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Introduction
The rapid growth of advanced networking causes a significant increase in malicious threats to website data for accessing user information via phishing attacks. For the detection of phishing attacks, many works are developed based on a single data source. But, detecting the phishing attacks of different web sources was not concentrated in any of the existing works. Thus, multiple data sources, including SMS, E-Mail, and URL links, are used in this paper to detect and mitigate phishing attacks.
Methods
Initially, the input data is collected from the SMS, E-Mail, and URL datasets. The contents and URLs are extracted from the datasets. Next, the textual analysis, including behavioral analysis and structural analysis, is carried out on the extracted URL. Moreover, by utilizing the Entropy Macqueen-based Bidirectional Encoder Representations from Transformers (EM-BERT) algorithm, the contents extracted from SMS and E-Mail datasets and the textually analyzed characters of the URL are transformed into vector form. Simultaneously, the CSS files and images are obtained from the URL dataset. Then, by utilizing Spherical Principal Component Analysis (SPCA), the features are extracted. Further, the optimal features are chosen by using the Cauchy distribution-based Seagull Optimization Algorithm (CSOA). Next, the phishing attack is detected using the Explainable AI SERF CoLU Long Short Term Memory (EAI-SC-LSTM) model. The recognized phishing data and URL are updated to the Blacklist; hence, any new URL, which is already on Blacklist, is reported to the user.
Results
As per the experimental outcomes, the proposed EAI-SC-LSTM attains accuracies of 99.627% for SSC, 99.645% for PEC, and 99.541% for WPD in phishing attack detection, which are higher than the existing works. Moreover, the proposed technique detects the phishing attack within a training time of 24417 ms (PEC Dataset).
Discussion
Thus, cybersecurity is improved against the evolving phishing threats.
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1 INTRODUCTION
In today’s digital age, the Internet has become a cornerstone of communication, information dissemination, and engagement across various sectors, including business, education, and banking. The Internet serves as a platform for exchanging diverse content, such as research papers, educational materials, and multimedia resources, which increases cybercriminal threats that seize users’ confidential information (Catal et al., 2022; Mahmoud et al., 2013). Among different threats, phishing is considered as a widespread attack, where the hackers can access the data without any complex cipher codes (Hannousse and Yahiouche, 2021). Such phishing attacks occur in various forms through Email, random SMS, social media, Quick Response codes, and URL links (Safi and Singh, 2023). Due to a lack of knowledge about URLs, blind trust in webpages or messages, and redirected webpage locations, the users are subjected to phishing attacks (Basit et al., 2021). The report of the Anti-Phishing Working Group stated that the number of phishing attacks increased to 2,50,000 within a month in 2021 and kept on increasing. Thus, it is essential to develop an effective system to detect phishing attacks for preventing further attacks in the future (Asiri et al., 2023).
For phishing detection, Meta-heuristic methods are developed to collect information, and the URL is verified with the blacklist to check its legitimacy (Odeh et al., 2021). As an efficient worldwide standard, Email networks are intruded on by cybercriminals for financial benefits. These phishing emails are detected by utilizing the Themis model, which deeply analyzes the structure of the mail (Atlam and Oluwatimilehin, 2023; Salloum et al., 2021). Due to the various ambiguities of the detection systems, phishing websites can also be tested and detected by utilizing a Fuzzy logic technique (Bhagwat et al., 2021). Similar to phishing emails, phishing SMS is created with some random phone numbers for making money transactions by users (Abdillah et al., 2022). Currently, to enhance the phishing detection process, Machine Learning (ML) and Deep Learning (DL) algorithms are being analyzed (Li et al., 2023).
The labeled datasets are utilized to recognize malicious and benign websites by using ML approaches. For the phishing detection, the supervised learning algorithms like Logistic Regression (LR), Support Vector Machines (SVM), Decision Tree (DT), Naïve Bayes (NB), and Random Forest (RF) are utilized (Tang and Mahmoud, 2021). Among these, the SVM classifier accurately detects phishing attacks along with the word embedding technique (Salloum et al., 2022). Furthermore, the DL models, including LSTM and Convolutional Neural Network (CNN), efficiently detect phishing by learning the patterns and anomalies of the data (Thakur et al., 2023). These phishing detection systems contribute to mitigating attacks via software-based phishing tools and human-centric strategies (Naqvi et al., 2023). But, for phishing attack detection, multiple website sources, such as SMS, E-Mail, and URLs were not concentrated in any of the existing works.
The existing (Brezeanu et al., 2025) utilized the HyperText Markup Language (HTML) code to identify the phishing attack, helping in automatically updating the phishing indicators. Also, the prevailing (Sturman et al., 2024) detected the phishing attack based on the user knowledge and decision style. The traditional (Shombot et al., 2024) used SVM for attack detection and attained higher accuracy. Moreover, the prevailing (Sudar et al., 2024) improved the resilience against evasive phishing strategies. In the existing (Biswas et al., 2024), the transparent and interpretable models were utilized for the attack prediction. Yet, these prevailing models did not predict the phishing strategies in the multi-data source. Hence, this work detects phishing attacks in various sources, including SMS, E-Mail, and URL data, by analyzing the user behavior using EM-BERT and SPCA BASED EAI-SC-LSTM techniques.
1.1 Problem statement
Some of the issues in existing works of phishing attack detection are listed below,
	• Existing works did not concentrate on the phishing attacks that occurred among various data sources, including SMS, E-Mail, and URL links.
	• Based on the contents like sender, subject, body, or attachments, the phishing emails were detected in (Bu and Kim, 2022). But, the links and the Javascript features related to such phishing emails were not analyzed, leading to inaccurate attack detection.
	• In (Aljofey et al., 2022), the URLs were examined via Hyperlinks, URLs, and Textual Content. Nevertheless, the behavior after clicking the links was not concentrated, restricting the information of phished URLs for future alerts to the user.
	• The phishing URL was blocked and alerted to the user in (Yang et al., 2021). But, the reason behind the blocked URL was not intimated to the user for enhancing awareness.

This paper presents an effective multimodal framework for phishing detection to overcome the problems in existing works. The major contributions are given below,
	• This proposed work focuses on different data sources like SMS, E-Mail, and URL links for detecting phishing attacks.
	• Along with content features, the Javascript features and URL features are obtained from input datasets. Thus, the phishing attack is more accurately detected by using the EAI-SC-LSTM approach.
	• To provide future alerts to the user, the behavior after clicking URL links is identified via the behavior analysis; also, the optimal features are selected by using CSOA.
	• As the phishing URL is updated in the blacklist, the user is alerted with better awareness about the legitimacy of incoming new URLs.

