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As one of the important statistical methods, quantile regression (QR) extends
traditional regression analysis. In QR, various quantiles of the response variable
are modeled as linear functions of the predictors, allowing for a more flexible
analysis of how the predictors affect different parts of the response variable
distribution. QR offers several advantages over standard linear regression due to
its focus on estimating conditional quantiles rather than the conditional mean of
the response variable. This paper investigates QR over sensor networks, where
each node has access to a local dataset and collaboratively estimates a global QR
model. QR solves a non-smooth optimization problem characterized by a
piecewise linear loss function, commonly known as the check function. We
reformulate this non-smooth optimization problem as the task of finding a saddle
point of a convex–concave objective and develop a distributed primal–dual
hybrid gradient (dPDHG) algorithm for this purpose. Theoretical analyses
guarantee the convergence of the proposed algorithm under mild
assumptions, while experimental results show that the dPDHG algorithm
converges significantly faster than subgradient-based schemes.
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1 Introduction

Distributed signal processing (Hovine and Bertrand, 2024; Cattivelli and Sayed, 2010;
Schizas et al., 2009) in wireless sensor networks addresses the challenges of limited energy,
processing power, and communication range of individual sensors. By applying
collaborative computational algorithms, sensors can operate as a distributed signal
processor, overcoming individual limitations and improving energy efficiency.
Distributed signal processing is particularly used in various applications where
distributed algorithms can enhance the power efficiency by avoiding data centralization,
including environmental monitoring, healthcare, and military surveillance. However, the
complexity of real-world sensor data often involves non-linear relationships,
heteroscedasticity, and outliers. In such environments, traditional distributed methods
like least squares regression may fail to provide robust estimates due to the influence of
extreme values or noise.

Quantile regression (QR) (Waldmann, 2018) offers a solution by estimating conditional
quantiles of the data distribution, rather than just the mean, making it more robust to
outliers and better suited for modeling heterogeneous data sources. Quantile regression has
gained significant attention as a robust approach to regression analysis, particularly
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in situations where the distribution of the response variable is not
symmetric or when outliers are present, and has applications in
various fields, including ecology, economics, and industry (Cade and
Noon, 2003; Ben Taieb et al., 2016; Wan et al., 2017). Some efficient
numerical methods, including alternating direction method of
multipliers (ADMM) (Mirzaeifard et al., 2024; Bazzi and Chafii,
2023), majorize–minimize (MM) (Kai et al., 2023; Cheng and Kuk,
2024), andmachine learning (Patidar et al., 2023; Hüttel et al., 2022),
were used for solving the optimization problem associated with
quantile regression. Recent research has focused on distributed
quantile regression (dQR) in sensor networks. In distributed
sensor networks, where data from different sensors can vary
significantly in terms of noise and variability, quantile regression
can be applied at the local level to estimate the distributional
characteristics of the data at each sensor node. Wang and Li
(2018) proposed a diffusion-based distributed strategy [including
a variant for sparse models (Bazzi et al., 2017)] for quantile
regression over wireless sensor networks. Wang and Lian (2023),
Lee et al. (2018), and Lee et al. (2020) introduced several consensus-
based dQR methods for sensor networks. These methods overcome
challenges in distributed settings, including limited storage and
transmission power, while maintaining statistical robustness.
They offer promising solutions for quantile-based analyses in
decentralized sensor networks across diverse applications.

It should be noted that quantile regression involves a non-
differentiable optimization problem with a piecewise linear loss
function, also known as the check function. Most existing
quantile regression algorithms rely on subgradient methods,
which typically exhibit sublinear convergence rates. Although
these methods have certain merits, they often struggle with slow
convergence when tackling the non-differentiability of the
optimization problem. Alternatively, techniques such as MM (Kai
et al., 2023; Cheng and Kuk, 2024) mitigate the non-differentiability
issue by minimizing a smooth majorizer of the check function
instead of the function itself. However, these methods can
introduce additional computational complexity and may not fully
exploit the structure of distributed settings. As a data-driven
approach, the machine learning-based methods (Patidar et al.,
2023; Hüttel et al., 2022; Delamou et al., 2023; Njima et al.,
2022) can circumvent the non-differentiability issue. However, it
relies heavily on the availability of large datasets, which may not
always be feasible or efficient in certain scenarios.

In this paper, we propose a novel approach for diffusion-based
distributed quantile regression, leveraging the primal–dual hybrid
gradient method to find a saddle point of a convex–concave
objective. This strategy accelerates convergence and significantly
enhances the efficiency of the quantile regression process.

