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Smart grids have revolutionized electricitymanagement and distribution, but they
also generate and transmit vast amounts of consumer data, raising privacy
concerns. In this paper, we propose a blockchain-based solution to preserve
user’s privacy in smart grids and to mitigates data forgery, profiling, and man-in-
the-middle attacks. Moreover, our solution provides security services such as
authentication and non-repudiation to prevent unauthorized access to sensitive
data and ensure accountability and traceability. We validate our approach
through testing and show that it is a simple, scalable, cost-effective solution
with minimal computational processing overhead.
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1 Introduction

The ongoing revolutionary growth of communication and ubiquitous computing
technologies has enabled the creation of innovative, intelligent applications and systems.
One such system is the smart grid, designed to modernize the century-old power grid and to
better meet the needs of the digital, eco-conscious society of the 21st century (Ma et al.,
2013). The transformation from a traditional and provider-driven grid to a more consumer-
engaged smart grid involves the implementation of bidirectional, Internet-based
communication between the energy providers and their consumers.

The smart grid enables Utilities and consumers to exchange real-time information
through bidirectional communications, facilitated by the AdvancedMetering Infrastructure
(AMI) (NIST Framework and Roadmap for smart grid interoperability standards, release
2.0, 2012). The AMI provides Utilities with new capabilities and functions to offer time-
based rates, real-time energy measurement, and remote system control. To ensure accurate,
up-to-date energy usage information, Utilities frequently aggregate data from smart meters
installed at consumers’ premises. A smart meter is a device that can perform useful and
advanced functions such as time-based pricing, time-of-use billing, energy consumption
reporting. Moreover, it can communicate with appliances installed at the consumer’s
premises to collect information of their electrical usage at regular intervals (NIST
Framework and Roadmap for smart grid interoperability standards, release 2.0, 2012).

The two-way interaction between the Utility and the smart meters, combined with the
vast amount of data generated by smart meters and collected by the Utility, can raise privacy
concerns. In fact, the Utility can gain insights into the activities and behaviors within a
consumer’s home. This is enabled by the sensitive data that smart meters generate, related to
the consumer’s electricity usage patterns. Unauthorized parties may access and exploit this
information, leading to significant privacy and security breaches. Failing to protect
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customers’ privacy could discourage them from adopting smart
grids. Moreover, smart grids are vulnerable to various security risks
inherited from IP-based communication infrastructures, such as
spoofing, identity theft, man-in-the-middle attacks, and denial-of-
service attacks (Hasan et al., 2022).

Several solutions have been proposed to preserve users’ privacy in
smart grids and to secure the data aggregated by the Utilities. In this
paper, we present a hybrid approach, combining decentralized blockchain
technology and additive homomorphic encryption to address the security
and privacy issues in smart grids. Blockchain technology is an emerging
field that is being actively explored in various systems and applications,
including smart grids. It is a decentralized ledger that enables secure,
transparent, and decentralized transactions, without the need for a central
authority. By implementing a blockchain-based solution, we aim to
enhance users’ privacy and provide a secure and transparent way to
store and manage users’ data.

The organization of the paper is as follows. Section 2 describes
privacy-preserving techniques in smart grids. Section 3 discusses
recent approaches proposed for preserving the privacy of smart grid
users. Section 4 describes the design and implementation of our
proposed architecture. Section 5 evaluates the effectiveness of our
solution in addressing privacy concerns in smart grids. Finally, our
concluding remarks are presented in Section 6.

2 Privacy-preservation techniques in
smart grids: balancing efficiency
and security

Several techniques have been proposed to ensure privacy
preservation in smart grids, particularly Data Aggregation (Wu et al.,
2024), Homomorphic Encryption (Moore et al., 2014), Differential
Privacy (Gai et al., 2020), Secure Multi-Party Computation (Yu et al.,
2022), Anonymization, and Pseudonymization (Chen et al., 2023). Each
of these techniques has its own advantages and disadvantages, particularly
when balancing data privacy, system efficiency, and protection against
data forgery and faults.

2.1 Data aggregation

Data aggregation is widely used as a privacy-preserving method
in smart grids (Wu et al., 2024). Instead of transmitting individual
users’ data, aggregated data is collected and sent to grid operators.
This helps reduce the risk of exposing individual consumption
patterns. However, advanced statistical techniques can enable
adversaries to infer individual consumption patterns, especially
when combined with external datasets (e.g., consumption data,
demographic data). Moreover, this technique can reduce the
granularity of data, potentially hindering the ability to perform
detailed analyses, provide tailored services to consumers, or to detect
cyberattacks such as data forgery.