The paper is structured as: In Section 2, the previous works related to the proposed system are explained. In Section 3, the proposed methodology is described. In Section 4, the performance attained by the proposed technique is analyzed. Lastly, Section 5 concludes the paper with future suggestions.
2 LITERATURE SURVEY
Aljofey et al. (2022) established an efficient technique to detect phishing websites. Primarily, the webpage dataset was created. From the URL and HTML, the textual contents and hyperlinks were extracted. In addition, by using eXtreme Gradient Boosting (XGB), LR, NB, and RF classifiers, the phishing attack was detected. The detection result was improved with superior accuracy and precision. But, the overfitting issues and less interpretability were caused by the XGB classifier, which limited the detection efficiency.
Bu and Kim (2022) propounded the phishing detection model using DL approaches. Primarily, the domain-centric and script-centric URL features were extracted. Then, by utilizing the genetic algorithm, the significant features were selected. Next, the phishing and benign URLs were classified utilizing the Convolutional Recurrent Neural Network with improved accuracy and recall. Nevertheless, the utilized network did not recall the long-term dependency of the features, thus hindering effective training.
Yang et al. (2021) suggested the phishing detection technique via the extreme learning machine. Firstly, the website-related data was collected. Next, the surface feature, topological feature, and deep features were extracted. Then, by utilizing the Adaptive Synthetic Sampling (ASS) algorithm, the data was balanced. Hence, the performance was improved with higher accuracy and lower error. However, the used ASS approach did not produce the accurate minority class data samples as the synthetic samples.
Tang and Mahmoud (2022) presented a DL approach to detect phishing websites. Initially, the data was gathered from various websites. Next, the URL characteristics were extracted from the data. Then, by utilizing six different ML classifiers, the obtained features were trained. Subsequently, to detect the legitimacy of URLs, the Chrome browser extension was utilized. Therefore, the detection performance was improved with superior accuracy and f1-score. But, the used RF classifier was sensitive to hyperparameters and time series interpretability of data.
Karim et al. (2023) introduced a hybrid ML technique for website phishing detection. Initially, the URL-centric dataset in vector form was obtained and further preprocessed for removing the null values. Then, by utilizing a hybrid model, including LR, SVM, and DT classifiers, the features selected via the canopy technique were trained. By using the grid search optimization technique, the prediction outcomes were improved. Thus, the performance was increased with higher accuracy and precision. Nevertheless, the larger amount of data was not effectively learned by the adopted SVM.
Gupta et al. (2021) recommended a lexical-centric ML technique to detect phishing URLs. Primarily, from the dataset, the input data was collected and preprocessed. Next, the domain and lexical features of the URL were extracted. In addition, phishing URLs were detected by utilizing various ML classifiers, such as LR, SVM, and RF. Among them, the RF classified phishing data with enhanced accuracy. However, the user was not aware of phishing data, which threatened the user’s information.
Sanchez-Paniagua et al. (2022) propounded a phishing website detection system for real-time scenarios. The input data was obtained from the multipurpose dataset and further pre-processed by utilizing a three-filter system. Next, the URL feature, HTML feature, and technology-based features were extracted and vectorized. Lastly, by using a Gradient Boosting Machine (GBM) classifier, the phishing attack was detected with enhanced accuracy and F1-score. However, due to the complex structure, the GBM model was less interpretable and vulnerable to overfitting issues.
Opara et al. (2024) detected the phishing of web pages by utilizing Deep Neural Network (DNN). Initially, the data was obtained from the webpage datasets. Next, the URL and HTML characteristics were extracted and embedded into homologous dense vectors. Then, by utilizing a concatenation layer, the embedded matrices were merged. Finally, by utilizing CNN, the website phishing was identified with better precision and accuracy. But, the adopted CNN needed a lot of labeled data for training and had a gradient exploding problem.
Ariyadasa et al. (2022) established a hybrid convolutional network to detect phishing websites. Primarily, the URL and HTML content data were gathered from the webpage dataset and were individually preprocessed. Furthermore, by using Long Term recurrent network and the Graph Convolution Network (GCN), the gathered data was trained. Then, the phishing website was detected with enhanced f1-score and accuracy. Nevertheless, the GCN didn’t handle the directed graphs and had inferior scalability, thus degrading the performance.
Rao et al. (2021) suggested a heuristic approach to detect phishing websites. Primarily, the data was gathered from the login and home page of the website dataset. By using the Jaccardian similarity measure, the similarity among homepage features was evaluated and vectorized. Next, the URL and hyperlink features were extracted, and the feature vectors were generated. Then, the phishing website was identified using the Twin SVM classifier with enhanced accuracy. However, the irrelevant data was not ignored, thus complicating the detection process.
Alotaibi et al. (2025) integrated explainable artificial intelligence for the classification of web-based phishing. The web-based data were collected and pre-processed regarding data cleaning and normalization. Then, the Harris’ Hawks Optimization (HHO) method was used for selecting the optimal feature. Further, the Multi-Head Attention-based Long Short-Term Memory (MHA-LSTM) with Local Interpretable Model-agnostic Explanation (LIME) classified the phishing attack accurately. Yet, the accuracy was compromised due to the unrepresentative features.
Aljabri et al. (2024) developed phishing attack detection in the Internet of Things (IoT) environment. Here, from the gathered data, the important features were selected using the Dwarf Mongoose Optimization (DMO) technique. Next, by utilizing the Hybrid Stacked AutoEncoder (HSAE), the phishing attack was predicted. The data in the classifier was hyper-tuned using Jellyfish Search Optimizer (JSO). Thus, this model enhanced the classification task. However, in real-time, this model failed to analyze a large number of data.
Elberri et al. (2024) estimated a cyber-defense system against phishing attacks with deep learning. Initially, for the collected data, the synthetic samples were generated by using the Synthetic Minority Over-sampling TEchnique (SMOTE). The African Vulture Optimization Algorithm (AVOA) was then used for feature selection. Afterward, based on the combination of the CNN and LSTM techniques, the spatial features were extracted, temporal features were analyzed, and finally, the phishing attack was determined precisely. Yet, the computational complexity was increased, affecting the system’s overall performance.
Alsubaei et al. (2024) investigated phishing detection for cybercrime forensics. Here, the digital forensic data was collected. Then, the data imbalance was rectified using SMOTE analysis. Next, the Residual Networks Next (ResNeXt) and the Gated Recurrent Unit (GRU) were embedded for accurate phishing attack classification. During the classification, the Jaya optimization was utilized for hyperparameter tuning. On the contrary, the diverse attack scenarios could not be handled by the model.
Sahingoz et al. (2024) deployed deep learning-based phishing detection system. Primarily, the webpages with URL data were collected. Next, the CNN, Artificial Neural Networks (ANN), Recurrent Neural Network (RNN), Bidirectional Recurrent Neural Networks (BRNN), and Attention Network were used for phishing attack detection. Among these classifiers, the CNN model predicted the phishing attack more efficiently. Yet, the model analyzed every data that was collected, leading to increased processing time during the analysis.
3 PROPOSED METHODOLOGY FOR PHISHING ATTACK DETECTION
This framework adopts multiple sources for phishing detection using the proposed EAI-SC-LSTM method by analyzing various features, namely, contents, URL, behavior, and Javascript. Figure 1 represents the proposed phishing detection framework.
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Initially, the input data is collected from multiple sources, namely, the SMS dataset SD, Email dataset εD, and URL dataset UD to detect the phishing attack. It is given as in Equation 1,
Ι=SD,εD,UD(1)
Here, Ι illustrates the input data.
3.2 Content extraction
Then, the contents are extracted from SD and εD. For further analysis of data, the URL is extracted from Ι. It is expressed as in Equations 2, 3,
Ce∈SD,εD(2)
μ∈Ι(3)
Here, Ce signifies the extracted contents and μ depicts the extracted URL from input data.
3.3 Textual analysis
Here, μ is given as input to the textual analysis in which the textual features, including words, characters, and symbols of URL, are analyzed for the efficient identification of phishing attacks. For examining every character, behavior analysis, content-based features, Java script features, and URL features are considered under textual analysis.
3.3.1 Behavior analysis
The discriminative features of URLs like domain name dn, bag-of-words wb, generic Top-Level domains dT, IP address υ, and port number Φ are used to predict the user’s behavior. It is expressed as in Equation 4,
βa=dn,wb,dT,υ,Φ(4)
Where, βa implies the analyzed features related to user behavior.
3.3.2 Content-based features
Then, to examine the contents of the data, the content-centric features like Anchor, U_request, Popup, Links_in_tags, Cookies, Iframe, Submit, IMG_Hyperlink, Susp_links, and Dest_port are extracted from μ. It is given as in Equation 5,
CF=C1,C2,............,Cv(5)
Here, CF is the extracted content-centered features, and v is the number of CF.
3.3.3 Java script features
In addition, to analyze the events or actions performed by the user, the features of Javascript, including the length of characters, number of lines, number of strings, number of Unicode symbols, number of words, number of comments, the average length of strings, the average length of arguments, count of numbers in hex or octal, and number of methods, are considered. It is represented as in Equation 6,
JE=J1,J2,...........,JK(6)
Here, JE is the acquired features and K signifies the number of Javascript features.
3.3.4 URL features
Subsequently, the URL features are gathered from μ for the accurate identification of phishing URLs. The URL features, namely, length_url, length_hostname, ip, domain_age, web_traffic, dns_record, google_index, page_rank, nb_www, and port are extracted from μ. It is expressed as in Equation 7,
ue=u1,u2,......,uz(7)
Where, ue is the extracted URL features, and z is the number of ue. Thus, the textual analysis is carried out on μ, which is declared as Γ.
3.4 Structural analysis
Next, for analyzing the structural features of the URL, the CSS files Fcss and image files Im are chosen from μ. For analyzing the structure of μ, the features like sub-domain, scheme, subdirectory, path, port number, query string, top-level domain, parameter, second-level domain, fragment, and protocol are evaluated from Fcss and Im. It is given as in Equation 8,
SF=Fcss,Im∈μ(8)
Here, SF is the structurally analyzed characters of the URL.
3.5 Feature extraction
Here, SF is fed as input to the feature extraction phase. Principal component analysis, which identifies the principal features and aids in developing the predictive models, is utilized for extracting features. It is essential to reduce dimensions to effectively visualize the data before analyzing the significant features. However, feature extraction using PCA sometimes causes information loss, as it projects data into principal components that may not fully capture all the underlying structure of the data. Also, PCA assumes linearity in the data, which may not be suitable for datasets with non-linear relationships, potentially leading to suboptimal feature representations and reduced model performance. Thus, spherical-centric vectors are utilized to compute the covariance matrix of PCA and preserve the information while minimizing feature dimension. These vectors maintain the geometric relationships within the data by projecting it into a unit sphere, which reduces information loss and retains the crucial data characteristics. Also, this approach mitigates the impact of scaling differences between features, enhancing the dimensionality reduction process and resulting in a more robust feature representation. The feature extraction process using the proposed SPCA technique is explained below,
Step 1. Primarily, the SF is initialized and signified as in Equation 9,SF=S1,S2,S3.........,Sg

