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Introduction: In precision agriculture, Wireless Sensor Networks (WSNs) are
essential for real-time monitoring and informed decision-making.
Nevertheless, increased node density, constrained energy supplies, and
unstable environmental circumstances present barriers to resource allocation
and communication efficiency.

Methods: To address these limitations, a hybrid system combining deep learning
and metaheuristic optimization was developed, integrating Bidirectional Long
Short-Term Memory (Bi-LSTM) with Ant Colony Optimization (ACO). Real-time
multivariate data, encompassing temperature, humidity, soil moisture, and power
usage, were gathered utilizing a customized embedded sensing technology used
in an agricultural environment. Z-score normalization was utilized for
preprocessing, followed by Principal Component Analysis (PCA) for feature
extraction and Particle Swarm Optimization (PSO) for the selection of
appropriate feature subsets. The Bi-LSTM model was optimized using ACO to
improve temporal learning and energy-efficient scheduling among sensor nodes.

Results: The assessment of the proposed Bi-LSTM-ACO system resulted in an
accuracy of 98.61%, precision of 92.16%, recall of 98.06%, and an F1-score of
91.41%, outperforming baseline models including LSTM, GRU, and CNN-LSTM.

Discussion: The findings indicate that the proposed framework significantly
decreases energy consumption, enhances resource usage, and guarantees
low-latency actuation in Agri-IoT implementations. The proposed work
provides a scalable and intelligent system for real-time, energy-efficient
agricultural monitoring.
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1 Introduction

Modern agriculture faces growing pressure to satisfy global
food requirements, enhance sustainability, and adjust to
constrained resources. In addition, it promotes sustainable
farming methods and addresses the shortage of resources
(Jararweh et al., 2023). The growing population and shifting
climate increase the pressure on traditional farming practices.
This calls for a paradigm change in favor of more
environmentally friendly and resilient methods (Wakweya,
2023). The complex interactions between these problems have
spurred research in smart agriculture. Technology is driving the
novel and revolutionary concept of “smart agriculture,” which
aims to reduce environmental impact, improve operational
effectiveness, and maximize resource use. Smart agriculture, as
opposed to traditional methods, incorporates cutting-edge
solutions to build an agricultural environment that is more
data-driven and networked (Vishnoi and Goel, 2024). This
paradigm seeks to reduce the ecological footprint left by
conventional farming practices to promote sustainability, in
addition to increasing agricultural productivity. Conventional
agricultural practices are inadequate to satisfy the demands of an
expanding population under evolving climatic conditions. IoT-
based sensing solutions provide a scalable, data-driven solution
for real-time environmental monitoring. One of the most
important initial steps in creating an intelligent and
networked ecosystem is the use of IoT (Internet of Things) in
agriculture. The deployment of a surveillance system based on
the Internet of Things aims to revolutionize farmers’ data
collection and utilization. To gather vital data for precise
decision-making in smart agriculture, it focuses on carefully
placing sensors and communication devices throughout
agricultural infrastructure.

The IoT-based monitoring system provides farmers with
real-time data, allowing them to make informed decisions
about energy use, soil moisture, and atmospheric conditions.
This information can help improve resource allocation,
streamline operations, and boost efficiency. The technology
also allows for more adaptable and responsive agricultural
practices, such as improved energy management and precise
irrigation methods. By providing farmers with real-time
insights into soil moisture levels, the Internet of Things (IoT)-
based monitoring system enables resource optimization and
promotes sustainable agricultural practices, equipping them
with the information needed to make informed decisions
(Liu, 2022).

Allocating resources, such as time, energy, bandwidth, and
processing capacity, to conflicting needs is an essential procedure.
Many industries, such as energy management, manufacturing
processes, transportation networks, and communication systems,
depend on the efficient allocation of resources (Sun et al., 2020).
Resource allocation is important in wireless sensor network (WSN)-
based agriculture systems since available resources are
characteristically restricted and sensor energy consumption must
be reduced to increase network lifetime. Several benefits, including
improved system performance, lower energy usage, increased
dependability, and improved scalability, can result from optimal
resource allocation.

In agri-IoT networks, efficient resource allocation is essential for
maintaining system scalability, lowering latency, and ensuring
energy economy. Numerous techniques, such as heuristic,
optimization, reinforcement learning, and clustering-based
approaches, have been put forth for this goal. Clustering
techniques such as threshold-sensitive energy-efficient (TEEN)
network, hybrid energy-efficient distributed (HEED) clustering,
and low-energy adaptive clustering hierarchy (LEACH) are
frequently used to rotate roles among sensor nodes and aggregate
data, thereby increasing network’s lifetime (Daanoune et al., 2021;
Jabbar et al., 2023; Daanoune et al., 2021; Jabbar et al., 2023). To
effectively schedule sensing tasks, optimize routing paths, and
manage energy resources, optimization-based metaheuristics such
as ant colony optimization (ACO), particle swarm optimization
(PSO) (Prakash et al., 2024), genetic algorithms (GAs), gray wolf
optimizer (GWO), and whale optimization algorithm (WOA)
(Chandrasekaran and Rajasekaran, 2024) have been used. For
tasks such as irrigation and scheduling sensors, methods such as
Q-learning, deep Q-networks (DQNs), and multi-agent RL help
make smart decisions in changing situations (Ganesh et al., 2023,
Zhao et al., 2022). In less complex situations, rule-based approaches
such as round-robin procedures and priority scheduling are
employed for load balancing and job ordering. Together, these
algorithms enable scalable, adaptive, and intelligent resource
management in smart agriculture systems.