2.2 Homomorphic encryption

Homomorphic encryption allows specific types of computations
to be carried out on ciphertext and obtains an encrypted result

(Moore et al., 2014). For example, in the case of additive
Homomorphic encryption, an entity who receives two encrypted
messages would be able to decrypt the addition of two encrypted
messages without being able to decrypt the messages individually.
Although this technique provides strong encryption, ensuring
privacy even during computation, it is computationally expensive
and slower than working with unencrypted data. Moreover, it
requires substantial resources for processing, limiting its
scalability. Furthermore, using this technique without data
authentication is ineffective at preventing man-in-the-middle
attacks. An attacker can intercept and replace encrypted data
sent from a particular user to the collector, with data encrypted
using a random key selected by the attacker. Because this attacker-
generated key is never shared with the key aggregator, the collector is
unable to decrypt the combined encrypted requests it receives.

2.3 Differential privacy

Differential privacy (Gai et al., 2020) protects user privacy by
adding random noise to data before it is shared or analyzed. This
technique provides strongmathematical guarantees for safeguarding
individual information. By introducing noise to datasets, such as
energy consumption data, it becomes difficult for attackers to infer
specific user patterns, even when analyzing aggregated information.
However, adding too much noise can reduce data quality, making it
less effective for smart grid applications. Moreover, implementing
differential privacy in large-scale, real-time environments presents
challenges due to its computational intensity and complexity.

2.4 Secure Multi-Party Computation (SMPC)

This technique enables multiple parties to perform
computations on their private data without disclosing it to one
another (Yu et al., 2022). In smart grids, it can be used to calculate
energy consumption or billing information while keeping the
underlying data private. Users share encrypted data and
collaborate on computations, ensuring that no participant gains
access to others’ private information. However, as the number of
participants increases, communication and computation demand
grow exponentially, reducing the scalability of SMPC for large smart
grids. Moreover, the need for extra cryptographic operations
introduces significant computational overhead, making SMPC
unsuitable for real-time applications in smart grids.

2.5 Anonymization and pseudonymization

Anonymization and pseudonymization protect privacy by
altering or removing identifying information from energy
consumption data (Chen et al., 2023). Anonymization removes
all identifiers, making it impossible to trace data back to
individuals, while pseudonymization replaces identifiers with
pseudonyms that the data controller can re-identify under certain
conditions. These techniques prevent direct identification of
consumers by removing or substituting personal identifiers.
However, anonymized data can sometimes be re-identified
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through advanced methods, such as linking it to external datasets
(Chen et al., 2023). Pseudonymization may also not work well in
cases where personalized services or specific energy-saving
recommendations are required in smart grids.

2.6 Blockchain-based solutions

Blockchain technology can enhance privacy in smart grids by
storing energy consumption data on a decentralized, immutable
ledger (Yin et al., 2023). When combined with cryptographic
techniques like zero-knowledge proofs, blockchain ensures that
only authorized users can access the data. Energy transactions,
such as consumption and generation, are recorded on the
blockchain, allowing users to verify their consumption or
generation history without exposing private data. Zero-knowledge
proofs enable users to demonstrate that they meet certain conditions
(like energy consumption thresholds) without revealing
specific details.

3 Related works

Overall, the development and implementation of effective
privacy-preserving schemes play a crucial role in addressing
privacy concerns and ensuring user confidence in smart grids.
Various anonymous and privacy protection schemes have been
proposed to prevent customer identification, with their
effectiveness contingent on the specific context or architecture
being utilized. Most of these schemes are primarily based on
blind signatures, homomorphic encryption, trusted third parties,
pseudonymity, differential privacy, and more.

In Khorasany et al. (2022), the authors present a blockchain-
based mechanism for anonymous proof of location that verifies a
participant’s location while safeguarding the actual data. The level of
privacy provided by this scheme depends on the number of public
keys used to generate blockchain transactions. However, managing
multiple keys introduces significant overhead and inefficiency. In
Park et al. (2023), the authors propose a privacy-preserving scheme
for aggregated data using blockchain, deep learning, and
homomorphic encryption. The authors in Aitzhan and Svetinovic
(2018) address privacy concerns in decentralized smart grids
without relying on a trusted third party, but the solution’s
reliance on the Proof-of-Work consensus mechanism may
hinder scalability and increase latency. In Maiti and Misra
(2020), a solution suggests using proxy re-encryption to
anonymously aggregate multi-dimensional data, while Tonyali
et al. (2015) proposes a data obfuscation mechanism based on
elliptic curve signature technology. However, these schemes fail
to account for the computational costs associated with
encryption, decryption, and signature computation, which
increase with the number of users.

In Fotiou et al. (2021), a differential privacymodel is proposed to
create a marketplace for data, along with a blockchain-based
solution for fair exchange and immutable data logs. However, the
authors in Bracciale et al. (2022) identify security flaws in the
scheme, particularly regarding user data confidentiality. Another
differential privacy-based solution is presented in Hassan et al.

(2020) to ensure that energy transaction queries do not reveal
classified data or link transactions to real user identities.

In Li et al. (2021), an architecture based on a dual-blockchain
system is discussed. One blockchain is private and is used to map
associations between real and pseudonymous identities. The other is
a shared blockchain, which ensures security and enables on-demand
resource access.