2 Network model and problem
formulation

2.1 Preliminaries

In this section, we present a brief introduction to quantile
regression. Let S be a scalar random variable, B a L-dimensional
random vector, and FS(s | b) � P(S≤ s | B � b) represent the

conditional cumulative distribution function. The conditional
quantile τ is defined as follows:

qSτ b( ) � inf s: FS s | b( )≥ τ{ }
for τ ∈ (0, 1). A linear model is given by s � b⊤w + ϵ, where b is the
L × 1 input data vector, w is the L × 1 deterministic unknown
parameter vector of interest, and ϵ is the observed noise
following a certain distribution. Unlike standard regression
methods, which focus on estimating the mean of s, quantile
regression provides a more comprehensive analysis by modeling
different points (quantiles) in the distribution of s.

In the quantile regression model, qSτ(b) is assumed to be linearly
related to b as follows: qSτ(b) � b⊤w + qϵτ , where q

ϵ
τ ∈ R represents

the τ-th quantile of the noise. The τ-th quantile of the noise, qϵτ , is
not necessarily 0 (e.g., for asymmetric noise distributions). Explicitly
including qϵτ avoids the restrictive assumption that qϵτ � 0, thereby
allowing the model to flexibly adapt to the true noise distribution.
Omitting qϵτ would force the conditional quantile qSτ(b) to pass
through the origin, which is often inappropriate in real-world
applications. Since both qϵτ and w are unknown parameters that
must be estimated, the optimization problem for estimating w and
qϵτ can be expressed as follows:

w, qϵτ{ } � argmin
w,qϵτ

E ρτ s − b⊤w − qϵτ( )[ ]. (1)

Here, ρτ is the non-differentiable quantile loss function, also known
as the check function, defined as follows:

ρτ u( ) � τu, if u≥ 0,
τ − 1( )u, if u< 0.

{
This function adjusts the loss asymmetrically depending on whether
the residual u is positive or negative, allowing the model to estimate
conditional quantiles for different τ values.

2.2 Network model and problem
formulation

Consider a network consisting of K nodes distributed over a
certain geographic region. Assume that the network is strongly
connected, that is, there is no isolated node in the network. Every
node k ∈ {1, 2, . . . , K} has access to the realization of zero-mean
random data {sk,i, bk,i} at every time instant i and is allowed to
communicate only with its neighbors N k, where sk,i is a scalar
measurement, bk,i is an L × 1 measurement vector, and N k denotes
a set of nodes in the neighborhood of node k including itself.
Moreover, {sk,i, bk,i, k � 1, . . . , K, i � 1, . . . ,M} satisfy a standard
lineal regression model

sk,i � b⊤k,iw0 + ϵk,i, (2)

where ϵk,i is the measurement noise and w0 is a deterministic sparse
vector of dimension L.

The aim of this study is to develop a distributed quantile
regression algorithm to estimate w0 using the dataset
{sk,i, bk,i, k � 1, . . . , K, i � 1, . . . ,M}. Recalling Equation 1,
the sparsity-penalized quantile regression estimate of w0 is
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obtained by minimizing the global cost function for quantile
regression across the network, formulated as follows:

minϖJ
glob ϖ( ) ≜ minϖ

1
K

∑K
k�1

Jlock ϖ( ), (3)

where

Jloc ϖ( ) ≜ 1
M

∑M
i�1

∑
l∈N k

cl,kρτ si,l − b⊤i,lw − qϵτ( ) + λ‖w‖1

� 1
M

∑M
i�1

∑
l∈N k

cl,kρτ si,l − a⊤i,lϖ( ) + λ‖w‖1.
(4)

Here, Jglob(ϖ) represents the global cost function over the network,
and the local cost functions Jlock (ϖ), which reflect the costs at each
node k, are aggregated to form the global objective. The first term in
Equation 4 captures the quantile regression residuals across all
nodes k and data points i, while the second term imposes
ℓ1-norm regularization on w, encouraging sparsity. In this
formulation, ak,i � [b⊤k,i, 1]⊤ is the augmented input data vector, ϖ �
[w⊤, qϵτ]⊤ is the augmented parameter vector to be estimated, and C
is a K × K weighting matrix with individual entries {cl,k}. The
coefficients cl,k (l, k � 1, 2, . . . , K) are non-negative weighting
factors, satisfying

cl,k � 0 if l ∉ N k and ∑K
l�1

cl,k � 1. (5)

This condition (Equation 5) is explicitly satisfied by widely used
weight rules in the distributed optimization literature (Cattivelli and
Sayed, 2010; Tu and Sayed, 2011). In addition, λ is a regularization
parameter controlling the sparsity of the solution, and ‖w‖1 denotes
the ℓ1-norm which encourages sparse solutions.