Where, g indicates the number of SF. Next, to avoid the biased outcome, the different structures in SF are standardized within the ‘0’ mean and a unit Standard Deviation (SD). It is expressed as in Equation 10,ζSF=fν−fmσf

Here, ζSF is standardized SF, fv depicts each feature value, fm is the mean of features, and σf is the SD among the features.
Step 2. Then, by computing the Covariance matrix SFcov, the correlations between SF and its mean are determined. For computing SFcov, a spherical-based vector κ^ is generated so that the information loss is prevented during dimension reduction. This is especially useful in phishing detection, where small changes in text or structure can indicate malicious intent. The representation of κ^ is given as in Equation 11,κ^=Its ; ts∈RS

Here, I is the functional characteristics of spherical space RS and ts is the random point on RS. Thus, SFcov is computed regarding κ^ for g number of features and is given as in Equation 12,SFcov=S1,S1cov S1,S2cov … S1,SgcovS2,S1cov S2,S2cov … S2,Sgcov⋮⋮⋮⋮Sg,S1cov Sg,S2cov … Sg,Sgcov

The sign ψ of characters in SFcov identifies the correlation among features. The features are declared as correlated when ψ is positive, and features are indirectly correlated when ψ is negative. Moreover, there is no correlation between features when the feature value is zero.
Step 3. Next, to identify the principal components, the Eigenvalues and Eigenvectors are computed. Such principal components are recognized by the Eigenvalue Eγ and the Eigenvector E→. Here, Eγ defines the maximum variation among SFcov and E→ expresses the direction of maximum deviation among features. It is expressed as in Equation 13,SFcov Eγ=E→ . Eγ

Moreover, the Equation 13 is rewritten by utilizing the Identity matrix Id and is equated as in Equations 14, 15,SFcov. E→−Eγ. E→=0
E→SFcov−EγId=0

Step 4. Next, for extracting features with reduced dimensions, the features that have lower Eγ are selected as the principal components ρ. It is given as in Equation 16,ρ=Eγlow∈SF

Here, Eγlow specifies the low Eγ of the feature.
Step 5. Lastly, to attain maximum data information with reduced dimension, SF is transformed along the coordinates of ρ. Hence, by using the SPCA method, the features are extracted from SF with minimum dimension, and it is mentioned as φ. The pseudo-code for the proposed SPCA technique is given below,
Algorithm 1. Pseudo code of SPCA.
	Input: URL structure, SF
	Output: Extracted features, φ
	Begin
	 Initialize SF
	 Standardize using Equation 10
	ζSF=fν−fmσf
	 For SFcov
	  Define κ^
	  Evaluate correlation
	  If ψ is positive
	   SF is correlated
	  Else
	   Indirectly correlated
	   Or
	   Non-correlated
	  End if
	 End for
	 For extract features
	  Compute Eγ and E→
	  If Eγ=low
	   Select ρ
	   Transform SF along ρ
	  End if
	 End for
	 Return φ
	End

Thus, the SPCA effectively extracts the features. Also, it differs from prior PCA variants in phishing detection by better capturing non-linear data structures, enhancing model performance and accuracy in detecting phishing through the preservation of complex, high-dimensional patterns. In the meantime, the contents extracted from SD and εD and the textual features of Ι are converted into vector form for the better training of features. The word embedding process for vector conversion using the proposed method is explained further.
3.6 Word embedding
Here, Ce, βa, CF, and JE are declared as ξ and are given to the embedding process using EM-BERT for enabling the classifier’s effective learning. The Bidirectional Encoder Representations from Transformers (BERT) algorithm is utilized for vector conversion, which is trained on a larger corpus and is suitable for well-defined Natural Language Processing (NLP) tasks. However, the training performance is influenced by random weight generation from the normal distribution of BERT. Thus, to solve this issue, an Entropy Macqueen (EM)-based weight initialization is utilized. This initialization improves the weights by considering the data distribution, leading to faster convergence and better model performance of the BERT algorithm. Hence, EM-BERT becomes more efficient, achieving higher accuracy and better results when fine-tuned for specific tasks. The word embedding process using EM-BERT is described below,
	• Primarily, ξ is converted into individual words via tokenization, which splits the text into smaller units and is signified as Tw. This pre-processing step divides the words into meaningful tokens. Thus, the rare and out-of-vocabulary words are handled effectively. Afterwards, by using an embedded matrix eM, Tw are transformed into high-dimensional vector form. It is given as in Equation 17,

TV=eMTw(17)
Here, TV signifies the vectorized tokens.
	• Then, the relationship among words in TV is specified by calculating the self-attention score δ for each token. It is defined as in Equation 18,

δ=τqKTKdim(18)
Here, τ is the softmax activation function, q is the query, the key matrix of words with dimension is signified as Kdim, and T is the transpose function.
	• Then, the tokens are activated by utilizing τ along with Euler’s value, and it is expressed as in Equation 19,

τδ=EKi∑j=1mEKj(19)
Where, E is the Euler’s value, i is the i th element of TV, j is the index iterating over all the elements in TV, and m depicts the total number of elements in TV.
	• As the random weight creation from the normal distribution limits the training process, the weights are generated among BERT layers by utilizing the EM technique for improving the model training. The EM-based weight initialization I′ enhances the model’s training by improving the weight distribution, and it is equated as in Equation 20,