The authors in Chen et al. (2022) introduce a double-blockchain
solution to secure and anonymize the data aggregation process using
Paillier encryption and batch signatures. In Bera et al. (2021), a
private blockchain-based authorization scheme is proposed for
secure and tamper-proof data transmission. This scheme
demonstrates resilience against impersonation and replay attacks,
as well as protection against man-in-the-middle and ephemeral
secret leakage. However, as the number of peers in the
blockchain network increases, the execution time of the scheme
grows exponentially.

The authors in Mohammadali et al. (2018) discuss an identity-
based key management protocol using Elliptic Curve Cryptography
(ECC) to ensure user anonymity while maintaining low
computational costs. However, this scheme is vulnerable to
various attacks, as discussed in Mahmood et al. (2019), which
proposes a pairing-based key management protocol as an
alternative. Additionally, Kumar et al. (2019) presents a protocol
focusing on data aggregation security and privacy but relies on a
trusted third party to share a secret key between two users. Although
the system incorporates correct Utility control initial verification
and alternative solutions, such as those in Chaudhry et al. (2020), it
lacks a provision for ensuring data integrity for the aggregated data.

In Liu et al. (2020), a scheme is presented to ensure privacy-
preserving aggregation communication and function query for fog
computing-based smart grids. The scheme minimizes system
latency and communication overhead by leveraging edge
computing resources. However, it centralizes user data storage at
fog nodes or cloud servers, thereby inheriting the centralization
issues typical of cloud-based schemes. In Zuo et al. (2020), the
authors propose a scheme without a trusted authority in smart grids,
based on the ElGamal homomorphic cryptosystem with distributed
decryption. However, their scheme cannot guarantee the validity of
data decryption when smart meters fail to work. In Zhang et al.
(2021), a scheme enables an aggregator gateway to aggregate
encrypted multi-type data and forward the aggregated data to the
Utility. It provides integrity of aggregated data and preserves
privacy. However, it lacks fault tolerance and error detection. In
Chen et al. (2019), an elliptic curve-based scheme is presented. This
scheme enables a meter to report multiple types of data at once.
However, it fails to detect errors while decrypting aggregated data
and suffers from some security threats such as data forgery and
replay attacks.

3.1 Contributions of this work

To tackle the discussed challenges, we present a privacy-
preserving scheme specifically tailored for the secure and reliable
aggregation of data obtained from users’ smart grids. By leveraging
blockchain, smart contracts, and additive homomorphic encryption,
our solution ensures the integrity and transparency of the aggregated
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data and effectively mitigates various potential attacks, including
replay attacks, man-in-the-middle attacks, data forgery, and secret
key disclosure. Furthermore, our solution preserves user privacy,
ensures non-repudiation, offers low-cost fault tolerance, enables
authentication and confidentiality, and maintains long-term
data integrity.

4 Our proposed solution

This section aims to describe our solution to ensure privacy in
smart grid communications. The objective is to find an efficient
solution that maintains smart grid performance and helps operators
assess the necessity and risks of lacking privacy measures in
communications. Our approach guarantees privacy,
confidentiality, and authentication, while also offering
transparency through the utilization of blockchain technology.
Moreover, our solution provides user authentication and detects
any anomalous data, while ensuring the immutability of each user
transaction or request to the Utility.

Blockchain technology has been implemented to enhance
transparency and provide protection against unauthorized
modification of content, ensuring the existence of verifiable
records (Bao et al., 2021). Smart contracts, acting as
programmable agreements, enforce predefined rules to facilitate
actions. Like real-world contracts, they are entirely digital and
stored within distributed ledgers like blockchain. Smart contracts
enable secure and transparent exchanges of money, property, or
other assets, eliminating the need for intermediaries. They automate
agreement execution, providing immediate certainty to all
participants. Additionally, they can automate workflows by
triggering subsequent actions based on predefined conditions. In
the context of our paper, a smart contract includes a specific time
window during which authorized users are allowed to insert their
data into the smart contract.

To grant access to the Utility’s system, the users need to register
to the system during an initialization phase, and their public
information is stored on both the Utility Data Center and the
blockchain. Public information includes the user’s key identifier
of the secret key shared with the Utility, the user’s public key
encryption parameter, and the cluster’s identifier to which the
user belongs. The cluster forms a network of smart meters
belonging to the same geographical region, such as those
belonging to the same street or neighborhood. The Utility relies
on the clusters for planning purposes. In fact, the Utility focuses on
obtaining the total energy consumption of a cluster, instead of
requiring information about individual smart meters’ energy
consumption.