According to recent studies, combining optimization techniques
with predictive modeling greatly enhances resource allocation in
agri-IoT systems. Numerous deep learning and machine learning
models have been used to predict environmental factors and
maximize the use of scarce agricultural resources. For example,
IoT-based frameworks have employed convoluted neural network
(CNN) and long short-term memory (LSTM) models to forecast
agricultural diseases and insect outbreaks, allowing for the timely
administration of pesticides and lowering the use of chemicals
(Wang et al., 2024). To promote accurate irrigation and
minimize water waste, models such as random forest, XGBoost,
and LSTM have been used to forecast weather and soil moisture (Li
et al., 2023). Optimal irrigation strategies that balance crop water
requirements and energy consumption have been learned using
deep reinforcement learning approaches such as DQNs.
Additionally, simple scheduling methods have been combined
with bidirectional long short-term memory (Bi-LSTM) models to
predict future soil moisture levels and enhance control over
irrigation cycles. These methods show how prediction-driven,
context-aware decision-making is increasingly being used in
smart agriculture to maximize the use of energy, water, and
chemical resources, eventually fostering cost-effectiveness and
sustainability.

The following justifies the use of optimization in the proposed
Bi-LSTM model:

• Resource allocation in agri-IoT systems within WSNs
necessitates the creation of scalable, robust, and dependable
deep learning models.

• The Bi-LSTM model comprises numerous hyperparameters
that substantially influence its predictive efficiency.
Consequently, optimizing these hyperparameters is essential
for enhancing accuracy and efficiency.
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The primary contributions of this work are as follows:

• The proposed model (Bi-LSTM–ACO) is trained using time-
series data collected from an agricultural field, with the dataset
obtained through a real-time embedded sensor system that is
positioned in the field.

• A new optimization technique based on the behavior of certain
animals is being offered in order to utilize the power of sensor
devices positioned inside the wireless sensor network. Ant
colony optimization is a method used to tackle complex
problems, which draws inspiration from nature.

• To solve the specific challenges of resource allocation such as
the utilization of power and optimization of energy in IoT
networks, a novel Bi-LSTM–ACO methodology is proposed.

• This methodology addresses the crucial problem of resource
allocation in Internet of Things networks by efficiently
distributing resources to IoT applications and devices
according to different priorities and needs.

The previous work explains the contributions of various
authors, which are discussed in Section 2 along with the
proposed Bi-LSTM with ACO algorithm. The analysis of model
performance and the results are presented in Section 3 (Results and
Discussion). Finally, the discussion and summary are provided in
Section 4 (Conclusion).

2 Related work

Energy efficiency and predictive intelligence in smart agriculture
have emerged as vital research domains owing to the growing use of
WSNs and IoT-enabled devices. Conventional approaches often fail
to inadequately address the dynamic management of power
consumption and the accurate forecasting of energy usage in
these systems. Recent studies have investigated hybrid models
and optimization methods to mitigate these limitations. A joint
optimization approach using deep reinforcement learning for the
management of power and channel allocation in agricultural
wireless sensor networks was suggested by Han et al. (2021). The
network control issue is formulated as a Markov decision process
and addressed by deep deterministic policy gradient (DDPG),
resulting in enhanced network rewards and energy equilibrium
under SINR constraints.

A hybrid LSTM–GRU architecture was proposed by Rahman
et al. (2024) for real-time environmental and electricity forecasting
in IoT systems. The integration of both models substantially
diminished prediction errors, yielding an MAE of 3.78% and an
RMSE of 8.15%, hence providing enhanced reliability compared to
individual LSTM or GRU models.

To tackle privacy concerns in distributed IoT settings, Sharma
and Kaur (2024) introduced a fog-based federated learning
framework for time-series prediction. The solution sustained
performance equivalence with centralized models despite non-IID
data distributions while safeguarding user data privacy and
minimizing network traffic. In the field of building energy
prediction, Wang et al. (2025) introduced the BE-LSTM model,
which integrates backward elimination (BE) with LSTM for efficient
forecasting on limited datasets. The method surpassed CNN–LSTM

and Bi-LSTM models, especially in contexts featuring non-periodic
human behavior patterns.

Tace et al. (2022) introduced a hybrid deep learning model that
combines CNN with a multi-layer bidirectional LSTM
(M-BDLSTM) for short-term home energy consumption
prediction. The model exhibited enhanced accuracy with reduced
RMSE and MSE across various validation methods, confirming its
efficacy for practical application.