We assume that the underlying network operates under ideal
and stable communication conditions. Transient link or node
failures—well-studied in the distributed network literature (Gao
et al., 2022; Swain et al., 2018)—are effectively handled using
established engineering solutions, such as fault-tolerant protocols,
redundancy, and consensus mechanisms, thereby ensuring system
reliability.

3 Distributed primal–dual hybrid
gradient algorithm

This section first introduces a distributed quantile regression
framework and formulates our problem as a saddle-point
optimization problem. Subsequently, a distributed primal–dual
hybrid gradient algorithm (dPDHG) for quantile regression is
proposed, and its convergence is analyzed.

3.1 Diffusion-based distributed
estimation framework

Since the main task of quantile regression is to estimate the
parameter vector w0, we introduce a diffusion-based distributed
estimation framework. In this framework, each node solves its local
optimization problem using the subsequently proposed algorithm.

The nodes then share their intermediate results with neighboring
nodes to collaboratively solve the global quantile
regression problem.

By definition in Equation 4, the local cost function of node k can
be further expressed as a combination of the local cost functions of
its neighboring nodes, i.e., Jlock (ϖ) � ∑l∈N k

cl,k~J
loc
l (ϖ), with

~J
loc
l (ϖ) � ∑M

i�1ρτ(si,l − a⊤i,lϖ) + λM‖w‖1. Therefore, each node
obtains its estimate ϖk by combining its newly generated
estimate φk with the estimates received from its neighboring nodes:

ϖk � ∑
l∈N k

clkxl ∈ RL+1 with xl � argminx
~J
loc

l x( ). (6)

Based on this idea, we will use a distributed strategy in the
following subsections to solve the problem (Equation 3).

This study focuses on a diffusion-based framework for
decentralized quantile regression. The integration of consensus-
based strategies with primal–dual hybrid gradient methods for
distributed quantile regression, which presents significant
algorithmic challenges, is left for future investigation.

3.2 Dual problem and saddle point
optimization

By definition, we split ~J
loc
l (x) into ~J

loc
l (x) � gl(x) + λMf(x)

with gl(x) � ∑M
i�1ρτ(si,l − a⊤i,lx) and f(x) � ∑L

i�1|xi|. For the local
optimization problem minx~J

loc
l (x), the check function ρτ(v) is not

differentiable at the origin. To address this, we adopt its conjugate
function ρτ*(v), which allows us to express the problem equivalently.
The conjugate function is defined as

ρτ* v( ) � supu uv − ρτ u( ){ } � 0 if τ − 1≤ v< τ,
∞ otherwise.

{
Using the conjugate function ρτ*(v), we can express ρτ(v) as

ρτ v( ) � supu uv − ρτ* u( ){ } � supτ−1≤u<τuv.

This suggests that g(x) can be expressed as

gl x( ) � maxyl 〈yl, sl − Alx〉 − I τ yl( ), (7)

where Al � [a1,l , . . . , aM,l]⊤, sl � [s1,l, . . . , sM,l]⊤,
yl � [y1,l, . . . , yM,l]⊤, and I τ(y) is an indicator function given by

I τ y( ) � 0, τ − 1≤yi < τ, ∀i
∞, else.

{
We can obtain a dual problem associated with the original function
minimization problem minx~J

loc
l (x), which can be expressed as follows:

minxkmaxyk 〈yk, sk − Akxk〉 − I τ yk( ) +Mλf xk( ){ }. (8)

This indicates that the global optimization problem (Equation 3)
can be formulated as

min xk{ }max yk{ }∑K
k�1

∑
l∈N k

cl,k 〈yl, sl − Alxl〉 − I τ yl( ) + KMλf xl( )( ),
(9)

which has a standard saddle-point optimization problem expression
with the primal variable xk and the dual variable yk, where
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k � 1, . . . , K. Note that we are primarily concerned with the first L
elements of the vector x, which can be interpreted as the estimate of
w0. Moreover, f(x) is defined as f(x) � ∑L

i�1|xi|.