In our proposed architecture, each user (designated as Ui)
possesses a secret key shared with the Utility. Without the use of
blockchain, users would be required to transmit their encrypted
energy demands directly to the Utility or to an intermediary, which
would then forward the aggregated requests to the Utility for
decryption and processing. In this second scenario, the Utility
and the intermediary could collaborate to discern the user’s
energy demand, thereby compromising the user’s privacy.
Moreover, relying on an intermediary exposes the system to

security threats such as data forgery and replay attacks (Hasan
et al., 2022).

In our proposed architecture, the Utility leverages blockchain
technology to create smart contracts. The smart contracts are self-
executing according to their algorithms, and they are accessed by
authorized users to insert their data during a specific time window
determined by the Utility. It is worth noting that the data inserted by
users into a smart contract is accessible to all users on the
blockchain. As part of our solution, we aim to address this issue
by enabling the confidential insertion of data content into smart
contracts. This data would be accessible in a clear and readable form
only to its owner. Blockchain technology ensures data transparency,
integrity, and availability. Hence, the Utility and any third party can
access the data inserted by every user for later use (e.g., in case of
dispute or to verify a transaction).

As illustrated in Figure 1 (step a), whenever the Utility
updates its electricity rate, a new smart contract is generated
and published to the blockchain, before sharing its reference with
the users. Each interested user will then generate their energy
demand Di, a random value Ri known only to the user, and its
secret key Ki shared with the Utility, contributing the sum to the
smart contract as follows:

Di + Ui( ) + Ki (1)
Every smart contract created by the Utility incorporates an

integer value that is initially set to 0. When an authorized user
successfully inserts their data into the smart contract, the integer
value increases by one. The updated value is then used as an index to
determine the user’s position in the list of users who have inserted
data. The inserted data includes, among other parameters, the user’s
identifier, and the user’s public key (see Figure 1, step b).

Our solution implements ECDH (Elliptic Curve Diffie-
Hellman) as a key agreement protocol between each pair of
users. The algorithm’s domain parameters are generated by the
Utility and shared with each user during the initialization phase.
During that same phase, each user generates a pair of public and
private keys suitable for ECC. When a user inserts data into the
smart contract, their public key will be appended to the
inserted data.

The smart contract is essentially a program that acts as an
agreement between parties. It combines the logic of the agreement
with the code needed to enforce its terms automatically. The
contract is stored on the blockchain, which makes it secure and
tamper-proof. Each smart contract has a unique address, and its
execution is triggered either by transactions sent to that address or
by specific logical events. In fact, the smart contract can be
programmed to execute after a specific time interval or at a
predefined date and time. In our architecture, the smart meter
displays energy usage, rewards, and grid demand data. Moreover,
it handles aggregation, dynamic pricing, and settlement.

When the time window expires, each contributed user Ui who
has been assigned an odd integer value (i.e., the index i is odd), will
send its random value Ri to the nextUi+1 in the list (see Figure 1, step
c). The user Ui encrypts its random value Ri using a session key that
is generated from the public keys of two users, following an ECDH
key agreement protocol. Upon receipt, the user Ui+1 deploys the
same session key to decrypt the encrypted random value. This

Frontiers in Communications and Networks frontiersin.org04

Badra and Borghol 10.3389/frcmn.2025.1584152

https://www.frontiersin.org/journals/communications-and-networks
https://www.frontiersin.org
https://doi.org/10.3389/frcmn.2025.1584152


process ensures the confidentiality and secure transmission of the
random value between the two participating users.

Next, the user Ui+1 symmetrically encrypts, using its secret key
Ki+1 shared with the Utility, the sum of random value Ri and of its
own random value Ri+1. Then, it sends the result in (2) to the Utility
(see Figure 1, step d), which symmetrically decrypts the result using
the same key that is shared with Ui+1 to obtain (Ri + Ri+1).

To generate the value in (2), Ui+1 symmetrically encrypts, using
its secret key Ki+1 shared with the Utility, the sum of the random
value Ri and its own random value Ri+1. This encrypted result is then
sent to the Utility. Upon receipt, the Utility symmetrically decrypts,
using the same shared key with Ui+1, the received data to obtain the
sum (Ri + Ri+1).

Ri + Ri+1 + Ki+1 (2)
In the case where the last user who inserted data into the smart

contract has an odd integer index n, a specific procedure applies to
the last three users in the list. The user Un−1 adds its own random
value Rn−1 to the random value Rn−2 received from Un−2. Next, Un−1
encrypts the result (Rn−1 + Rn−2) using a session key shared with Un

and generated using an ECDH key agreement protocol. Upon
receipt, Un decrypts the encrypted data using the same session
key to obtain (Rn−1 + Rn−2). Next, Un symmetrically encrypts the
sum (Rn + Rn−1 + Rn−2) using its secret key shared with the Utility.
Then, the Utility decrypts it, using the same key to retrieve the
original sum.

Any symmetric algorithm could be used, such as AES, to
perform the encryption and decryption operations. However, for

the sake of performance, our solution utilizes additive homomorphic
encryption. This encryption method involves adding the keystream to
the plaintext during encryption and subtracting the keystream during
decryption. As discussed later, we incorporate protection against attacks
such as data forgery andman-in-the-middle attacks by enablingHMAC
(Hash-based Message Authentication Code).