A hybrid optimization technique called the EAO and an
enhanced CNN are suggested by the clustering algorithm to
boost training accuracy and precision. The methodology achieves
better results than current methods with a 99% packet delivery ratio,
76.92% throughput, 98.24% network lifetime, 50%maximum energy
consumption, and 99.23% classification accuracy (Pandiyaraju
et al., 2023).

Vashisht et al. (2024) proposed a GRU–Bi-LSTMmodel for crop
yield prediction, integrating data preprocessing, an improved
shearlet transform for feature extraction, and enhanced gray wolf
optimization for feature selection. The hybrid model attained a high
accuracy of 97% and demonstrated robust performance in precision,
recall, and F-measure, surpassing conventional techniques. This
underscores its efficacy in improving precision agriculture via
precise yield forecasts.

Ullah et al. introduced a hybrid deep learning framework that
integrates CNNs with M-BDLSTM for the prediction of short-term
residential energy consumption. The model incorporates data
preparation, sequential learning, and comparing prediction
phases. It adeptly captures temporal trends and enhances
forecasting precision, surpassing conventional models by
reducing prediction errors such as MSE and RMSE, as proven by
10-fold cross-validation and hold-out techniques (Ullah et al., 2020).

Tace et al. devised an intelligent irrigation system utilizing IoT
and machine learning to enhance water efficiency in agriculture.
Through the integration of environmental sensors (humidity,
temperature, and precipitation) with models such as KNN, SVM,
and neural networks, and the deployment of the system utilizing
Node-RED and MongoDB, they attained precise, cost-effective, and
adaptable irrigation management. The KNNmodel surpassed others
with an accuracy of 98.3% and a low RMSE, illustrating the promise
of ML–IoT integration in precision irrigation (Tace et al., 2022).

Liu et al. (2024) tackled the issue of improving Bi-LSTM
hyperparameters for short-term power load forecasting by
introducing a hybrid differential evolution–improved Harris
hawk optimization (DE–IHHO) approach. This method improves
the global search efficacy and convergence rate of Bi-LSTM training
by integrating evolutionary and metaheuristic techniques. The
results demonstrated significant enhancements in MAE, MAPE,
and RMSE parameters, confirming the model’s efficacy for dynamic
load forecasting in smart grid applications.

Mbamba and Batstone (2023) created a genetic algorithm-
driven optimization framework for deep learning models in the
water sector. The research combines feature selection methodologies
(PCC, PCA, and GA) with Bi-LSTM networks to forecast effluent
quality and biogas generation. The findings indicate that shallow
network designs with optimized hyperparameters yield efficient,
interpretable, and precise forecasts, rendering this technique
appropriate for multi-objective optimization and predictive
analytics in environmental systems.
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Mustaffa et al. (2024) introduced a hybrid forecasting model for
Earth’s surface temperature prediction utilizing deep learning and
optimized with the Barnacles Mating Optimizer (BMO). The model
optimizes both weights and biases to improve predictive accuracy on
a global temperature dataset. Compared to other optimization
methods such as PSO, HSA, ACO, and traditional ARIMA, the
BMO-optimized deep learning model exhibited enhanced
performance in terms of MAE, RMSE, and R2, underscoring its
efficacy for climate-sensitive applications, including agriculture and
meteorology.

These studies underscore the increasing implementation of deep
learning, metaheuristic optimization, and decentralized learning
frameworks in time-series forecasting and energy management.
Nonetheless, a research gap persists in the application of these
approaches to real-time agri-IoT systems featuring multivariate
sensor–actuator feedback. This study tackles the existing gap by
employing an integrated Bi-LSTM–ACO model designed for
energy-efficient scheduling and resource optimization in
agricultural sensor networks.

The proposed agri-IoT wireless sensor network system depends
on several factors, including node placement, hardware status, and
dynamic power consumption. To ensure energy-efficient
communication, it is critical to develop a strategy that ensures
sufficient energy to complete tasks effectively. The goal of this
integrated approach is to improve communication reliability and
energy efficiency inside the agricultural IoT network. Figure 1
depicts the total system architecture. There are several sensor
nodes in the agricultural field that are used to read data. The
sensor node, used to monitor the agricultural field and perform
necessary measures, such as controlling the water pump, consists of
various sensors including those for temperature, humidity, and
soil moisture.

The sensor data are sent to the IoT cloud. The dataset
consists of sensor values, actuator state, and power
consumption of the sensor node. The deep neural network
model, Bi-LSTM with ACO, is used to determine the power
consumption and energy optimization of the sensor nodes using
a trained dataset. In this context, we have introduced a
comprehensive approach that incorporates Z-score
normalization for preprocessing; particle swarm optimization
is used for feature selection, and principal component analysis
(PCA) is used for feature extraction.

