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This review explores the evolving vision of sixth-generation (6G) networks as a
paradigm shift from conventional data-centric communication to intelligence-
native architectures, where meaning, context, and adaptive decision-making are
central. The convergence of semantic communication, reconfigurable intelligent
surfaces (RIS), and edge intelligence enables context-aware, low-latency, and
resilient wireless systems. Semantic encoding prioritizes task-relevant
information to reduce communication redundancy; RIS dynamically controls
the wireless propagation environment to enhance energy-efficiency and
coverage; and edge intelligence supports decentralized, Al-driven inference
closer to end users. Together, these technologies reframe traditional quality of
service (QoS) metrics, moving beyond throughput and latency toward intent-
driven and context-aware service delivery. This paper presents a structured
analysis of their technical foundations, integration strategies, and mutual
synergies. It also highlights open challenges such as joint semantic-
environment modelling, cross-layer orchestration, and secure, trustworthy
deployment of distributed Al at the network edge. Looking ahead, the review
outlines promising directions including quantum-aware semantic channels, bio-
inspired cognition for network adaptation, intelligent metasurfaces with
embedded Al, and integrated space-air-ground-sea (SAGS) architectures.
These advances suggest that 6G is not merely a generational upgrade but a
foundational framework for future intelligent infrastructures capable of
reasoning, learning, and responding autonomously in real time.

semantic communications, reconfigurable intelligent surfaces (RIS), edge intelligence,
Al-native 6G networks, context-aware connectivity, future network architectures

1 Introduction

The evolution toward sixth-generation (6G) wireless communication represents a
transformative leap beyond the capabilities of fifth-generation (5G). Unlike its
predecessor, which emphasized traditional metrics such as throughput, latency, and
connectivity, 6G envisions an intelligent, context-aware, and ultra-reliable network
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Al-Native 6G Architecture: Synergizing Semantic Communications, Reconfigurable Intelligent Surfaces, and Edge Intelligence for Ultra-Reliable
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architecture (Tera et al,, 2024; Fang et al., 2022). Although 5G has
achieved remarkable milestones in enhancing data rates and supporting
massive device connectivity, it remains largely rooted in bit-level
communication and centralized architectures that are insufficient for
emerging application demands (Xu et al., 2022). The proliferation of
immersive and mission-critical services, including extended reality
(XR), autonomous vehicles, holographic telepresence, metaverse
environments, and digital twins, requires communication systems
that extend beyond conventional performance limits. These
applications are not only data-intensive but also demand stringent
guarantees on ultra-reliable low-latency communication (URLLC),
semantic-level understanding, and intelligent, real-time decision-
making (Zhu et al,, 2025; Baduge et al., 2024; Siddiqui et al.,, 2023).
Despite its advancements, 5G faces foundational limitations. Its
reliance on Shannon-centric principles, which focus on reliable bit
transmission, neglects the semantic relevance of data, an essential
consideration in systems where understanding meaning takes
precedence over raw data delivery (Wang X. et al, 2025).
Furthermore,
negligible latency and communication overheads, making them

cloud-dependent architectures introduce non-
unsuitable for sub-millisecond response applications such as remote
surgery or autonomous control (Rafique et al., 2024). Physical-layer
constraints, such as inflexible channel modeling and environmental

rigidity, also limit performance predictability in dynamic or mobile
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contexts (Shoaib et al., 2024). Additionally, the integration of machine
learning (ML) into 5G is often superficial or confined to specific
applications rather than deeply embedded across the protocol stack
(Benzaid et al,, 2022). 6G is being conceptualized as an Al-native
communication paradigm, where artificial intelligence is deeply woven
into every layer of the network from the physical to the application tier
(Chaccour et al,, 2025). Unlike 5G, where artificial intelligence (AI)
serves as an optimization add-on, 6G aims to achieve real-time sensing,
reasoning, and network self-optimization (Sanjalawe et al., 2025; Jiao
et al, 2025). This shift is underpinned by three converging
technological pillars: Semantic Communication prioritizes meaning
and task relevance over bit fidelity. Reconfigurable Intelligent Surfaces
(RIS) facilitate programmable wireless propagation by allowing real-
time control over the physical environment.

Edge distributed,
processing close to data sources, enabling localized decision-
making (Getu et al., 2024; Zhang et al., 2024).