After receiving and decrypting the sum of random values sent by
every user with an even index, the Utility generates the sum of all
random values, as follows:

∑n
i�1
Ri (3)

Next, the Utility uses the users’ identifiers listed in the smart
contract to retrieve their shared secret keys from its database (see
Figure 1, step e) and then computes the sum of those keys, as follows:

∑n
i�1
Ki (4)

Afterwards, the Utility collects the sum in Equation 1 inserted by
each user into the smart contract and computes their sum, as follows:

∑n
i�1

Di + Ri +Ki( ) (5)

Finally, the Utility adds the value in Equation 3 to the value in
Equation 4 and subtracts the result from the value in Equation 5 to
obtain the sum (Equation 6) of the users’ energy demands,
as follows:

FIGURE 1
A simplified Architecture of our Proposed Solution.
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∑n
i�1

Di + Ri +Ki( ) − ∑n
i�1
Ri +∑n

i�1
Ki

⎛⎝ ⎞⎠ � ∑n
i�1
Di (6)

5 Implementation and analysis

In this section, we evaluate and analyze our solution to demonstrate
its effectiveness in preserving users’ privacy and offering data integrity
and confidentiality, non-repudiation, and low-cost fault tolerance.
Furthermore, we assess its resilience against various attacks,
including replay attacks, data forgery, man-in-the-middle attacks,
and secret key disclosure. Moreover, we evaluate our solution in
terms of computational cost and transmission overhead.

5.1 Privacy-preserving of users identities

In our solution, the privacy of the users is ensured by leveraging
blockchain, cryptographic functions, and random values. At any
moment, no one, including the Utility, can correlate the content of
the user’s energy demand with the user’s identity. This is achieved by
employing additive homomorphic encryption along with the
inclusion of two random values before sharing the encrypted
energy demands with the Utility.

The use of additive homomorphic encryption allows the Utility
to perform computations on the encrypted data without decrypting
it. As a result, the Utility cannot gain direct knowledge of the specific
energy demand or link it to a particular user’s identity. The inclusion
of random values enhances privacy preservation by adding
complexity, making it harder for the Utility to deduce any
correlations between the request content and the user’s identity.

At any moment, the Utility has the value in Equation 1 inserted by
every user, as well as the sum of two random values received from a user
with an even index. For example, the Utility can extract the value in
Equation 1 of value U1 and of value U2 from the smart contract
(i.e., (D1 + R1 +K1) and (D2 + R2 +K2). After getting (R1 + R2)
from (U2, the Utility can apply (6) to obtain (D1 +D2). However,
there is no way for the Utility to determine D1 or D2 individually.

A potential privacy issue arises when user Ui+1 and the Utility
collaborate with each other. In this scenario, ifUi sends its encrypted
random value Ri to Ui+1, the latter may act maliciously and share Ri

with the Utility. This action could potentially disclose not only the
energy demand Di of Ui but also the energy demand Di+1 of Ui+1.
The sharing of Ri with the Utility by Ui+1 compromises the privacy
of both Ui and Ui+1. This is because Ui’s encrypted random value Ri

is used in the computation of Ui+1’s energy demand Di+1. By
revealing Ri, the Utility can potentially link Ri to Ui’s identity
and infer information about Di and Di+1. However, we assume
that this type of collaboration is unlikely to occur.

5.2 Data transmission integrity and data
forgery detection

Our solution provides comprehensive protection against not
only data breaches but also unauthorized modifications or
tampering of data transmitted from users to the Utility. We

understand that man-in-the-middle attacks pose a potential risk,
where attackers can intercept or forge the encrypted data
transmitted from every user with an even index to the Utility.
Our solution addresses this concern in a flexible and
straightforward manner. It incorporates HMAC applied to a
timestamp, the sum of two random values, and the secret key
shared between the Utility and the user with an even index. The
user then sends both its value in Equation 2 and the HMAC output
to the Utility.

Upon receipt, the Utility can verify the integrity of the value in
Equation 2 ensuring that the data has not been altered or modified
during its transmission. This provides robust protection against
potential man-in-the-middle attacks, error detection and data
forgery. It is worth noting that this HMAC-based security
measure incurs negligible performance overhead compared to all
existing measures.

5.3 Non-repudiation of energy demand and
long-term data integrity

Non-repudiation of demand refers to the assurance that a user
cannot deny generating a specific energy demand. It ensures that
once a user has submitted their energy demand to the Utility or
smart grid system, they cannot later deny having made that request.