I′=−1eMl∑i,j=1eMlfEKi,EKj. log fEKi,EKj(20)
Here, eMl refers to the length of the embedded matrix, fEKi,EKj demonstrates the similarity function between EKi and EKj, and ⁡log⁡ represents the logarithmic function. Therefore, by applying the linear transformation lT and residual connection R to δ, the final output δO is obtained. It is signified as in Equation 21,
δO=lTR+δ(21)
	• Next, some tokens in δO are randomly masked to examine the missing words related to the nearby words. Also, the model is trained to predict the masked token by the embedding process. The probability of exactly predicting the masked tokens is expressed as in Equation 22,

℘TM=τlTδO. δ(22)
Here, TM represents masked tokens, and ℘ is the prediction probability.
	• Lastly, to enhance the embedding performance, the predicted TM are fine-tuned based on the pre-trained parameters λpre. It is given as in Equation 23,

Ftune=λpre∼TM(23)
Here, Ftune is the fine-tuned output of the proposed BERT model.
Hence, the context information of ξ is encoded via the word embedding process by utilizing EM-BERT, and it is signified as η. The pseudocode for EM-BERT is demonstrated below.
Algorithm 2. Pseudocode for EM-BERT.
	Input: Combined Inputs from Ce, βa, CF, and JE →ξ
	Output: Word Embedded Features η
	Begin
	 Initialize eM, m, δO, iteration Ι″, maximum iteration Ιmax″
	 Set Ι″=1
	 While Ι″≤Ιmax″
	  For each ξ do
	   Convert ξ into Tw
	   Use embedded matrix eM to obtain TV
	TV=eMTw
	   Compute δ for each TV # self-attention score.
	   Activate tokens using τ with E
	τδ=EKi∑j=1mEKj
	   Evaluate I′#EM-based weight initialization.
	I′=−1eMl∑i,j=1eMlfEKi,EKj. log fEKi,EKj
	   Calculate δO by applying lT and R to δ
	   Mask a few tokens randomly in δO
	   Train the model to predict TM
	   Compute probability ℘TM
	℘TM=τlTδO. δ
	   Fine-tune TM based on λpre
	Ftune=λpre∼TM
	   Perform encoding of ξ
	  End for
	 End while
	 Return η
	End

Thus, the proposed EM-BERT effectively enhances word embedding by utilizing EM-based weight initialization and capturing rich contextual relationships. Also, the model’s use of entropy-based methods ensures better handling of uncertainty in the data, further refining the detection accuracy and robustness in identifying phishing threats. Therefore, EM-BERT enhances phishing detection by improving BERT’s ability to understand phishing-specific patterns.
3.7 Feature selection
Subsequently, URL features ue and extracted features φ from SF are considered as α and are fed as input to the feature selection phase. The Seagull Optimization Algorithm (SOA) is utilized for selecting the optimal features because of its supreme migration and attacking behavior for attaining prey. But, due to the usage of random values for position updation, the SOA suffers from premature convergence issues. For solving this problem, the Cauchy Distribution Function (CDF) is utilized to update the seagull position with less computational time. The CDF enables a better exploration of the search space, leading to a more diverse set of potential solutions and avoiding premature convergence. This allows for a more precise and efficient feature selection process. The processes performed for feature selection by utilizing the proposed CSOA are described below.
3.7.1 Initialization
Initially, the acquired features α are inputted to the SOA. Next, α, which is assumed to be the population of the Seagull, is initialized. It is given as in Equation 24,
α=α1,α2,α3,.........,αn(24)
Here, n depicts the number of features in α.
3.7.2 Fitness function
In this, the maximum classification accuracy is considered as the fitness function to achieve the optimal solution αBEST for feature selection. It is given as in Equation 25,
Ffit=maxΞ(25)
Here, Ffit is the fitness function, and Ξ is the classification accuracy of features.
3.7.3 Migration behavior
Based on migration and attacking behavior, the exploration capability and exploitation capability of the seagull population are analyzed. The seagull should satisfy three basic rules, such as preventing collisions, moving toward the direction of the best neighbor, and remaining closer to the best search agent for moving from one location to another.
	• To prevent collision with neighboring seagulls, the position of the seagull is adjusted using a parameter named ℵ, which represents the non-colliding migration behavior of seagulls. It is given as in Equation 26,

∂→new=ℵ . ∂→currenti(26)
Here, ∂→new is the new location of the seagull, which does not lead to a collision with other seagulls, and ∂→current is the current location of the seagull at the i th iteration. Here, ℵ signifies the migration behavior of seagulls, which is determined as in Equation 27,
ℵ=qf−i×qfimax(27)
Here, qf is the frequency control of ℵ within 0,qf and imax is the maximum iteration.
	• After fulfilling the non-collision condition, the seagulls move towards the position of the best seagull to search for the prey. It is represented as in Equation 28,

ƛ→best=b . R→best−∂→currenti(28)
Where, ƛ→best is the position of the optimal seagull, R→best is the current position of the seagull towards the ƛ→best, and b is the random value that balances the exploration and exploitation phases, which is given as in Equation 29,
b=2×ℵ2×r(29)
Here, r is the random value ranges between 0,1. Then, based on the best agent, the position of the seagull is updated to reach the prey location. It is given as in Equation 30,
ω→dis=∂→new+ƛ→best(30)
Here, ω→dis is the new position of the seagull towards the optimal position.
3.7.4 Attacking behavior
Here, although the attacking angle and speed of seagulls keep on changing during the migration phase, they maintain their altitude through their wings and weight in the air. The seagulls perform attacks in a spiraling manner over the x, y, and z plane in the air. Such attacking behavior is analytically given as in Equation 31–33,
x∧=srad×cos a(31)
y∧=srad×sin a(32)
z∧=srad×a(33)
Here, srad is the radius of spiral turns, sin and cos indicate the attacking angles of the seagull, and a is the random value within 0,2π. The spiral region in which the seagulls are involved in attacking is defined as in Equation 34,
srad=ς×eℏa(34)
Where, ς, ℏ depict the spiral shape and e is the logarithm base function. Next, to grab the prey, the seagulls update their position. Nevertheless, updating the position using a random parameter leads to premature convergence and gets trapped in a sub-optimal solution while selecting the optimal solution. Thus, to update the seagulls’ position, CDF is introduced, which adaptively balances exploration and exploitation, thus helping the algorithm escape local optima. The CDF Ψf is equated as in Equation 35,
Ψf=Aπω→dis+A2(35)
Here, A is the location variable, and π is the normalizing constant.
3.7.5 Optimal solution
Based on Ψf, the position of seagulls is updated to achieve αBEST. It is given as in Equation 36,
ω→update=ω→dis+∂→new+ƛ→best×Ψf(36)
Here, ω→update is the updated position of the seagull. Further, if the updated position satisfies Ffit, then αBEST is attained for selecting optimal features. Or else, the process is repeated till imax is attained. Thus, by using the CSOA technique, the optimal features are selected and simply declared as ϖ. The pseudo-code for the proposed CSOA is provided below,
Algorithm 3. Pseudo code of CSOA.
	Input: Acquired features, α
	Output: Optimal features, ϖ
	Begin
	 Initialize features, α
	 Evaluate fitness using Equation 25
	Ffit=maxΞ
	 While i<imax
	  Define ∂→new, ∂→current
	  Adjust seagull position
	  Migrate towards ƛ→best
	  If Ffit≠maxΞ
	   Update position, ω→dis
	  Else
	   Original position, R→best
	   Perform attack in srad
	   For αBEST
	    Evaluate Ψf using Equation 35
	Ψf=Aπω→dis+A2
	    Update position
	i→imax
	   End for
	  End if
	 End while
	 Return ϖ
	End