2.1 Dataset preparation

A real-time dataset was generated using a custom-built
embedded system to facilitate predictive energy optimization in
the agri-IoT setting. The system consisted of a collection of
environmental sensors combined with a microcontroller and
linked to a cloud dashboard for ongoing data capture and
logging. The sensor suite comprised a DHT11 for temperature
and humidity measurement, a capacitive soil moisture sensor,
and a water level sensor for irrigation monitoring. The sensors
were connected to a Node MCU ESP8266 microcontroller that was
chosen for its integrated Wi-Fi functionality and energy-efficient
performance, which is ideal for IoT applications.

The system intermittently collected environmental parameters
and actuator states (e.g., water pump ON/OFF) and relayed the
gathered data to a cloud-based IoT platform for storage and analysis.
The dataset was created by recording time-stamped sensor readings
and the associated power consumption values computed for each
sensor transmission cycle. The cloud platform offered an API
interface for accessing historical records, which was subsequently
utilized for model training and assessment.

2.2 Preprocessing: Z-score data
normalization

Z-score normalization (standardization) is used on the dataset to
guarantee scale consistency and enhance the prediction model’s
efficacy. Time, latency, temperature, humidity, soil moisture, and
pump status are among the features included in the collection. The
data formats include strings, integers, floats, and possibly missing
(NaN) values. First, a uniform numerical representation is created
by cleaning and converting these numbers.

When feature variables have different magnitudes or units (such
as temperature in degrees Celsius versus humidity in %), Z-score
normalization is particularly helpful. It helps the Bi-LSTM model
learn more effectively by transforming the data so that each feature
has a mean of 0 and a standard deviation of 1.

The Z-score normalization for temperature data point xti is
calculated using the Equation 1:

Zti � xti − μ

σ
. (1)

Here,

Zti − z − score of the data point at xti,

μ −mean of dataset,

σ − standard deviation of the dataset.

This standardization ensures that each input feature contributes
proportionally to the model’s learning process and improves
convergence during training.

2.3 Feature extraction: PCA

PCA is a statistical method for reducing dimensionality while
maintaining the greatest amount of data variation. It converts the
initial correlated characteristics into principal components, which
are a collection of linearly uncorrelated variables. These elements
stand for the directions along which the data variance is maximized
in the feature space. In multivariate sensor data, such as
temperature, humidity, soil moisture, and actuator status
included in agri-IoT datasets, PCA helps simplify feature space
complexity while maintaining important predictive information.

Equation 2 shows that the mean μt depends on temperature data
input values xti, where i � 1, 2, . . . .M represent stochastic
m-dimensional sensor data:

μt � 1
M

∑M
i�1
xti. (2)
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Equation 3 expresses the covariance matrix with input xti

as follows:

C � 1
M

∑N
i�1

xti − μt( ) xti − μt( )T. (3)

PCA proceeds by solving the eigenvalue problem of the
covariance matrix as shown in Equation 4:

Cvi � λiυi, (4)

where vi − eigenvectors, i � 1, 2, . . . . . . , m and

λi − eigen vectors, i � 1, 2, . . . .n.

To use low-dimensional vectors to describe data records, we create
m eigenvectors, also called principal directions, which correspond to the
n highest eigenvalues. Using this approach, we can identify the directions
along which the data differ the most. These principal directions are
critical for efficient dimensionality reduction and analysis since the
variance of the input data predictions along these directions is
known to be higher than along any other direction.

The matrix of eigenvectors is formed as defined in Equation 5.

φ � v1, v2, . . . ., vm[ ], Z � diag λ1, λ2, . . . .λm[ ]. (5)
The relationship between the eigenvectors and eigenvalues is

expressed in Equation 6.

CΦ � ΦZ. (6)

Equation 8 defines the threshold condition for retaining the top
principal components.

∑m
i�1λi∑n
i�1λi

≥ v. (7)

A new input dataset, y, is assigned a low-dimensional feature
vector using the given equations to calculate howmany eigenvectors
to choose based on a precision value, v, that has been selected. This
procedure significantly reduces the dimensionality while preserving
the highest degree of variation in the recovered features. The
transformed dataset using principal components is computed
using Equation 8.

xt � ΦTxti. (8)

2.4 Feature selection: PSO

PSO is a nature-inspired metaheuristic method employed to
address intricate optimization challenges. This study utilizes PSO
as a feature selection technique to discern the most pertinent
properties from the agri-IoT dataset, thereby minimizing
dimensionality and enhancing the efficacy of the subsequent
Bi-LSTM prediction model.

PSO commences with the initialization of a population (swarm)
of particles, each representing a potential solution (a subset of
characteristics). The particles iteratively adjust their placements
in the feature space, influenced by their individual optimal
experiences (p best) and the global optimal solution identified by
the swarm (g best). The velocity of each particle is updated according
to Equations 9, 10 determines the new position of each particle based
on its velocity.

vk+1p � wvkp + C1xtr1 .
pbestp − Skp

Δt( ) + C2xtr2.
gbestk − Skp

Δt( ), (9)

Sk+1p � Skp + vk+1p .Δt. (10)

FIGURE 1
Overall proposed system architecture.