3.3 Algorithmic principles and derivations of
the dPDHG

This section presents the algorithmic principles and derivations of
the proposed dPDHG to solve Equation 9. Its basic framework includes
the following steps (a)–(d), which involve iterative updates of the primal
and dual variables {xk(n), yk(n), k � 1, . . . ,K, n � 1, . . . }:

(a) Update the primal variable xk(n), k � 0, 1, . . . , K:

xk n + 1( ) � proxμKMλf xk n( ) + μ A⊤
k yk n( )( )( ,

where proxμKMλf(z): RL+1 → RL+1 is an element-wise proximal
operator defined by proxf(v) � argminx(f(x) + (1/2)‖x − v‖22).
It is readily deduced that

proxμKMλf z( )[ ]
i
�

sign zi( )max |zi| − μKMλ, 0( ),
i � 1, . . . , L

zi, i � L + 1

⎧⎪⎨⎪⎩ ,

with zi being the i-th element of z.

(b) Update the auxiliary variable �xk(n), k � 1, . . . , K:

�xk n + 1( ) � 2xk n + 1( ) − xk n( ).

(c) Each node k combines its newly generated estimate �xk(n + 1)
with the estimates received from its neighboring nodes,
�xl(n + 1), l ∈ N k: ωk(n + 1) � ∑l∈N k

clk�xl(n + 1).
(d) Update the dual variable yk(n), k � 1, . . . , K:

yk n + 1( ) � proxηI τ
yk n( ) − η Akωk n + 1( ) − sk( )( ),

where one can deduce that the proximal operator proxηI(z) projects z
onto the interval [τ − 1, τ] element-wise: [proxηI(z)]i �
min(max(zi, τ − 1), τ).

(e) Assign global ω to local x for the next iteration.

The algorithm continues iterating until the stopping criterion is
met, typically based on the difference between successive iterates or
the duality gap. Finally, we summarize the proposed dPDHG
algorithm in Table 1.

3.4 Selection of the primal–dual step sizes

In the above steps, {μ, η} are the primal–dual step sizes chosen to
ensure the convergence of the dPDHG algorithm. For the standard
form of a convex–concave saddle-point optimization problem
minXmaxY 〈Y,AX〉 − g(Y) + f(X ){ }, the step sizes {μ, η}
chosen to ensure convergence of the PDHG algorithm are
required μηΩ2 < 1 (Esser et al., 2010), where
Ω ≔ maxZ∈RL\{0}

‖AZ‖2
‖Z‖2 � ρ(A⊤A). For the problem (Equation 9)

mentioned in this paper, A,X ,Y can be treated as A � [sl,−Al],
X � [1, x⊤l ]⊤, and Y � yl, respectively.

Note that, for each n, choosing a small μ and large η results in
small dual residual dk(n) but large primal residual pk(n), and vice
versa, where

pk n( )� A⊤
k△yk n( ) − 1

μ
△xk n( )

dk n( )� Ak△xk n( ) − 1
η
△yk n( )

, (10)

where △xk(n) � xk(n) − xk(n − 1) and
△yk(n) � yk(n) − yk(n − 1). Therefore, adaptive strategies—such
as those proposed in Goldstein et al. (2015); Chambolle et al.
(2024)—can also be employed to balance the progress between
the primal and dual updates, thereby enhancing the convergence.
If the primal residual pk(n) is sufficiently large compared to the dual
residual dk(n), for example ‖pk(n)‖2 ≥ 2‖dk(n)‖2, we increase the
primal step size μ by a factor of (1 − α)−1 and decrease the dual
stepsize η by a factor of 1 − α. If the primal residual is somewhat
smaller than the dual residual, we do the opposite. If both residuals
are comparable in size, then let the step sizes remain the same on the
next iteration. Moreover, when we modify the step size as the
iteration continues, we also shrink the adaptivity level to α ← ζα,
for ζ ∈ (0, 1).

4 Simulation examples

We consider a connected network with K � 30 nodes that are
positioned randomly on a unit square area, with a maximum
communication distance of 0.4 unit length. The three non-zero
components of the sparse vector w0 having size L � 18 are set as
1.0 with their positions randomly selected, while the others are zeros.
The weighting matrix C in Equation 5 is chosen according to the
metropolis criterion (Cattivelli and Sayed, 2010; Tu and Sayed,
2011), that is,

cl,k �
1/max degl, degk{ }, if l ∈ N k, l ≠ k
1 −∑

l≠k

cl,k, if l � k

0, otherwise

⎧⎪⎪⎨⎪⎪⎩ ,

TABLE 1 dPDHG.