While each of these technologies has seen significant progress
individually, there remains a critical research gap in understanding
their synergistic integration, especially for 6G URLLC use cases that

Intelligence facilitates low-latency Al

require semantic awareness, adaptive beamforming, and distributed
intelligence (Wu et al., 2024).

This paper aims to fill that gap by offering a comprehensive,
forward-looking synthesis of how semantic communications, RIS,
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and edge intelligence can be co-designed to meet the demands of
future 6G networks. We systematically explore the theoretical
foundations, current advancements, integration challenges, and
open each
Additionally, we propose a unified architecture that highlights

research  questions  surrounding technology.
their interdependencies and collaborative potential for delivering
intelligent, low-latency, and ultra-reliable communication services.

Our contributions also differentiate this work from existing
literature by not only unifying these three domains but also by
identifying emerging directions such as quantum semantic
communication, Space-Air-Ground-Sea (SAGS) architectures, and
bio-inspired intelligent agents as potential enablers of autonomous,
cognitive 6G ecosystems. This review is intended to serve as a
foundational reference for researchers, practitioners, and
policymakers aiming to shape next-generation wireless systems

that are intelligent by design and contextually adaptive by function.

2 Al-native architecture in 6G networks

The evolution from 5G to 6G networks signifies not merely an
enhancement in data speed or capacity, but a fundamental
architectural transformation toward Al-native communication
systems. In this paradigm, artificial intelligence is no longer an
auxiliary component but an intrinsic and pervasive layer embedded
across all levels of the network, from the physical transmission layer
to service orchestration and intent-based communication (Tera
et al., 2024).

An Al-native 6G network is characterized by its capability to
perceive, learn, reason, and adapt autonomously in real time.
Intelligence is deeply integrated into every component, enabling
proactive decision-making, autonomous resource management, and
task-specific communication (Wu et al., 2024; Yan et al., 2024). Such
networks support self-configuration, self-optimization, and self-
healing, forming the foundation for perceptive and context-aware
connectivity.

The design framework for Al-native 6G architecture is typically
underpinned by three interdependent pillars, such as core
intelligence, distributed learning, and self-evolving protocols
(Sheraz et al., 2025).

At the heart of the network lies a centralized intelligence engine
that aggregates insights from across the system, ranging from user
behavior to environmental changes and application demands (Zhu
et al,, 2025; Baduge et al., 2024). Surrounding this core, distributed
Al agents are deployed at the network edge, base stations, and end-
user devices. These agents engage in hierarchical, federated, and
reinforcement  learning, thereby facilitating  collaborative
intelligence and enhancing local decision-making without
constant cloud reliance (Baccour et al., 2022; Abushaega et al., 2025).

A defining feature of Al-native 6G is the self-evolving protocol
stack, wherein communication protocols dynamically update based
on context, user intent, and task requirements (Katsaros et al., 2024).
This shift enables goal-driven and semantically aware transmission,
contrasting with 5G’s reactive and data-centric mechanisms (Alhaj
et al,, 2023; Serddio et al., 2023). In 5G, Al is typically employed in
isolated functions such as traffic prediction or beamforming.
However, 6G integrates AI into the control loop, enabling
seamless interaction between sensing, decision-making, and
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actuation, embedded throughout the protocol layers (Sanjalawe
et al,, 2025; Yellanki, 2023; Campolo et al., 2023).

Moreover, 6G architecture integrates emerging enablers notably,
Semantic Communication, Reconfigurable Intelligent Surfaces
(RIS), and Edge Intelligence, to deliver intelligent, adaptive, and
efficient communication such as Semantic communication redefines
traditional data transmission by prioritizing the meaning and intent
behind data rather than its raw volume. This is vital in scenarios
such as autonomous driving and virtual reality, where transmitting
every bit is inefficient and unnecessary (Zeb et al, 2023; Li
et al., 2023).

RIS introduces controllable, programmable metasurfaces that
allow the physical environment to be shaped for optimal signal
propagation as shown in Table 1. When orchestrated by AI, RIS can
dynamically reconfigure channels to improve signal strength, reduce
interference, and support ultra-reliable low-latency communication
(Das et al., 2023).

Edge intelligence brings computation closer to the data source,
enabling real-time inference, local caching, and rapid AI model
updates crucial for latency-sensitive and context-aware applications
like Industry 5.0 and XR environments (Musa et al., 2022).