Our solution ensures the non-repudiation of demand. With the
sum of the two random values and their secret keys, the Utility can
calculate the total energy demands inserted by both users into the
smart contract. In case of dispute with either user, the Utility can
request that Ui or Ui+1 disclose the value of its respective energy
demand. This ensures that neither user can deny the amount of their
energy demand, as it can be verified through their disclosed random
values and the computed sum. By leveraging blockchain technology,
our solution can maintain long-term data integrity by storing
information in an immutable and tamper-proof manner. Hence,
a user who has inserted an energy demand into the smart contract
cannot deny it at a later stage.

It is worth noting that several previous works have addressed the
issue of multiparty non-repudiation by employing various
techniques. These include (Hasan et al., 2022) PKI-based
solutions (Public Key Infrastructures), electronic notary systems,
trusted third-party (TTP) mechanisms, ID-based non-repudiation
approaches, and more (Li et al., 2022). However, they require
significant computational operations, considerable transmission
overhead, and complex management processes.

5.4 Data confidentiality and transparency

Before including its energy demand into a smart contract, the
user encrypts, using a secret key shared with the Utility, the sum of
its energy demand and a random value. This encryption ensures that
the energy demand remains confidential and protected from
unauthorized access. The encryption process takes three inputs to
generate the value in Equation 1: the user’s energy demand, a
random value only known to the user, and the secret key shared
with the Utility. Without knowing the random value, it is very
difficult for anyone to decrypt the value in Equation 1. This enhances

Frontiers in Communications and Networks frontiersin.org06

Badra and Borghol 10.3389/frcmn.2025.1584152

https://www.frontiersin.org/journals/communications-and-networks
https://www.frontiersin.org
https://doi.org/10.3389/frcmn.2025.1584152


the security and privacy of the user’s data during the data
insertion process.

To transmit its random value to the next user in the list, the two
users employ an ECDH key agreement protocol to generate a session
key. That session key will be used to encrypt the random value before
transmitting it to the user with an even index.

To transmit the sum of two random values to the Utility, the user
employs additive homomorphic encryption. This encryption takes
two inputs to generate the encrypted output: the sum of the random
values and the secret key shared between the Utility and the user
with an even index. Additive homomorphic encryption ensures the
confidentiality of the sum of random values during transmission.
Moreover, it allows the Utility to perform calculations on the
encrypted data without compromising the privacy of the
individual random values.

In all transmitted messages, users include their identifiers shared
with the Utility. However, for the sake of simplicity, we omitted this
detail from the description.

As for data transparency, the blockchain is inherently
transparent, allowing anyone to view both the transactions and
the code of the smart contracts. Moreover, anyone can review the
code to confirm that the contract will execute as intended. On the
other hand, transactions are permanently recorded on the
blockchain, providing a permanent record of actions and
agreements. The public nature of smart contract execution
promotes accountability and helps resolve disputes or verify
transactions.

5.5 Detection of replay attacks

Our solution is designed to be resilient to replay attacks, which
occur when an attacker intercepts and maliciously retransmits data
packets. We prevent such attacks by including an HMAC applied to
the data, along with a timestamp. The inclusion of the timestamp
allows us to easily detect and discard outdated or duplicate data
packets, effectively preventing replay attacks.

5.6 Cheap fault tolerance

We define fault tolerance as the ability of the Utility to
continue functioning properly and provide reliable services
even in the presence of faults or failures from specific users.
Even if a few users fail to submit their energy values in Equation
2, the Utility can still obtain the remaining energy demands from
other operational users. This allows the Utility to continue
computing the sum of the received random values, thereby
maintaining reliable services.

If a user fails to send its encrypted value to the user with an even
index, the Utility will exclude their value. Similarly, if the latter user
fails to send the encrypted sum of the random values to the Utility,
the Utility will exclude both users’ values. These values will be
excluded from the smart contract when computing the value
in Equation 5.

If a user fails to send its encrypted value to the user with an even
index, the Utility will exclude their value. Similarly, if the latter user
fails to send the encrypted sum of the random values to the Utility,

their value will also be excluded. These values will be omitted from
the smart contract when computing the value in Equation 5.

This ensures that the Utility can obtain a comprehensive
overview of the energy demands from operational users while
disregarding values from failed ones. As a result, the system
remains functional and resilient, even in the presence of user
failures. It is worth noting that the Utility can track failed users
and take appropriate actions, such as removing them from the
cluster if they repeatedly fail to complete their tasks.

5.7 Secret key disclosure

Preventing secret key disclosure is crucial for maintaining the
security of cryptographic systems. This involves implementing
robust key management practices, including secure storage,
controlled access, and secure transmission of keys.

According to the design of our solution, the disclosure of the
secret keys shared between the users and the Utility does not
compromise the overall security of our architecture. As we
mentioned earlier, when a user sends its random value to the
user with an even index, both users must first generate a session
key based on their ECDH public keys. This session key will be used
as an input for the encryption/decryption process.

Although the secret key shared between a user and the Utility
could be disclosed, an adversary would still need the victim’s private
key. This is necessary to generate the session key and impersonate
the victim’s identity or perform actions on their behalf. In this
regard, our solution is resilient to secret key disclosure.