Input: τ, λ, sk,i , bk,i , i � 1, . . . ,M, k � 1, . . . , K{ }
1: Initialize: μ, η, xk(0), yk(0)

2: for n � 1, 2, . . . , T do

3: for k � 1, 2, . . . , K do

4: xk(n + 1) � proxμKMλf(xk(n) + μ(A⊤
k yk(n))

5: �xk(n + 1) � 2xk(n + 1) − xk(n)

6: end for

7: for k � 1, 2, . . . , K do

8: ωk(n + 1) � ∑l∈N k
clk�xl(n + 1)

9: yk(n + 1) � proxηI τ
(yk(n) − η(Akωk(n + 1) − sk))

10: end for

11: end for
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where degk denotes the degree of node k (the cardinality of its closed
neighborhood).

We begin by evaluating the performance of the distribution
estimation for w0. The regressors, bk,i, i � 1, . . . ,M, and
k � 1, . . . , K, are modeled as independent, zero-mean Gaussian
random variables in both time and space. Their covariance
matrices are assumed to be identity matrices. Moreover, we
consider three types of noise ϵk,i: one following the beta
distribution and two following heavy-tailed distributions.
Specifically, the heavy-tailed noises are generated from Student’s
t-distribution with 2 degrees of freedom (dof) and the Cauchy
distribution. Beta-distributed noise is produced using the
MATLAB command betarnd(α, β) × 2 − 1, which maps the
standard beta-distributed values from [0,1] to [−1, 1]. The
Student’s t-distributed noise is generated using trnd(dof , 1, 1),
and the Cauchy-distributed noise is generated via the
transformation: ϵk,i � tan((rand(1) − 0.5)π), where, for each
time step i and each node k, a uniform random number in [0,1] is
first drawn using rand(1), shifted to the interval [−0.5, 0.5], and
then transformed using tan(πξ) to yield a Cauchy-distributed sample.

Figures 1–3 illustrate the transient-network mean-square
deviation (MSD) performance of our proposed dPDHG
algorithm, compared with three benchmark algorithms: the
subgradient-based algorithm (Subgrad) (Wang and Li, 2018), the
majorization–minimization algorithm (MM) (Kai et al., 2023),
accelerated proximal-based gradient methods(APG) (Chen and
Ozdaglar, 2012), and the least mean squares (LMS) algorithm
(Liu et al., 2012). The transient network MSD is defined as∑K

k�1E‖xk(n) − w0‖2/K, and the results are presented for different

quantile levels, τ � {0.2, 0.4, 0.6, 0.8}; Figures 1–3 are presented
under the presence of beta-distributed noise, t-distributed noise,
and Cauchy noise, respectively.

Across all quantile levels, our algorithm demonstrates superior
convergence properties, achieving the lowestMSD values at steady state,
compared to the other algorithms. The APG and LMS algorithms
exhibit the highest MSD, indicating poor adaptation to the beta-
distributed noise, t-distributed noise, and the Cauchy noise. The
MM algorithm outperforms Subgrad but converges to higher MSD
values than our approach. Subgrad shows moderate performance but
struggles to maintain consistent improvements across iterations. These
results highlight the robustness and efficiency of the proposed DQR
algorithm in addressing distributed quantile regression tasks.

We further consider a practical application in spectrum estimation
for a narrow-band source. A peaky spectrum can be modeled by an
L-order sparse AR process (Liu et al., 2012; Schizas et al., 2009):
θi � −∑L

l�1πlθi−l + εi, where εi is a noise and {π1, . . . , πL} are the
AR coefficients. The source propagates to sensor k via a transmission
channel modeled by a �Lk-order FIR filter, yielding an observation
xk,i � ∑�Lk−1

l�0 ςk,lθi−l + ϵk,i, where ϵk,i is an additive sensing noise and
{ςk,l} are the FIR coefficients. It is readily deduced that xk,i can be
rewritten as an autoregressive moving average (ARMA) process (see
Appendix A):

xk,i � −∑L
l�1

πlxk,i−l + ∑L+�Lk+1

j�1
ζjηk,i−j, (11)

where the MA coefficients ζj{ } and the variance of the white noise
ηk,i depend on ςk,l, πl and the variances of the noise terms εi and ϵk,i.

FIGURE 1
The transient network MSDs of the proposed dPDHG algorithm compared with three benchmark distributed algorithms: the Subgrad, the MM, and
the LMS, and the APA algorithms for estimating ω0, where ϵk,i is the beta-distributed noise.
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FIGURE 2
The transient-network MSDs of the proposed dPDHG algorithm compared with three benchmark distributed algorithms: the Subgrad, the MM, and
the LMS, and the APA algorithms for estimating ω0, where ϵk,i is the t-distribution noise.