2.1 Interdependencies and
architectural overview

These layers are not isolated; instead, they operate in a tightly
coupled loop. As depicted in the graphical abstract, the application
layer initiates the communication process through semantic intent
extraction and goal-oriented service definition. The Network Layer
receives this compressed intent and performs semantic-aware
routing and RIS coordination, while the Edge Intelligence Layer
enables localized learning and adaptation. Finally, the physical layer,
empowered by RIS, executes fine-grained control over beamforming
and wireless propagation.

The graphical abstract demonstrates how feedback and control
signals circulate across these layers. For instance, edge-inferred
context updates can refine application-layer objectives, while RIS
adjustments informed by semantic priorities at the network layer
can directly impact physical layer performance. This looped
interdependency ensures that communication is purpose-driven,
energy-efficient, and environmentally adaptive (Saad et al., 2024;
Vermesan et al., 2022).

To support this narrative review, a structured literature mapping
approach was employed. The review spans reputable academic
databases such as IEEE Xplore, Scopus, and arXiv, focusing on
works published between 2020 and 2025. Search keywords included
“Al-native 6G,”
intelligent surface,” and “edge intelligence.” Article selection was

“semantic communication,” “reconfigurable
based on relevance to the architectural framework, citation strength,
and alignment with 6G conceptual developments.

3 Semantic communications: from bits
to meaning

Traditional communication systems, rooted in Shannon’s

information theory, focus on the accurate and efficient
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TABLE 1 Foundational elements of Al-native 6G networks: functional roles, technological enablers.

Component Function in Al-Native 6G networks

Al-Native Intelligence

Core Intelligence Engine Aggregates global knowledge from the network,
environment, and users to support centralized and

coordinated decision-making

Distributed Edge Learning
support local decision-making and scalable Al training

Self-Evolving Protocol
Stack
dynamics

Semantic Communications
improve efficiency and reduce redundancy

Reconfigurable Intelligent

Surfaces (RIS) for improved coverage, latency, and reliability

Edge Intelligence Enables low-latency inference, local adaptability, and
privacy-preserving learning by processing data near its

source

Shift from 5G Paradigm
proactive, distributed, and goal-driven architectures

Collaborative Technology
Integration

Combines semantic communications, RIS, and edge

services

transmission of bits over noisy channels. While this model has
served as the foundation for current wireless networks, it does not
consider the meaning or intent behind transmitted data. As 6G
evolves toward intelligent, context-aware systems, semantic
communication emerges as a new paradigm, one that prioritises
the value and relevance of information over sheer data volume (Niu
et al, 2022; Karahan and Kaya, 2025). Semantic communication
shifts the focus from “how much” data is transmitted to “what” data
is transmitted and “why” it matters. The goal is to enable machines
and agents to extract, interpret, and act on information based on its
semantic content, thereby reducing communication overhead and
latency while improving operational efficiency (Dai et al., 2022).
This is particularly valuable in applications like autonomous
systems, the Tactile Internet, and real-time industrial control,
where only task-relevant information needs to be exchanged. At
the heart of this paradigm is the semantic communication model,
which introduces a new semantic layer in the communication stack.
This model typically consists of three key components:

Semantic Encoder: Compresses the source message by extracting
its underlying meaning.

Semantic Decoder: Reconstructs the intended message using
shared knowledge and context.

Semantic Noise Model: Captures meaning-level distortions such
as ambiguity, context drift, or relevance mismatch (Kumar, 2021;
Sun, 2023).

Unlike the Shannon model that minimises bit error rates (BER),
the semantic model optimizes for meaning reconstruction. This shift
requires advanced machine learning (ML) techniques, particularly
Al models like Transformers such as BERT, GPT and Graph Neural

Frontiers in Communications and Networks 04

Embeds intelligence at every network layer to enable real-
time perception, prediction, adaptation, and optimization

Deploys intelligent agents at BSs, edge servers, and UEs to

Supports dynamic protocol reconfiguration driven by AI
models adapting to context, user demands, and network

Prioritizes the meaning of transmitted data over syntax to

Transforms wireless environments into controllable assets

Moves from static, cloud-centric, and reactive networks to

intelligence for synergistic benefits in URLLC and M2M

Key enabling technologies References

Distributed AI, hierarchical learning,
GNNs, reinforcement learning

Tera et al. (2024), Wu et al. (2024), Yan
et al. (2024), Zeb et al. (2023)

