, particularly in scenarios
with high variability in network demand.

The method proposed in this research, which leverages granular
computing and granular balls, addresses several of these limitations
(Shuyin et al., 2023). Granular computing offers a flexible and
adaptable framework for managing resources, capable of handling
the complexity and variability of IoT networks (Yang et al., 2024).
The introduction of GBC further improves this approach by
providing a more accurate and efficient way of representing and
processing data. Granular balls encapsulate data in spherical
structures, allowing for better clustering, classification, and neural
network training. This novel approach improves the accuracy and
robustness of data handling and facilitates scalable and efficient
learning in dynamic IoT environments (Zhang et al., 2021). As
demonstrated in the Results section, the comparative analysis in
Table 6 shows a substantial improvement in classification accuracy
and efficiency when using GBC, highlighting the practical benefits of
this method.

The implementation of granular computing has enabled more
granular resource control, adapting workload distribution and
resource allocation based on the specific needs of the moment (Li

et al., 2022). This innovative adaptive approach directly addresses
one of the main limitations of previous models: the rigidity in
managing dynamic changes within IoT networks. The trend analysis
in Figure 4 of the Results section underscores the system’s ability to
allocate resources, dynamically reducing inefficiencies observed in
earlier models.

In this study, implementing granular computing techniques has
proven to be an effective strategy for resource optimization in IoT
networks, reflecting a significant improvement in several key
performance indicators. This approach has allowed a more
dynamic and efficient management of resources, which directly
translates into improvements in the operability and sustainability
of industrial systems. Initially, we observed a 25% increase in
operational performance, going from 4,000 ops/s to 5,000 ops/s
after implementing our techniques (see Table 6). This increase is
crucial for environments that demand high processing capacity and
fast responses, evidencing the ability of granular computing to
distribute and manage the workload efficiently. This result is
especially relevant compared to previous studies where
conventional techniques showed limitations in adapting to the
dynamic demands of the network.

Regarding energy efficiency, energy consumption was reduced
from 150 W to 120 W, which implies an improvement of 20% (refer
to Table 6). This optimization reduces operating costs and reinforces
commitment to sustainable practices, an aspect increasingly valued
in modern industry. The improvement in quality of service, which
increased from 85% to 95%, underscores the system’s ability to meet
operational requirements more effectively without interruptions,
strengthening system reliability and efficiency.

Reducing latency by 25%, from 100 milliseconds to
75 milliseconds, significantly improves communication and data
processing, a critical factor in IoT where response speed can
determine the success or failure of operations (see Table 6). The
notable 60% decrease in error rate, from 5% to 2%, reflects increased
system precision and stability, critical to maintaining continuity and
safety in industrial operations.

These results validate the effectiveness of granular computing in
improving resource management in IoT environments and illustrate
its potential to adapt to changing environments, offering a more
flexible and robust solution compared to traditional methods.
However, it is essential to recognize the study’s limitations,
particularly the scale of the experimental deployment and the
homogeneity of the test environments, which may not fully
capture the complexity and variability of real-world applications.

Based on the findings obtained, additional testing is suggested in
a broader variety of environments and with a larger scale of devices
to verify the scalability and security of the proposed solutions
(Lehocine and Batouche, 2018). This step is crucial to ensure that

TABLE 8 Statistical summary of key metrics.

Metric Comparison Test used p-value Effect size

Energy Efficiency Granular vs AI Model t-test 0.01 Cohen’s d = 1.28

Error Rate Granular vs Heuristic Model Logistic Regression 0.015 Odds Ratio = 2.5

Latency Granular vs All Models ANOVA 0.025 —

QoS Index Granular vs All Models t-test 0.01 —
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improvements in resource management through granular
computing can be effectively integrated into existing systems and
to facilitate the transition towards more sustainable and efficient
operating practices in the IoT industry (Yao et al., 2013).

The motivation for selecting the current method lies in its
potential to overcome the challenges identified in related studies.
By integrating granular computing with GBC, the proposed method
offers a comprehensive solution that improves resource
optimization, operational efficiency, and quality of service in IoT
networks. This research contributes to the field by providing a
robust and scalable framework that can adapt to the changing
demands of IoT applications, ensuring more efficient and
effective resource management.

6 Conclusion

This study has explored the potential of granular computing to
optimize resource management in IoT networks, addressing crucial
challenges such as energy efficiency, latency reduction, and error
minimization. The results conclusively demonstrate that
implementing granular computing techniques significantly improves
operational performance, energy efficiency, and quality of service in IoT
network environments, particularly in industrial applications.

We have seen a 25% increase in operational performance, from
4,000 ops/s to 5,000 ops/s, highlighting the ability of our techniques
to handle high volumes of operations efficiently, a significant
improvement for environments that require rapid responses and
intensive processing. Reducing energy consumption from 150 W to
120 W (20% improvement) is especially relevant in the context of
sustainability and reducing operating costs. This result marks the
positive impact of granular computing in promoting greener and
cheaper practices in the industry.

The increase in service quality from 85% to 95% reflects the
system’s ability to meet operational demands more effectively,
ensuring service continuity and reliability, which is critical to
maintaining high operational standards. The decrease in latency
of 25% and the notable reduction in the error rate of 60%
demonstrate the effectiveness of granular computing in
improving communication and precision in IoT networks,
contributing to a more stable and secure operation. These
findings confirm that granular computing is viable and
advantageous for resource management in IoT networks, offering
an adaptable and robust solution to the limitations of conventional
techniques.

Recognizing that the results were obtained under controlled
conditions and could vary in more complex and heterogeneous real-
world environments is essential. With the results obtained by
granular computing in this study, future research should focus
on several directions. First, it is crucial to conduct tests in real-
world and larger-scale environments to validate the applicability and
scalability of the proposed techniques. This includes expanding into
different industrial sectors and adapting solutions to various IoT
devices and operating conditions. Second, integrating AI and
machine learning with granular computing should be explored
further to improve the adaptability and efficiency of the systems.
These technologies could enable more dynamic and predictive

optimization, adapting in real-time to changes in the operating
environment.

One of the primary limitations is the computational overhead
associated with creating and managing granular structures,
especially in large-scale IoT networks with numerous devices and
data points. Clustering and dynamically adjusting granular balls
requires substantial processing power and memory, which may not
be feasible for all IoT applications, particularly those with
constrained computational resources. Additionally, the
implementation of GBC can introduce latency in real-time
applications due to the complexity of the algorithms.
Furthermore, the effectiveness of GBC heavily depends on the
quality and granularity of the input data; poor data quality or
insufficient granularity can significantly impact the accuracy and
reliability of the resource optimization outcomes. Future work
should explore methods to mitigate these limitations, such as
optimizing the clustering algorithms for efficiency, exploring
lightweight computational techniques, and improving data
preprocessing methods to ensure high-quality inputs.
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