Furthermore, to recognize the phishing and legitimate data, the selected features are forwarded to the proposed classifier, and such a classification process is described in the further section.
3.8 Data classification
Then, to detect phishing and legitimate URL data, the selected features ϖ and word-embedded features η are inputted into the classifier. It is given as in Equation 37,
LI=ϖ,η(37)
Here, LI is the classifier input. In this, for training the features, the LSTM model is used owing to its ability to learn complex features and incorporate large volumes of data. But, LSTM suffers from a vanishing gradient issue while the gradients are repeatedly processed through recurrent connections. Hence, to overcome the aforementioned issue, a SERF CoLU (SC) activation function is used in the gating mechanism of LSTM. The SC function ensures that the gradient flow is maintained, preventing it from vanishing. Thus, the learning efficiency of the model is enhanced. Explainable AI (EAI) of the proposed LSTM refers to the process of making Artificial Intelligence (AI) systems more understandable and transparent to human users. This transparency allows users to interpret the model’s decision-making process and trust the results. By providing clear reasoning, EAI helps in identifying potential biases and improving the reliability of the model. Figure 2 exhibits the proposed EAI-SC-LSTM model for data classification.
[image: Diagram of an LSTM cell showing the flow of data through forget, input, and output gates. It incorporates Serf Colu activation functions and utilizes previous cell and hidden states to update the current state. The output differentiates phishing and legitimate data.]FIGURE 2 | Architecture of proposed EAI-SC-LSTM network.The LI is processed via three gates, namely, the forget gate GF, input gate GI, and output gate GO of the proposed classifier. The detection of phishing URLs using EAI-SC-LSTM is explained below,
3.8.1 Forget gate
Primarily, LI is integrated with the previous cell state cp−1, which acts as a memory unit and retains the network information. The information to be stored or neglected from the network is declared through the SC activation function. This allows the network to selectively “forget” unnecessary information, optimizing learning and memory flow. This selective forgetting helps prevent the network from overfitting irrelevant data, thus improving the model’s ability to generalize. Therefore, the forget gate is defined as in Equation 38,
GF=ϑ×wFhs−1,LI+bF(38)
Here, ϑ is the SC activation function, hs−1 is the previous hidden state, and wF and bF are the weights and biases of GF, respectively. Here, ϑ is established by replacing the sigmoid function to suppress the gradient vanishing problem. It is given as in Equation 39,
ϑ=LI.⁡erfln1+LI−LI+eLI(39)
Here, erf is the error function and ln is the natural logarithm operation. Thus, ϑ enhances the gate’s ability to filter out irrelevant information, improving model accuracy. By focusing on important patterns and information, the model becomes more efficient and trains faster. This results in better generalization, allowing the model to perform well on unseen data.
3.8.2 Input gate
Subsequently, the input gate determines the information to be reserved in the cell state Cp−1. The output of GI, which is activated with ϑ, is defined as in Equation 40,
GI=ϑ×wIhs−1,LI+bI(40)
Then, to store the information, the candidate vector v→ of LI is generated by the hyperbolic tangent function ⁡tanh⁡. It is determined as in Equation 41,
v→=tanhwv. hs−1,LI+bv(41)
Here, wv and bv are the weights and biases of v→, correspondingly.
3.8.3 Cell state update
Next, the cell state Cp−1 is updated into a new cell state Cp to regulate the essential information over time. It is updated by the scaling of v→ with GI and forget gate with Cp−1. The cell state updation is given as in Equation 42,
Cp=GF*Cp−1+GI*v→(42)
3.8.4 Output gate
In this, the phishing and legitimate data are predicted by passing the information through the proposed ϑ and Cp. IIt is expressed as in Equation 43,
GO=ϑwOhs−1,LI+bO(43)
Here, bO and wO are the biases and weights of GO, correspondingly. Next, GO is scaled with a tanh function to upgrade the current hidden state hs. Hence, it is expressed as in Equation 44,
hs=GO×tanhCp(44)
In the meantime, Explainable AI (EAI) is utilized to interpret phishing detection and make the predicted outcome more transparent and understandable by human users. Thus, it is embedded with the predicted outcome of the proposed network, and it is given as in Equation 45,
O°=X∂*hs(45)
Where, O° is the classifier outcome, and X∂ is the EAI scaled with the current hs. The complex learning of the network can be executed with relevant decision-making by using the EAI, which fulfills the user requirement. Thus, by using the proposed EAI-SC-LSTM model, the phishing data LP and legitimate data LL are detected and classified with more accurate interpretability.
3.9 User alert
After classifying LP and LL, the LP is updated to the blacklist for future reference. If any new URL enters the system, then the respective URL is checked inside the blacklist. A URL is reported to the user if it is already present in the blacklist. Or else, the new URL is processed by the proposed framework to detect the legitimacy of the URL.
4 RESULTS AND DISCUSSIONS
This section discusses the experimental outcome of the proposed work with respect to different metrics by comparing it with the prevailing approaches. To analyze the performance, the proposed technique is implemented in the PYTHON platform, which emphasizes code readability and possesses robust integration of the system. The hyperparameters used in the proposed classifier are depicted in Table 1.
TABLE 1 | Hyperparameters of the proposed classifier.	Hyperparameters	Values
	Hidden Size	128
	Number of Layers	3
	Batch Size	128
	Dropout	0.2
	Learning Rate	0.001
	Epochs	100
	Optimizer	Adam
	Activation Function	SERF CoLU


	The above Table 1 shows the hyperparameters of the proposed EAI-SC-LSTM classifier that are used in the proposed framework.

4.1 Dataset description
By using the “SMS Smishing Collection (SSC) Dataset”, “Phishing Email Curated (PEC) Dataset”, and “Webpage Phishing Detection (WPD) Dataset”, the performance of the proposed method is evaluated.
Table 2 depicts the dataset details utilized for training and testing the proposed model. The SSC dataset contains a total of 9654 messages after augmentation, consisting of 4827 normal SMS and 4827 smished SMS in the English language with URLs. The Zenodo open repository publishes the PEC dataset that comprises 9654 features, including 3,600 normal emails and 3,600 smished emails. Further, the WPD dataset includes 11,430 URL data with balanced phishing and legitimate data. From each dataset, 80% and 20% of data are used for training and testing the proposed model, correspondingly. The utilized dataset links to examine the proposed model are given below the reference list.
TABLE 2 | Dataset description.		SSC dataset	PEC dataset	WPD dataset
	Data	Original data	Augmented data	Training	Testing	Original data	Augmented data	Training	Testing	Original data	Training	Testing
	Normal data	4827	4827	3,861	966	3,600	3,600	2,880	720	5,715	4572	1,143
	Attacked data	747	4827	3,861	966	2,209	3,600	2,880	720	5,715	4572	1,143
	Total data	5,574	9654	7,722	1932	5,809	7,200	5,760	1,440	11,430	9144	2,286


Table 3 describes the dataset features used in the proposed work. These features are utilized for training purposes regarding phishing attack detection.
TABLE 3 | Dataset feature description.	Datasets	Features’ name	Descriptions
	SSC	Message	The SMS text message content
	Label	Classification of the message to be ham for legitimate data and spam for phishing data
	PEC	sender	The email address of the sender
	receiver	The email address of the recipient
	subject	The subject line of the email
	body	The main content of the email
	label	The email is to be a legitimate class or a phishing class
	url	Other emails present in the main body of the email
	WPD	URL	Web address
	length_url	The total number of characters in the URL.
	length_hostname	The number of characters present in the hostname of the URL.
	ip	Indicates the presence of the Internet Protocol (IP) address instead of the domain name
	nb_dots	The count of dot characters in the URL.
	http_in_path	Indicates the presence of HyperText Transfer Protocol (HTTP) in the URL path
	port	Indicates the specification of the port number in the URL.
	abnormal_subdomain	Indication of the subdomain structure to be abnormal or excessively long
	phish_hints	It shows the webpage content with certain keywords, which are already associated with phishing attempts
	domain_age	Calculates the age of the domain
	web_traffic	Assessment of the web traffic ranking of each site
	dns_record	Checking the availability and validity of the Domain Name System (DNS) record
	google_index	Verification of the webpage to be indexed by Google
	page_rank	The rank of the webpage, which reflects the credibility of the site
	Status	Target variable that indicates the webpage to be phishing or legitimate