Global knowledge base, centralized AL
orchestrator

Sheraz et al. (2025), Zhu et al. (2025),
Wang et al. (2025b), Baduge et al. (2024)

Federated learning, split learning, edge
GNNs

Baccour et al. (2022), Abushaega et al.
(2025), Musa et al. (2022)

Context-aware protocol adaptation,
task-driven communication models

Katsaros et al. (2024), Sanjalawe et al.
(2025), Alhaj et al. (2023)

Semantic encoders/decoders, inference
models (e.g., Transformers)

Zeb et al. (2023), Li et al. (2023),
Yellanki, 2023

Programmable metasurfaces, Al-based
RIS control

(Das et al., 2023), Saad et al. (2024)

Edge computing platforms, lightweight
AT models

Musa et al. (2022), Campolo et al. (2023)

Al-integrated protocol stack, cross-
layer design, edge-distributed AI

Alhaj et al. (2023), Serodio et al. (2023),
Sanjalawe et al. (2025)

Joint optimization frameworks, cross-
domain Al algorithms

Vermesan et al. (2022), Saad et al.
(2024), Li et al. (2023)

Networks (GNNs), to learn and represent contextual semantics
across diverse communication scenarios (Yenduri et al., 2024).
dual compressing  information
semantically and enabling machines to infer intent with minimal

These models serve roles:
transmission. To evaluate such systems, new semantic-centric
metrics have been proposed that move beyond traditional

metrics, such as BER, or packet delivery ratio. These include:

a. Semantic Efficiency (SE): Measures the amount of meaningful
information transmitted per unit of bandwidth and time. As
shown in Equation 1,

I

SE =
B.T

(1)

Where I, is the amount of semantically meaningful information
conveyed, B is bandwidth, and T is transmission time.

b. Semantic Fidelity (SF): It assesses how accurately the meaning
that has been reconstructed matches the original intent. It is
defined in Equation 2 as:

SF=1-D(M,,M,) (2)

Where D(.) is a divergence or distance function (e.g., cosine
similarity, KL divergence) between the original message meaning
M, and the reconstructed meaning M,.

c. Semantic Relevance (SR): Evaluates the task-specific utility of
the received information. As expressed in Equation 3,

I

SR=""
I

3)
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Semantic communications in Al-native 6G networks: Architecture, intelligence, and challenges toward meaning-centric connectivity.

Where I, is the information relevant to a task, and I; is the total
information received. This quantifies the utility of content for
achieving task-specific goals (Yang et al,, 2022a). These metrics
enable adaptive, goal-driven communication strategies based on
context relevance, and intent, crucial for mission-critical and
resource-constrained environments (Zawia et al., 2025).

3.1 Practical applications

Semantic communication has demonstrated significant
potential across 6 key 6G use cases. In URLLC, it minimises
transmission delays by focusing on essential information, ideal
for real-time robotics and autonomous driving (Chen et al,
2023). In digital twin systems, semantic-aware updates ensure
bandwidth-efficient synchronisation of only critical state changes
(Jagatheesaperumal et al., 2023). Similarly, in the Tactile Internet,
semantic compression improves responsiveness by omitting

redundant sensory data (Javaid et al., 2024).

3.2 Challenges and limitations

Despite its promise, semantic communication faces multiple
challenges. First, semantic interpretation is inherently context-
dependent, and devices with mismatched ontologies or
knowledge bases may experience semantic misalignment. Second,
semantic collisions, where users infer contradictory meanings can
degrade performance in shared environments (Liu et al., 2022).
Additionally, the robustness of semantic models under dynamic
conditions and their adaptability to evolving languages, intents, or
usage contexts remain open issues (Lin et al., 2022). Lastly, since
semantic data often reflect user goals or behaviour, privacy,
inference security, and explainability are vital concerns (Akhtar
et al., 2024; Friha et al.,, 2024; Lin et al., 2022).

In summary, semantic communication represents a
foundational shift in wireless communication, one that aligns

naturally with Al-native 6G systems. It facilitates more intelligent,
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efficient, and purpose-driven interactions between users, machines,
and networks. As illustrated in Figure 1, this paradigm integrates
semantic encoders/decoders, shared knowledge models, and adaptive
metrics to support emerging applications in autonomous systems,
digital twins, and human-centric services.