FIGURE 3
The transient network MSDs of the proposed dPDHG algorithm compared with three benchmark distributed algorithms: the Subgrad, the MM, and
the LMS, and the APA algorithms for estimating ω0, where ϵk,i is the Cauchy noise.
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FIGURE 4
The spectrum estimation results of the proposed dPDHG algorithm compared with two benchmark distributed algorithms: Subgrad and MM. The
comparison is conducted in the presence of beta-distributed noise ϵk,i.

FIGURE 5
The spectrum estimation results of the proposed dPDHG algorithm compared with two benchmark distributed algorithms: Subgrad and MM. The
comparison is conducted in the presence of t-distributed noise ϵk,i .
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For more details, refer to Appendix A. To determine the spectral
contents of the source, the MA term in Equation 11 can be treated
as an observation noise, and then the spectral peaks of the source
can be obtained by estimating the AR coefficients πl. By letting
bk,i � [−xk(i − 1), . . . ,−xk(i − L)]⊤, sk,i � xk,i and
w0 � [π1, . . . , πL], the problem of spectrum estimation fits our
model (Equation 2) and becomes that of the distributed estimation
as mentioned above.

Figures 4–6 compare the true source spectrum with the
estimated results averaged across K nodes under three
distinct channel noise distributions: beta-distributed,
t-distributed, and Cauchy noise (ϵk,i). The noise sequences
are generated using the methodology outlined previously,
maintaining consistent simulation parameters. In this
simulation, we configure the AR coefficients and channel
parameters as follows:

• The peaked spectrum is generated from a 20th-order
autoregressive (AR) model (order L � 20). The true spectral
peaks are located at normalized frequencies corresponding to
160 Hz and 200 Hz.

• The multipath channels have a fixed length of �Lk � 2 for all
k � 1, . . . , K.

• The FIR channel coefficients {ςk,1, ςk,2} are generated using the
randn(2,1) command in MATLAB, producing standard
normal random values.

• The AR process noise εi is modeled as zero-mean Gaussian
random variables with variance 10−4.

As shown in these figures, our algorithm closely matches
the true spectrum across all tested quantile levels, achieving
higher estimation accuracy than the benchmark algorithms.
These results highlight the robustness and precision of
the proposed dPDHG algorithm in estimating the
spectrum of narrow-band sources under challenging noise
conditions.

5 Conclusion

This paper investigated distributed robust estimation in sensor
networks and introduced a distributed quantile regression
algorithm based on the primal–dual hybrid gradient method.
The proposed algorithm effectively addresses the challenge of
non-differentiability in the optimization problem by iteratively
identifying the saddle point of a convex–concave objective.

FIGURE 6
The spectrum estimation results of the proposed dPDHG algorithm compared with two benchmark distributed algorithms: Subgrad and MM. The
comparison is conducted in the presence of Cauchy noise ϵk,i .
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Additionally, it mitigates the issue of slow convergence commonly
associated with such problems. The method demonstrates
robustness, scalability, and suitability for processing large-scale
data distributed across sensor networks.
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Appendix

Appendix A spectrum estimation

Since θi is generated by an AR process, we substitute the AR
model into the FIR filter equation. For each θi−l, replace it with its
corresponding AR expression: θi−l � −∑L

l′�1πl′θi−l−l′ + εi−l. Thus, the
observation model xk,i � ∑�Lk−1

l�0 ςk,lθi−l + ϵk,i becomes

xk,i � ∑�Lk−1
l�0

ςk,l −∑L
l′�1

πl′θi−l−l′ + εi−l⎛⎝ ⎞⎠ + ϵk,i

� −∑L
l�1

πlxk,i−l + ∑L+�Lk+1

j�1
ζjηk,i−j, (A1)

where ζj � [ζ]j and ηk,i−j � [ηk,i]j are defined as follows:

ζ ≜ 1, π1, . . . , πL, ςk,0, ςk,1, . . . , ςk,�Lk−1[ ]⊤,
ηk,i ≜ ϵk,i, ϵk,i−1, . . . , ϵk,i−L, εi, εi−1, . . . , εi−�Lk+1[ ]⊤,

both vectors having a length of L + �Lk + 1.
Appendix Equation A.1 expresses xk(t) as a combination of past

observations (the AR part) and past noise (the MA part), thus
forming the desired ARMA process, as shown in Equation 11.
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