In Table 4, the parameters used for the analysis are given. Based on True Positive (TP), False Negative (FN), True Negative (TN), False Positive (FP), end time, and start time, the parameters utilized for the investigation of the proposed work are evaluated.
TABLE 4 | Parameters formulae.	Parameters	Formulae
	Recall	TPTP+FN
	Precision	TPTP+FP
	F-measure	2*Recall*⁡Pr⁡ecisionRecall+Pr⁡ecision
	Accuracy	TP+TNTP+FP+TN+TN
	Specificity	TNTN+FP
	Sensitivity	TPTP+FN
	TPR	TPTP+FN
	TNR	TNTN+FP
	FPR	FPFP+TN
	FNR	FNFN+TP
	PPV	TPTP+FP
	NPV	TNTN+FN
	Training Time	End Time−Start Time
	Feature Selection Time	Feature Selection End Time −Feature Selection Start Time


4.2 Performance assessment
The performance of the proposed method is evaluated and compared with existing approaches. The following results demonstrate its improved efficiency in phishing attack detection and mitigation.
4.2.1 Performance analysis of EAI-SC-LSTM
Initially, to detect phishing data, the performance of the proposed EAI-SC-LSTM classifier is examined by comparing it with the prevailing classifiers, namely, LSTM, Recurrent Neural Network (RNN), CNN, and DNN using the SSC Dataset, PEC Dataset, and the WPD Dataset.
4.2.1.1 Analysis with SSC dataset
The performance analysis of the proposed and existing classifiers is conducted using the SSC dataset as presented below,
In Figure 3, the performance comparison of EAI-SC-LSTM and the existing models regarding accuracy, precision, recall, f-measure, and Matthews Correlation Coefficient (MCC) is estimated for the SSC dataset. Figure 3 displays that the proposed network attains 99.627% accuracy, 99.895% precision, 99.784% recall, 99.562% f-measure, and 99.564% MCC. This is because of tackling the gradient vanishing issue and enhancing the learning capability by utilizing the SERF CoLU activation function in the proposed classifier. Meanwhile, the prevailing networks, namely, LSTM, RNN, DNN, and CNN achieve average values of 95.332% accuracy, 95.562% recall, 97.043% precision, 96.025% f-measure, and 95.404% MCC, respectively, which are lower than the proposed approach. Hence, when compared to the traditional networks, the proposed model detects phishing data with enhanced performance.
[image: Line graph titled "SMS Phishing Detection" comparing models on metrics of precision, recall, F-measure, MCC, and accuracy. Models include Proposed EAI-SC-LSTM, LSTM, RNN, CNN, and DNN. Proposed EAI-SC-LSTM consistently performs highest across metrics, followed by LSTM, RNN, CNN, and DNN. Values range from 88% to 104%.]FIGURE 3 | Graphical analysis of EAI-SC-LSTM.Table 5 illustrates the training time performance of the proposed and existing techniques on the SSC dataset. The Proposed EAI-SC-LSTM attained the lowest training time of 34692 ms, followed by LSTM at 40158 ms, RNN and CNN both at 44127 ms and 50236 ms, respectively, and DNN with the highest at 50236 ms, confirming the model’s efficiency in training duration.
TABLE 5 | Analysis of Proposed EAI-SC-LSTM and Existing Techniques in SSC Dataset based on Training Time.	Techniques	Training time (ms)
	Proposed EAI-SC-LSTM	34692
	LSTM	40158
	RNN	44127
	CNN	50236
	DNN	44127


As shown in Figure 4, the Area Under Curve (AUC) comparison for SMS phishing detection demonstrates that the proposed EAI-SC-LSTM model achieves the highest performance with an AUC of 0.99. It outperforms traditional models, such as LSTM (0.96), RNN (0.94), CNN (0.90), and DNN (0.89), highlighting its superior capability in distinguishing phishing messages with high true positive rates.
[image: Bar chart comparing the performance of SMS phishing detection models: Proposed EAI-SC-LSTM, URLTran, URLNet, PhishStorm, and PhishTank across four metrics: Precision, Recall, F-Measure, and Accuracy. Values are presented as percentages.]FIGURE 4 | AUC graph analysis for the SMS phishing detection.Figure 5 represents a shape often seen in data visualization, symbolizing cycles or flow. In the SPCA Variance Graph for SMS Phishing Detection, individual variance (blue line) starts high but declines, while cumulative variance (orange line) increases, reaching 1.0 by the 4th principal component. This shows how SPCA reduces dimensions while preserving crucial data for detecting phishing patterns efficiently.
[image: Line graph showing SMS phishing detection metrics: precision, recall, and accuracy. It compares six categories: Credential Harvesting, Malicious Link Delivery, Banking & Financial Scams, Government Impersonation, and Fake Job Offers. Values range between 99.0% and 100.0%. Each category is represented by a colored line with markers.]FIGURE 5 | Variance graph analysis for the proposed SPCA in SMS phishing detection.4.2.1.2 Analysis with PEC dataset
The performance of both the proposed and existing classifiers is evaluated using the PEC dataset, which is detailed below.
In Figure 6, the assessment of the proposed classifier on the PEC dataset is presented, showcasing its performance regarding Positive Predictive Value (PPV), Negative Predictive Value (NPV), sensitivity, specificity, and accuracy for classifying phishing and legitimate data. By minimizing the gradient explosion problem via the introduced SERF CoLU activation function, the proposed model learns the complex data features. Figure 6 shows that the EAI-SC-LSTM attains 99.652% PPV, 99.326% NPV, 99.874% sensitivity, 99.857% specificity, and 99.645% accuracy, which are higher than the prevailing networks. Simultaneously, the existing networks like RNN achieve 96.857% PPV and 93.845% accuracy, CNN obtains 87.847% NPV and 91.689% sensitivity, and DNN attains 91.987% PPV and 88.9655 specificity. Hence, it is verified that when compared to other conventional techniques, the proposed classifier provides increased performance.
[image: A Receiver Operating Characteristic (ROC) curve depicting the performance of different models in SMS phishing detection. The true positive rate is plotted against the false positive rate. The proposed model, EAI-SC-LSTM, achieves an AUC of 0.99, outperforming other models: LSTM (0.96), RNN (0.94), CNN (0.90), and DNN (0.89). The proposed model’s curve is the closest to the top-left corner, indicating the highest effectiveness.]FIGURE 6 | Performance assessment of the proposed EAI-SC-LSTM and existing techniques for detecting the phishing attacks.Table 6 upresents the training time analysis of the proposed EAI-SC-LSTM on the PEC dataset. The Proposed EAI-SC-LSTM achieved the lowest training time of 24417 ms, outperforming LSTM (30265 ms), RNN (35265 ms), CNN (40157 ms), and DNN (44784 ms). This reduction is due to the use of the efficient SERF-CoLU activation function, which accelerates convergence in the proposed classifier.
TABLE 6 | Training time analysis for the proposed EAI-SC-LSTM and existing techniques in the PEC dataset.	Techniques	Training time (ms)
	Proposed EAI-SC-LSTM	24417
	LSTM	30265
	RNN	35265
	CNN	40157
	DNN	44784