Frontiers in Communications and Networks frontiersin.org05

Rathi and Gomathy 10.3389/frcmn.2025.1587402

https://www.frontiersin.org/journals/communications-and-networks
https://www.frontiersin.org
https://doi.org/10.3389/frcmn.2025.1587402


Here,

vkp − velocity ofpth particle at kth iteration.

r1and r2 − random numbers in the range of 0, 1[ ].
Skp − position ofpth particle at kth iteration.

C1 andC2 − acceleration coefficients.

pbestp − best position ofpth particle.

gbestk − best particle position based on overall swarm experience.

Δt − time step set to 1s.

The inertia weight (w) decreases linearly with iterations using
the maximum and minimum constraints (wmax and wmin) and is
described as follows:

w � wmax + wmin − wmax( )X itr/itrmax
. (11)

itr − current iteration.

itrmax −maximum iteration count.

Particles’ velocity and position updates guide the swarm’s
cognitive and social paradigms through the search space. PSO
can address complicated engineering optimization issues, but it
often results in premature convergence due to local entrapment.

2.5 Bi-LSTM

2.5.1 LSTM
Recurrent neural networks (RNNs) with LSTM are ideal for

sequential input applications because of their long-term dependency
understanding capabilities. The three primary components of their
gate structure that normalize the information flow are the input gate,
forget gate, and output gate. The forget gate uses a sigmoid function
in conjunction with a tanh function to determine which data in the
memory cell should be deleted or retained. These features are also

used by the input gate to control when fresh data are added to the
memory cell. Using a sigmoid function, the output gate chooses the
data that will have an impact on the current output. Figure 2 shows
the LSTM architecture.

The forget gate in the cell’s gating mechanism initially
determines which data should be removed from the neural
network’s state. It processes the up-to-date involvement (xt) and
earlier output ht−1 when in the state Ct−1. The result has a range of
0–1, where 1 represents total information retention and 0 represents
total information elimination. Equation 12 provides a
comprehensive computational formula.

gf
t � σ Wf ht−1, xt[ ] + bf( ). (12)
σ − sigmoidfunction.

Wf − weightmetrics of the forget gate.

bf − bias of the forget gate.

The next stage involves determining which new data should be
retained in the neural network. This phase has two components: a
tanh function generates a candidate vector state, Nt, which can be
added to the cell state, and a sigmoid layer, known as the “input
gate,” determines which values to update first. The computational
formulas for this process are presented in Equations 13, 14.

gi
t � σ Wi. ht−1, xt[ ] + bi( ), (13)

Nt � tanh Wn. ht−1, xt[ ] + bn( ). (14)

Here, Wi andWn − weightmetrics of input and input
candidate ents, respectively.

bi − bias at the input gate.

bn − bias at input candidate gate.

Updating the cell state from the earlier cell state, Ct−1, to the
current cell state, Ct, is the third step. The computational formula is
presented in Equation 15, where Nt × gi

t represents the new

FIGURE 2
Architecture of LSTM
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candidate value and Ct− 1 × gi
t determines which information of the

old unit status is stored.

Ct � Ct−1g
f
t +Ntg

i
t. (15)

The last stage involves determining the LSTM’s output. The
output of the sigmoid threshold is obtained by multiplying the
unit state’s tanh value with the output of the sigmoid layer,
which first decides which unit states should be output. This
normalizes the output value and yields the new unit state of
the output. The computational equations are displayed in
Equations 16, 17.

go
t � σ Wo. ht−1, xt[ ] + bo( ), (16)

ht � go
t tanh Ct( ). (17)

Here,

Wo − weightmetrics of the output gate.

bo − bias of the output gate.

2.5.2 Bi-LSTM
An extension of the LSTM neural network, a Bi-LSTM network,

is developed to gather data in sequential input from both past and
future contexts. The traditional LSTM network is used to calculate
sequence data step by step in chronological order, from front to rear.
However, there are times when the sequence’s backward
dependency relationship, that is, the potential for a one-time
step’s outcome to potentially affect subsequent time steps,
becomes rather significant. The inverse layer of the Bi-LSTM
network was added to enable bidirectional scanning to solve this
problem. Figure 3 illustrates the diagram of Bi-LSTM.

Bi-LSTM consists of two LSTM layers, one forward and one
reverse. Combinations of hidden states in both directions can be
passed into subsequent layers to extract temporal information.
Equation 20 describes data as a result of concatenating the
forward (left-to-right) and backward (right-to-left) hidden states
in the Bi-LSTM output. The final hidden state is computed using

Equations 18, 19 and the forward and backward hidden states are
combined as shown in Equation 20.

hft
�→

� LSTM ht−1, xt−1( ), (18)
hbt
→

� LSTM ht+1, xt−1( ), (19)
ht � αhft

��→
+ βhbt
��→

. (20)

Here, xt − input data of the source.

hft
�→

− output of the forward LSTMhidden layer.

hbt
→

− output of the reverse LSTMhidden layer.

t, α, β − source constant coefficient.