5.8 Collaborative risks and resilient
aggregation

Our solution stands in sharp contrast to methods that require
key updates or key redistribution among users. It offers a flexible
user enrollment and revocation mechanism, allowing users to join or
leave the data aggregation process dynamically.

In scenarios involving collaborative risks, several issues should
be considered, especially potential Sybil attacks and communication
latency in large-scale networks. Malicious entities could create
multiple fake identities to manipulate the system or disrupt its
functionality. Our solution mitigates Sybil attacks directly through
the usage of HMAC applied to each user request. While
communication overhead is optimized by our solution, delays
may still occur in wide-area deployments, especially in areas with
limited network infrastructure. These delays could affect the
timeliness of energy demand aggregation. Grouping users into
clusters improves performance but may face limitations in
dynamic environments where users frequently join or leave
clusters. Since our solution leverages blockchain, it does not
require re-clustering mechanisms to manage resource allocation
in clusters, thus avoiding significant delays or overheads.

While some existing solutions offer strong privacy guarantees,
they often assume users within a cluster act honestly when sharing
their encrypted energy demands. If a user deliberately shares
incorrect values, it could compromise the integrity of aggregated
demands. In contrast, the impact of such behavior in our solution is
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limited: only the user providing the value in (2) and the preceding
user in the list will be affected if one of them shares incorrect values.
The demands of other users remain unaffected, ensuring greater
resilience.

5.9 Proof of concept

As a proof of concept, we have developed two straightforward
Python programs in conjunction with Solana for the blockchain
network. These programs demonstrate the achievement of privacy
preservation for users. One program represents the Utility, and the
other represents the consumers (users). The Utility program serves
as the coordinator, responsible for announcing electricity prices and
creating corresponding smart contracts on the Solana blockchain.
When a new price is determined, the program deploys a smart
contract that encapsulates the auction logic and participation rules.
The contract reference (a unique identifier) is then shared with
potential participants.

The users can optionally participate in the process. Each user
registers for the auction by inserting its value (as per Equation 1)
into the smart contract. This ensures that user data remains private
while leveraging the blockchain’s transparency and immutability.

This proof of concept demonstrates the effective use of
blockchain technology, specifically Solana, for decentralized and
privacy-preserving auctions. It highlights the role of smart contracts
as secure intermediaries for data submission and auction
management while maintaining user confidentiality.

Blockchain was selected over Federated Learning due to its
enhanced security, decentralization, and transparency. In fact,
blockchain better aligns with the requirement for decentralized
decision-making and maintaining user privacy, without the need
to a collaborative model training. Moreover, blockchain natively
supports transaction-based processes and smart contract
functionality, which are central to the described system.
Blockchain eliminates the need for a trusted central server,
ensuring transparency and reducing the risk of data
manipulation. In addition, blockchain ensures scalability and
efficiency for decentralized auctions.

Our proposed solution is designed to balance privacy, security,
and transparency in smart grid communications. While scalable to
an extent, challenges related to computational overhead, transaction
throughput, and consensus mechanisms need to be addressed to
support large-scale deployments effectively. Implementing targeted
optimizations and leveraging advanced blockchain technologies can
significantly enhance the system’s scalability, ensuring reliable
performance even in expansive smart grid networks.

It is worth noting that real-time data flow and quick responses to
changes, like sudden demand spikes, faults, or shifts in energy
distribution, are vital for keeping the grid stable and efficient. In
addition, the advanced data protection can slow down real-time
decision-making, while not enough can leave the system open to
security threats. To address this, encryption methods need to be
more efficient, or faster processing techniques should be adopted, so
the grid can respond quickly while keeping data secure and intact.
On the other hand, the key management system must be carefully
designed to prevent key exposure or misuse. Finally, the time
window for data insertion and the encryption/decryption cycles

could delay the ability to quickly adjust to dynamic grid conditions,
which is critical in smart grid management.

The scalability of our proposed solution relies heavily on
efficient data handling, privacy-preserving encryption techniques,
and robust blockchain architecture. As the system scales,
performance may be affected by increased transaction volumes
and computational loads. However, our solution maintains the
system’s performance, security, and privacy as the number of
users grows. In fact, it is based on optimizing blockchain
architecture, leveraging distributed computing, and implementing
lightweight encryption techniques.

From storage perspective, our proposed solution requires
storing user data, public keys, and transaction details in the form
of smart contracts. Public information, such as public keys and
identifiers, is stored for each user. The overhead depends on the size
of cryptographic keys and metadata for each transaction. As the
number of users and transactions grows, blockchain storage can
quickly become a bottleneck, especially if there are no efficient
pruning mechanisms in place.