As depicted in Figure 7, for E-Mail phishing detection, the proposed EAI-SC-LSTM model attains the highest AUC value of 0.99, indicating excellent classification ability. In comparison, LSTM attained an AUC of 0.96, RNN at 0.93, CNN at 0.91, and DNN at 0.88, showing that the proposed method significantly improves detection performance over conventional approaches.
[image: Line graph titled "SPCA Variance Graph for SMS Phishing Detection" displaying the explained variance ratio versus principal components. The blue line shows decreasing individual explained variance, and the orange dashed line shows increasing cumulative explained variance, both stabilizing after the second component.]FIGURE 7 | Graphical analysis of AUC for the PEC dataset.Figure 8 represents a graph that helps analyze variance in data. In the SPCA Variance Graph for E-Mail Phishing Detection, individual variance is highest for the first principal component and gradually decreases, while cumulative variance rises steadily, approaching 1.0 by nearly the 14th principal component. This demonstrates how SPCA effectively reduces dimensions while retaining key information for accurate phishing detection.
[image: Bar chart comparing email phishing detection metrics across six models: Proposed EAI-SC-LSTM, LSTM, RNN, CNN, DNN. Metrics include PPV, NPV, Sensitivity, Specificity, and Accuracy. Proposed EAI-SC-LSTM generally shows higher values.]FIGURE 8 | Variance graph analysis for the proposed SPCA in E-mails phishing detection.4.2.1.3 Analysis with WPD dataset
An evaluation of the proposed and existing classifiers is conducted using the WPD dataset, as outlined below.
Regarding accuracy, True Positive Rate (TPR), True Negative Rate (TNR), False Positive Rate (FPR), and False Negative Rate (FNR), the performance of EAI-SC-LSTM is analyzed for the WPD dataset, which is displayed in Table 7. The proposed approach achieves 99.541% accuracy, 99.865% TPR, 99.562% TNR, 0.587% FPR, and 0.635% FNR. Meanwhile, the prevailing techniques attain an average accuracy, TNR, TPR, FPR, and FNR of 96.156%, 95.903%, 95.055%, 5.616%, and 5.387%, correspondingly, which are better than the proposed technique. Since various features, including user behavior, are analyzed and embedded prior to classification, the EAI-SC-LSTM detects phishing data with better performance than the prevailing approaches.
TABLE 7 | Performance analysis of TPR, TNR, accuracy, FPR, and FNR for the proposed EAI-SC-LSTM and the existing techniques.	Methods	TPR(%)	TNR(%)	Accuracy (%)	FPR(%)	FNR(%)
	Proposed EAI-SC-LSTM	99.8653	99.5621	99.5412	0.5874	0.6359
	LSTM	96.8574	97.8451	97.8457	3.6574	3.5241
	RNN	93.6524	93.6589	94.6532	7.6358	7.1254
	CNN	91.8451	92.5478	92.5847	10.5847	10.2658
	DNN	89.8475	87.6532	89.6523	16.3256	12.6598


Figure 9 analyzes the AUC measure of the proposed EAI-SC-LSTM and the prevailing networks. The capability of the network is determined by the AUC to accurately categorize the phishing and legitimate data. Figure 9 displays that the proposed network attains a higher AUC value (0.99) than the prevailing networks. The existing networks like LSTM, RNN, CNN, and DNN attain lower AUC measures of 0.97, 0.94, 0.92, and 0.89, respectively. Since different features that comprise user behavior, contents, Javascript, and URL structures are analyzed for training the classifier, the proposed model more accurately detects the legitimate and phishing classes than the prevalent networks.
[image: Bar chart comparing the performance of different models for email phishing detection across four metrics: Positive Predictive Value (PPV), Negative Predictive Value (NPV), Sensitivity, and Accuracy. The models are Proposed EAI-SC-LSTM, SMS-BERT, TinyBERT, RoBERTa, and DistilBERT. The chart shows each model with slightly different values close to or exceeding 100% for all metrics.]FIGURE 9 | AUC analysis of the proposed classifier for the WPD dataset.In Table 8, the supremacy of the proposed EAI-SC-LSTM model regarding training time for phishing detection is depicted. Table 8 exhibits that the proposed model takes a lesser duration (38965 ms) for training. However, the prevailing approaches, namely, LSTM, RNN, CNN, and DNN take 45712 ms, 50698 ms, 55847 ms, and 60254 ms for training, respectively. Thus, they consume more time than the proposed classifier. As the optimal features are chosen centered on maximum accuracy before training the model, they help in faster training of the classifier. Therefore, the proposed model attains enhanced performance than other existing methods.
TABLE 8 | Analysis of the Proposed EAI-SC-LSTM and the Existing Techniques in terms of Training Time.	Techniques	Training time (ms)
	Proposed EAI-SC-LSTM	38965
	LSTM	45712
	RNN	50698
	CNN	55847
	DNN	60254


Figure 10 represents a graph that visualizes variance distribution in data. In the SPCA Variance Graph for URL Phishing Detection, individual variance (blue circles) decreases across principal components, while cumulative variance (orange squares) steadily rises, approaching 1.0 by the 10th component. This highlights how SPCA efficiently reduces dimensions and maintains critical information for detecting phishing threats.
[image: Line graph titled "E-Mail Phishing Detection" showing precision, recall, and accuracy metrics for five phishing types: deceptive phishing, spear phishing, whaling, pharming, and malware delivery. Precision ranges from ninety-nine percent to one hundred percent. All types show varying performance across metrics.]FIGURE 10 | Variance graph analysis for the proposed SPCA in url phishing detection.4.2.2 Performance evaluation of CSOA
The performance of the proposed CSOA is evaluated with existing approaches for feature selection.
Table 9 evaluates the performance of CSOA in selecting the important features with respect to the feature selection time. The performance of CSOA is examined by comparing it with other algorithms, namely, SOA, Fish Swarm Optimization Algorithm (FSOA), Whale Optimization Algorithm (WOA), and Particle Swarm Optimization Algorithm (PSOA). It is observed that the proposed CSOA chooses optimal features within 3625 ms for 10 iterations and 12874 ms for 40 iterations, which are lesser than the prevailing algorithms. In the meantime, the prevailing FSOA takes 11784 ms, WOA consumes 15639 ms, and PSOA takes 19865 ms for 10 iterations. Moreover, during feature selection, the prevailing FSOA and WOA take 20685 ms and 24865 ms for 40 iterations, correspondingly. The proposed algorithm takes minimal time to choose the optimal features since the premature convergence problem of SOA is resolved by updating the seagull position using CDF. Hence, when compared to other traditional algorithms, the proposed CSOA attains enhanced performance.
TABLE 9 | Performance evaluation of proposed CSOA.	No. of<Iterations	Feature selection time (ms)
	Proposed CSOA	SOA	FSOA	WOA	PSOA
	10	3625	7856	11784	15639	19865
	20	6985	10856	14785	18759	22874
	30	9874	13965	17685	21874	25847
	40	12874	16885	20685	24865	28695
	50	15698	19865	23784	27846	31698