2.6 Ant colony optimization

The ACO-based approach functions as follows. An ant could see
every neuronal connection in a theoretically fully linked
bidirectional long short-term memory network as a potential
path, with each node capable of connecting to every other node
in the succeeding layer and to a corresponding node in the recurrent
layer. The master process records the pheromone quantity of each
connection and initializes each potential connection with a base
pheromone. A chosen number of ants are given neural network
designs to use in worker processes, which then ask them to pick a
path across the fully linked neural network that is skewed by the
quantity of pheromone on each connection. Several ants can choose
the neuronal connections. Once these ant paths are integrated, the
resulting neural network design is distributed to worker processes
for training using methods such as backpropagation, evolutionary
algorithms, or other neural network training techniques on the given
flight data. The master process manages a population of the best
neural network designs. If a worker reports that the accuracy of a
newly trained neural network surpasses the existing population, the
pheromone levels on the corresponding links within the neural

FIGURE 3
Bi-LSTM architecture.

Frontiers in Communications and Networks frontiersin.org07

Rathi and Gomathy 10.3389/frcmn.2025.1587402

https://www.frontiersin.org/journals/communications-and-networks
https://www.frontiersin.org
https://doi.org/10.3389/frcmn.2025.1587402


network are increased. Similar to the standard ACO algorithm, the
master process continuously reduces pheromone levels over time.
This approach facilitates the creation of recurrent neural networks
with multiple hidden layers and nodes, enabling the identification of
optimal designs for predicting flight characteristics. To balance
computational cost and enhance the accuracy of Bi-LSTM, this
study combines ACO with Bi-LSTM.

The Bi-LSTM model is optimized in the proposed method by
adjusting its parameters and allocating resources more effectively
using ACO. The Bi-LSTM network processes input data both
forward and backward to forecast sequential data patterns such
as energy use and resource requirements. However, the network’s
parameters (such as weights, biases, and hyperparameters) must be
adjusted to attain the best possible performance. By mimicking the
behavior of ants searching for the shortest paths, each of which could
be a potential solution for configuring the Bi-LSTM model, ACO
improves this process. The ACO algorithm iteratively modifies
pheromone levels to direct the search toward optimal solutions
after evaluating these paths according to a performance criterion
such as prediction accuracy or energy efficiency. ACOmakes certain
that the Bi-LSTM model achieves increased accuracy, lower energy
consumption, and minimal latency by dynamically modifying
parameters and identifying efficient pathways. An optimized
model that can provide better forecasts and resource
management in smart agriculture is produced by combining
ACO with Bi-LSTM.

The flow diagram shows how the ACO algorithm (see Figure 4)
and the Bi-LSTM neural network are integrated for resource
optimization and performance enhancement. Initializing the Bi-
LSTM parameters and pheromone levels for ACO is the first step in
the procedure. The number of ants (agents) needed to investigate the
possible paths (solutions) is decided by the ACO algorithm.
Pheromone trails and solution quality are used by worker
procedures to assess the routes. The Bi-LSTM neural network is
then trained using the optimized routes, which enhances its
prediction accuracy. Iteratively, the solutions are improved by
updating the pheromone levels and assessing the trained
network’s performance. The population of solutions grows across
several iterations, improving system performance, forecast accuracy,
and resource allocation. To achieve effective and high-performing
results, this hybrid approach combines the sequential data
processing capacity of Bi-LSTM with the optimization
capabilities of ACO.

The below pseudo code shows the algorithm steps for combining
Bi LSTM with the ACO optimizer.

Pseudo-code for the ACO optimized Bi-LSTM model

Define the number of ants N_ants, number of iterations Max_
iter, pheromone importance α, heuristic importance β,
evaporation rate ρ, and initial pheromone level τ0.
Define the search space of hyperparameters:

- LSTM units
- Learning rate
- Dropout rate

Initialization:
Initialize pheromone trails τ(h) = τ0 for each hyperparameter h
Define the fitness function f as a combination of prediction
accuracy and energy efficiency

While termination condition not met (t<Max_iter):
For each ant k = 1 to N_ants:

Construct a solution Sk by probabilistically selecting
hyperparameters h
using the transition rule:
P(h) ∞ [τ(h)]α * [η(h)]β

where η(h) is the heuristic desirability (e.g., based on prior
performance)
Train a Bi-LSTM model with the selected
hyperparameters Sk
Evaluate fitness f(Sk)

Update pheromones for each hyperparameter h:
τ(h) ← (1 - p) * τ(h) + Δτ(h)
where Δτ(h) = ∑ (1/f(Sk)) for ants that selected h

Optionally apply elitism to preserve best solution found
End While

Return best hyperparameter configuration S_best
with minimum f(S)

3 Results and discussion

The proposed Bi-LSTM–ACO framework significantly
enhances resource allocation in agri-IoT networks by integrating
predictive intelligence with energy-aware optimization. The Bi-
LSTM model captures complex temporal dependencies in
multivariate sensor data, enabling the precise forecasting of
environmental conditions and optimal scheduling of actuator
responses such as irrigation. This predictive capability reduces
unnecessary activations, conserving energy and water.