According to Figure 2, the system shows improved efficiency
in handling users compared to the initial 1:1 user-to-core ratio. In
fact, only 3.5 cores are needed to support 1000 users. This
suggests that the system scales effectively. The enhanced
scalability is likely due to optimizations such as load
balancing, multithreading, and resource sharing. These
optimizations improve core utilization and performance as the
user load increases.

Although this configuration can be optimal for real-life
scenarios, further optimization can be achieved by following the
recommendations below:

• Rewrite the application using Rust: Rust is a high-performance
language known for its efficiency, memory safety features, and
excellent memory management capabilities.

• Profile memory usage: Use Rust’s profiling tools to analyze
and optimize memory allocation within the application. This
will help identify any memory inefficiencies, enabling better
memory management.

• Ensure proper data encoding and decoding: Leverage Rust’s
strong type system to ensure proper data encoding and
decoding. This minimizes unnecessary data transformations
and improves overall performance.

• Utilize Rust’s standard library: Leverage the efficient
networking tools and data structures provided by Rust’s
standard library. This will enhance the application’s ability
to efficiently manage and handle high workloads.

5.10 Analysis of computational cost and
communication overhead

For performance optimization and to eliminate delays
associated with session key generation, the Utility can group
users into clusters, each containing a few hundred users. During
the transmission of random values, both users should agree on a
session key using ECDH. To avoid repeated session key generation
for future transmissions, each user stores the session key along with
the other user’s identifier in a personal data structure.
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Alternatively, during the initialization phase, the Utility can
share the ECDH public keys of all users within a cluster. Each user
can then generate session keys offline for use with other users within
the same cluster. This approach eliminates the need to include the
user’s ECDH public key in their energy demands and avoids the
requirement of generating session keys dynamically.

In practice, the Utility can create clusters with up to 100 users. In
this case, each user would only need 1.6 KB of storage to store the
session keys. These session keys, along with ECDH private keys and
individual secret keys shared with the Utility, can be securely stored
in tamper-resistant devices, such as smart cards or TPMs (Trusted
Platform Modules).

Table 1 shows the computational costs of our solution in a
cluster consisting of n users. As previously mentioned, users can
choose between AES or homomorphic encryption when
transmitting their random values to the user with an even index.
In the AES encryption scenario, calculating HMAC is not required.
However, in the homomorphic encryption scenario, HMAC is
necessary to mitigate the risks of data forgery.

In terms of communication overhead, a total of (n + 1)messages
are needed to add the smart contract to the blockchain and insert the
users’ energy demands. Half of these messages are transmitted
locally over a Neighborhood Area Network (NAN), resulting in

minimal delays. The other half are sent to the Utility over a Wide
Area Network (WAN). Moreover, (n + 1) messages are required to
convey the random values between users with even indices and the
Utility. However, the second set of (n + 1) messages should not be
counted as additional overhead, as they are part of the normal
energy demand aggregation process. Therefore, only (n + 1)
messages should be considered as communication overhead in
the implementation of our solution. The communication
overhead and computational costs of our solution are negligible
compared to existing solutions. Furthermore, our solution ensures
all the security services provided by those solutions, along with the
added security properties previously discussed.

When comparing our solution with existing ones, using metrics
like communication and computation overhead, the results show
that our scheme outperforms or matches the efficiency of others.
Moreover, our solution addresses several cybersecurity issues that
others cannot.

Table 2 presents the comparison results across schemes (Liu
et al., 2020; Zuo et al., 2020; Zhang et al., 2021; Chen et al., 2019),
covering the communication costs and the following key security
features: anonymity, fault tolerance, replay attack prevention, error
detection, non-repudiation, tamper resilience, and data forgery
resilience. The results demonstrate that our scheme offers
superior security features compared to existing schemes.

6 Conclusion

This paper proposes a new blockchain-based, privacy-
preserving solution for users in the smart grid. It is designed to
mitigate various attacks, including data forgery, man-in-the-middle,
and replay attacks. Moreover, it efficiently reduces computational
costs and communication overhead, making it well-suited for
resource-constrained devices like smart meters.

We provide comprehensive analyses concerning security and
performance comparisons and demonstrate significant advantages

FIGURE 2
Number of core processors to handle users’ requests.

TABLE 1 Computational cost.

Entity Homomorphic encryption AES

Utility n p(THdec
+THMAC )
2

n p(THenc+THdec
+THMAC )

2

User THenc+THdec
+THMAC

2
Tenc+Tdec+THenc

2

n represents the number of users.

THenc represents the computation for homomorphic encryption.

THdec represents the computation for homomorphic decryption.

Tenc represents the computation for symmetric encryption.

Tdec represents the computation for symmetric decryption.

THMAC represents the computation for HMAC.
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over existing schemes. The solution also supports additional security
services, including non-repudiation and long-term data integrity. As
a result, it holds great promise for ensuring the privacy of smart
grid users.

To further enhance the usability of our scheme, we plan to focus
on the performance and efficiency of blockchain and assess its
impact on our solution’s performance.
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