4.3 Comparative analysis with related works
Based on accuracy, precision, and recall, the proposed phishing detection framework is compared with some existing works for validating the enhanced performance.
Table 10 displays the comparison of the performance of phishing detection using the proposed technique and other related works. It is found that the proposed model achieves accuracies of 99.625% on the SSC dataset, 99.645% on the PEC dataset, and 99.541% on the WPD dataset. Also, the SSC dataset attains a precision of 99.895% and an F-measure of 99.541%, demonstrating high overall performance. In the meantime, the prevailing approaches, namely, RF achieves 98.90% accuracy, Functional Tree-based Meta-Learning (FTML) attains 98.50% f-measure, LSTM-CNN obtains 98.02% precision, Multistage Detection based on Different Features (MDDF) achieves 96.59% f-measure, ML algorithms attain 96.30% accuracy, AntiPhishStack-LSTM model achieved 98.01 precision, Decision Tree and Random Forest (DT+RF) achieved 97.44 accuracy, and Gated Recurrent Unit (GRU) obtained 98.8 f-measure. These prevailing works don’t examine the multiple data sources as well as the user behavior for phishing detection. However, the proposed work considers user behavior and Java script features of various data sources for phishing detection. Also, the proposed model included the integration of SMS, email, and URL data. Further, in the proposed system, the phishing attack was detected with transparency and interpretability. Hence, when compared to the prevailing works, the proposed system attains enhanced performance regarding phishing attack detection.
TABLE 10 | Comparative analysis.	References	Techniques used	Accuracy (%)	Precision (%)	F-measure (%)
	Proposed	EAI-SC-LSTM	99.625-SSC, 99.645-PEC, and 99.541-WPD Dataset.	99.895-SSC Dataset.	99.541-SSC Dataset.
	Kara et al. (2022)	RF classifier	98.90	-	-
	Balogun et al. (2021)	FTML	98.51	-	98.50
	Al-Ahmadi et al. (2022)	LSTM-CNN	97.58	98.02	97.64
	Liu et al. (2021)	MDDF	-	98.92	96.59
	Akour et al. (2021)	ML algorithms	96.30	96.20	96.30
	Aslam et al. (2024)	AntiPhishStack-LSTM	96.04	98.01	95.91
	van Geest et al. (2024)	DT+RF	97.44	-	96.56
	Alsubaei et al. (2024)	GRU	98	97.8	98.8


4.4 Comparative analysis with dataset
The comparison of similar studies regarding phishing attack detection with the dataset used in the proposed work is shown in Table 11.
TABLE 11 | Dataset based Comparison.	Studies	Datasets	Methods	Accuracy (%)	Precision (%)	Recall (%)	F-measure (%)
	Proposed Work	SSC, PEC, and WPD	EAI-SC-LSTM	99.625-SSC, 99.645-PEC, and 99.541-WPD Dataset.	99.895-SSC Dataset.	99.541-SSC Dataset.	99.562-SSC Dataset.
	Mehmood et al. (2024)	SSC	LSTM	98.58	96	95	96
	Champa et al. (2024b)	PEC	ADB	98.25	98.23	98.25	98.24
	Champa et al. (2024a)	PEC	XGB	98.95	98.96	98.95	98.93
	Rashid and Abdullah (2023)	WPD	XGB	96.413	97.086	96.44	95.802
	Shafin (2024)	WPD	XGB	96.8	97	97	97


As shown in Table 11, the proposed model achieves high accuracy across datasets like 99.625% (SSC), 99.645% (PEC), and 99.541% (WPD) with an F-measure of 99.562% on the SSC dataset, confirming its effective phishing detection. This is because of the utilization of selected features, SC activation function, and EAI technique. However, the existing studies that use a similar dataset with classifier models like LSTM, AdaBoost (ADB), and eXtreme Gradient Boosting (XGB) show poor performance than the proposed system. The traditional techniques fail to analyze the important features or depend on one source, leading to lower accuracy, precision, recall, and F-measure. Thus, the proposed research work effectively detects the phishing attacks than the prevailing studies.
4.5 Computational Complexity Analysis
The time spent for the purpose of phishing attack detection is analyzed and depicted in Figure 11. Mostly, the Big O notation is used to describe the time complexity of the proposed model and the prevailing models regarding the performance characteristics while dealing with the input data.
[image: A graph illustrating Receiver Operating Characteristic (ROC) curves for e-mail phishing detection. The proposed EAI-SC-LSTM model achieves the highest performance with an AUC of 0.99. Other models include LSTM (0.96), RNN (0.93), CNN (0.91), and DNN (0.88). The x-axis represents the false positive rate, and the y-axis represents the true positive rate.]FIGURE 11 | Computational complexity analysis of EAI-SC-LSTM.As the SC activation function and the EAI are used by the proposed classifier, effective phishing attack detection in the multimodal data is done, thus avoiding the vanishing gradient problem. Hence, the proposed EAI-SC-LSTM classifier achieves a Big O notation of O(1), which shows that phishing attack detection is effective and quick. But, the existing LSTM attains O(n), the RNN achieves O(n log n), the CNN obtains O(n^2), and the DNN achieves O(2^n) Big O notation during phishing attack prediction. This proves that the runtime of the proposed classifier is lower than the existing classifiers. Hence, the usage of SC and the EAI technique in the proposed work does not produce computational complexity.
4.6 Discussion
As per the performance assessment of the proposed model, the phishing attacks in the multiple data sources were analyzed precisely. The features of the input data were converted to vector form using EM-BERT. Then, the important features were selected using CSOA, which attained a feature selection time of 3625 ms for 10 iterations and 15698 ms for 50 iterations. With the help of the extracted feature and the vector form data, the proposed EAI-SC-LSTM classified the phishing attack with an accuracy of 99.645% (PEC) and a precision of 99.895% (SSC). However, the existing models, as mentioned in the performance assessment, could not attain more effective results than the proposed models. Also, in the comparison of the proposed work and the prevailing works regarding phishing attack detection, the proposed work attained better results. Hence, the proposed work played an effective role in phishing attack detection for multiple data sources.
4.7 T-test analysis
The T-test analysis of the dataset distribution for the proposed framework that addresses the statistical significance is illustrated in Figure 12.
[image: Line graph titled "SPCA Variance Graph for E-Mail Phishing Detection" shows explained variance ratio on the y-axis and principal components on the x-axis. A blue line indicates individual explained variance decreasing rapidly after the first component. An orange dashed line indicates cumulative explained variance increasing and leveling off after several components.]FIGURE 12 | T-test analysis.The above Figure 12 visualizes the distribution of values within the dataset. Here, the vertical dashed line indicates the sample mean. A one-sample-based T-test was conducted to check the deviation of the sample mean from the expected baseline. Thus, the T-test attained a T-score of −3.1993 and a P-value of 0.0015, showing statistically significant differences at the level of 0.05. Thus, it proves that the observed dataset values have occurred effectively and not by random chance. Thereby, this supports the hypothesis that the datasets used in the proposed work exhibit meaningful deviation concerning the assumed baseline. Hence, the robustness of the observed values is achieved.
4.8 Limitation
Although the proposed work efficiently analyzed the phishing attack in sources like SMS, email, and web page URLs, it failed to perform the Secure Sockets Layer (SSL) certificate analysis. The attacker uses this SSL certificate and makes the phishing site appear to be a secured one.
5 CONCLUSION
This work proposed an effective multimodal framework for phishing detection using EAI-SC-LSTM, CSOA, and SPCA approaches. The proposed approach used multiple data sources and examined various features like user behavior of the data. In addition, by using the proposed EM-BERT algorithm, the vector conversion of features enhanced the classifier learning. Then, by utilizing the presented CSOA, the optimal features of the URL were selected with a suitable fitness of 99.68% for 50 iterations. Hence, by using the proposed EAI-SC-LSTM model, the phishing and legitimate data were detected with an accuracy of 99.645% (PEC), a precision of 99.895% (SSC), recall of 99.784% (SSC), PPV of 99.652% (PEC), FNR of 0.6359, and training time of 24417 ms (PEC). Thus, the proposed model provided an enhanced system for phishing detection and mitigation of multisource data. This implied that the proposed EAI-SC-LSTM technique surpassed the traditional phishing detection models. The integration of the real-time blacklist update mechanism into the proposed system enhanced the system’s reliability in adapting to the evolving phishing attack. The results attained by the proposed system made the model to be a promising solution for real-time cybersecurity applications.
5.1 Future work
Although the behavior features are efficiently used for phishing detection, there is a possibility of developing Secure Sockets Layer (SSL) certificates for the malicious domains by the attackers. This is a limitation of this research. So, in the future, SSL certificate analysis will be incorporated to improve the phishing attack detection accuracy and to enhance the security of the system against other sophisticated attacks. Hence, the proposed work will further improve the robustness in real-world scenarios.
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