FIGURE 4
Flow diagram of the ACO optimizer.
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Simultaneously, ACO is employed to fine-tune Bi-LSTM
hyperparameters and optimize sensor operation schedules,
allowing dynamic adjustment of sensing intervals and
communication paths based on energy trends. Specifications for
the hyperparameters for the proposed model are discussed in
Table 1. The incorporation of PCA and PSO during
preprocessing further minimizes computational overhead by
selecting only the most relevant features, thereby lowering
bandwidth and power consumption. By leveraging real-time
sensor–actuator feedback and adaptive control strategies, the
framework provides a scalable and context-aware solution for
efficient resource management. Overall, this research offers a
robust and intelligent approach to sustainable agriculture through
optimized use of energy, bandwidth, and sensing resources.

Temperature, humidity, soil moisture, and pump status are just
a few of the parameters that the system collects and periodically
updates on the Adafruit IO cloud. The data collection process
generates a considerable dataset that can be used in downstream
deep learning applications to improve the efficiency and decision-
making of farming techniques. The integration of these technologies
highlights the potential for improved energy efficiency and optimal
power resource management in smart farming.

3.1 Performance metrics

3.1.1 Accuracy
Accuracy is defined as the proportion of all accurate estimates

the classification model makes compared to the total number of test
samples. The accuracy of the model is calculated as per Equation 21.

Accuracy � TP + FP

TP + TN + FP + FN
. (21)

3.1.2 Precision
The definition of precision is the ratio of the classification

model’s anticipated true positive values to the total of its true

and false positives. The precision metric is computed using
Equation 22.

Precision � TP

TP + FP
. (22)

3.1.3 Recall
The ratio of the classification model’s predicted true positive

values to the total of its true positive and false negative values should
be remembered. The recall is calculated using the Equation 23.

Recall � TP

TP + FN
. (23)

3.1.4 F1 score
The F1 score is the hormonal mean of the classification model’s

recall and precision. The F1-score is calculated as shown in
Equation 24.

F1 − score � 2*
precision*recall
precision + recall

. (24)

The training and validation losses of the dataset were monitored
to assess the performance of the Bi-LSTM model optimized with
ACO during the analysis. These loss measures reveal information
about how well the model is learning from the data in bits, as
illustrated in Figure 5. The training and validation losses show a
distinct trend that demonstrates how well the Bi-LSTM with ACO
optimization reduces mistakes and enhances overall model
performance.

Additionally, each class evaluated a trained model to assess the
model’s performance. Every job included in the verification set was
tested. The number of quantities in each class that were correctly
predicted is displayed in the results. The graph below demonstrates
how the accuracy of the model increased rapidly as the number of
iterations increased. Figure 6 displays the accuracy of the model after
100 training and testing epochs. Figure 7 shows the ROC curve
(AUC = 0.9885) and validates the better classification efficacy of the

TABLE 1 Hyperparameters of the proposed model.

Parameter Specification

Learning rate 0.005 (selected by ACO)

Optimizer Ant colony optimization (ACO)

Loss function Binary cross-entropy

Batch size 32

Epoch 100

Number of LSTM units 32 (selected by ACO)

Dropout rate 0.3 (selected by ACO)

Sequence length (time step) 20

Hidden layers Bidirectional LSTM

Activation function (output) Sigmoid

Fitness function Accuracy

FIGURE 5
Training loss of the proposed deep learning model
(Bi-LSTM–ACO).
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proposed Bi-LSTM–ACO model, attaining enhanced sensitivity
with negligible false positives.

As indicated in Table 2, a variety of assessment measures, including
accuracy, precision, recall, and F1 score, were used to evaluate the
models’ performance. Notably, in terms of accuracy, Bi-LSTM and Bi-
LSTM with the ACO optimizer models perform better than the other
models. To conduct comparative benchmarking, we have enhanced the
evaluation by comparing the proposed Bi-LSTM–ACO model with
established state-of-the-art deep learning methodologies, specifically,
GRU, LSTM, MLP, CNN-LSTM, and Bi-LSTM. These models are
extensively utilized in energy-efficient wireless sensor networks and
time-series forecasting. As observed from the results, the proposed Bi-
LSTM–ACO achieves significant improvements in all classification
metrics. This gain is primarily due to the ACO-based optimization
of model weights and hyperparameters, which allows better adaptation
to time-dependent sensor data patterns.

We assessed the efficacy of different evolutionary optimization
strategies by comparing Bi-LSTM models optimized using GWO,
PSO, GA, and ACO algorithms, which are presented in Table 3. The
ACO-tuned Bi-LSTM attained the maximum performance across all
critical metrics, achieving an accuracy of 98.61%, a precision value of
92.16%, a recall value of 98.06%, and an F1 score of 91.41%. PSO and
GWO exhibited formidable predictive powers, achieving F1 scores
of 89.75% and 89.50%, respectively, underscoring their efficacy in
resource-constrained contexts. The GA-based model, albeit
exhibiting marginally inferior precision, attained the maximum
recall (96.44%), rendering it especially appropriate for irrigation
jobs where the omission of positive cases (i.e., instances requiring
watering) must be reduced. These findings underscore the
significance of ACO in attaining an optimal equilibrium between
detection precision and system efficacy in agri-IoT networks.

3.2 Performance evaluation of the model
using K-fold validation

Cross-validation is a popular resampling method employed
to assess machine learning models with constrained data. It
reduces the possibility of overfitting by verifying that the
model is evaluated on previously unobserved segments of the
data in each iteration. This study employed five-fold cross-
validation to evaluate the efficacy of the proposed Bi-LSTM

FIGURE 6
Proposed model accuracy of 100 epoch steps.

FIGURE 7
ROC curve of the proposed model.

TABLE 2 Performance analysis of the proposed model with other models.

Model Performance metrics

Accuracy Precision Recall F1 score

MLP 0.9417 0.818 0.9598 0.8833

LSTM 0.9466 0.8358 0.9552 0.8915

GRU 0.9496 0.8516 0.9455 0.8961

CNN-LSTM 0.9481 0.8377 0.9598 0.8946

Bi-LSTM 0.9452 0.8285 0.9426 0.8815

Bi-LSTM + ACO 0.9861 0.9216 0.9806 0.9141
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model. The dataset was randomly divided into five equal sections.
In each fold, four subsets were utilized for training, while the
remaining subset functioned as the validation set. The technique
was executed five times, guaranteeing that each subset was
utilized once for validation.

The model’s performance was assessed using training and
validation accuracy and training and validation loss. The Bi-
LSTM model attained a mean training accuracy of 98.19% and a
mean validation accuracy of 98.20%, demonstrating consistent
performance across all folds. The mean training loss and

validation loss were 0.0181 and 0.0180, respectively. The
results indicate that the model effectively learns underlying
patterns during training and generalizes well to novel data,
demonstrating excellent stability and reliability of the
suggested method.

The efficacy of the proposed Bi-LSTM–ACO model was
additionally assessed using five-fold cross-validation to
guarantee applicability and stability across various subsets of
the dataset. Table 4 illustrates that the model exhibited
consistently elevated training and validation accuracy across

TABLE 4 K-fold validation of the proposed work.

Fold Training accuracy Validation accuracy Training loss Validation loss

Fold 1 0.9861 0.9821 0.0139 0.0179

Fold 2 0.9811 0.9877 0.0189 0.0123

Fold 3 0.9742 0.9782 0.0258 0.0218

Fold 4 0.9788 0.9818 0.0212 0.0182

Fold 5 0.9892 0.9802 0.0108 0.0198

Average 0.9819 0.982 0.0181 0.0180

TABLE 3 Performance analysis of the proposed model with various optimization algorithms.

Model Performance metrics

Accuracy Precision Recall F1 score

Bi-LSTM + GWO 0.9489 0.8513 0.9432 0.8950

Bi-LSTM + PSO 0.9507 0.8585 0.9403 0.8975

Bi-LSTM + GA 0.9438 0.8819 0.9644 0.8875

Bi-LSTM + ACO 0.9861 0.9216 0.9806 0.9141

FIGURE 8
Performance analysis of the model using K-fold validation.
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all folds, achieving an average training accuracy of 98.19% and a
validation accuracy of 98.20%. The associated training and
validation loss values remained consistently low and constant,
averaging 0.0181 and 0.0180, respectively. The results indicate
that the model is appropriately fitted, avoids overfitting, and
exhibits strong generalization across various training subsets.
The negligible disparity between training and validation accuracy
across all folds signifies that the model adeptly identifies the
inherent patterns in the data and demonstrates consistent
performance on unseen samples. This underscores the
effectiveness of the ACO-tuned Bi-LSTM architecture in
modeling intricate temporal connections and facilitating
precise predictions in smart agriculture IoT
applications (Figure 8).

4 Conclusion

This paper presents a Bi-LSTM-based deep learning framework
enhanced using the ACO method for effective resource allocation
and energy management in agri-IoT settings. The system utilizes
real-time sensor data—comprising temperature, humidity, water
level, and soil nutrients—gathered using microcontroller-based
sensing nodes and saved on the Adafruit IO cloud platform. By
integrating time-series learning with Bi-LSTM and optimizing
hyperparameters through ACO, the model attains a high level of
accuracy in forecasting actuator behavior, such as pump activation,
facilitating informed irrigation decisions. Comparative assessments
with conventional LSTM, GRU, and Bi-LSTMmodels reveal that the
proposed Bi-LSTM–ACO methodology markedly enhances
performance, attaining an accuracy of 98.61%, a precision value
of 92.16%, a recall value of 98.06%, and an F1 score of 91.41%. Cross-
validation and supplementary measures, including latency and
network longevity, further substantiate the system’s resilience and
operational efficacy. The suggested strategy boosts prediction
reliability and adds to energy-efficient sensor operation,
rendering it highly suitable for real-time, large-scale smart
agriculture implementations. Future studies will concentrate on
optimizing communication characteristics, including path loss
and delay, to provide scalable performance in dense IoT networks.
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