4 Smart environments in 6G:
reconfigurable intelligent surfaces

One of the most groundbreaking innovations in the evolution
toward 6G networks is the Reconfigurable Intelligent Surface (Basar
et al,, 2024). Unlike traditional infrastructure that merely transmits
or relays signals, RIS can actively manipulate the wireless
propagation environment, transforming passive elements into
intelligent communication entities (Zaoutis et al., 2025). This is
achieved through engineered metasurfaces, two-dimensional arrays
of sub-wavelength, programmable scatterers that dynamically adjust
the phase, amplitude, and polarisation of incoming electromagnetic
waves (Venkatesan and Chakkaravarthy, 2025).

RIS structures are built using programmable materials such as
liquid crystals, PIN diodes, and grapheme-based tunable components,
allowing real-time reconfiguration with minimal energy consumption
(Adeshina et al,, 2024). In a typical RIS-aided system, the surface
intercepts base station signals and reflects them toward users by
adjusting the phase shifts of individual elements to create constructive
signal paths (Basar et al., 2024; Zaoutis et al., 2025). This introduces a
new level of flexibility in wireless channel design by converting
random propagation behaviours into predictable and controllable
patterns (Jian et al., 2022).

However, these benefits come with complex modelling and
estimation challenges. Optimizing RIS-assisted systems requires
joint active and passive beamforming design. Since RIS elements
are passive and lack RF chains, traditional channel estimation
techniques are inadequate (Magbool et al, 2024). Effective
modeling of the cascaded BS-RIS-User channel necessitates novel
techniques such as compressed sensing, matrix factorization, or pilot
reuse schemes (Abdallah et al., 2022).
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RIS holds great promise for enabling URLLC, a cornerstone of
6G applications such as autonomous vehicles, smart manufacturing,
and remote healthcare (Othman et al, 2025). By reshaping
propagation paths, RIS enhances signal strength, mitigates
multipath fading, and reduces congestion and path loss (Wu,
2022). Passive beamforming and dynamic rerouting further boost
reliability and reduce latency (Naaz et al., 2024). Its ultra-low energy
consumption also enables green URLLC, aligning with the 6G vision
of sustainability (Kumar et al., 2023).

The integration of Artificial Intelligence greatly enhances RIS
performance and adaptability. Techniques like Deep Reinforcement
Learning (DRL) enable RIS to learn optimal reflection patterns in
real time by treating the surface as an agent interacting with its
wireless environment (Zaoutis et al., 2025). Federated learning also
allows distributed RIS devices to train local models collaboratively
without sharing raw data, a critical advantage in densely connected
smart environments (Zhong et al., 2022). Through AI, RIS can
autonomously adapt to user mobility, interference dynamics, and
quality-of-service (QoS) demands, supporting context-aware and
proactive communication (Ashraf N. et al., 2023).

An emerging innovation is the fusion of RIS with semantic-
aware communications. In this paradigm, RIS does not merely
optimize based on signal quality but also considers the semantic
value of transmitted content (Hello et al., 2024). For instance, in
tactile internet scenarios, mission-critical haptic feedback can be
prioritized over delay-tolerant data by dynamically steering beams
through faster, more reliable RIS-assisted paths (Chakkaravarthy
et al,, 2025). Less urgent content may be routed through alternative
paths (Cao et al.,, 2023). This synergy enables a meaning-centric
wireless system, where the physical layer aligns with the semantic
needs of applications (Getu et al., 2023).

Despite its promise, several challenges hinder the deployment of
RIS in 6G. These include scalability in high-mobility environments,
RIS-base station synchronization, imperfections in metamaterials,
and the absence of standardized control protocols (Sun, 2023).
Additionally, real-time integration of RIS with AI and semantic
layers remains computationally demanding and non-convex,
requiring lightweight and approximate optimization strategies
(Das et al., 2023).

In nut shell, RIS represents a pivotal technology for realizing
intelligent, adaptive, and programmable wireless environments in
6G (Basar et al, 2024). By transforming passive surfaces into
intelligent agents and integrating them with AI and semantic
layers, RIS facilitates more robust, responsive, and sustainable
communications. It is a multidisciplinary innovation, merging
principles from material science, electromagnetics, machine
learning, and communication theory, making it a foundational
enabler of the Internet of Everything (Liang et al., 2024).

5 6G edge intelligence

Edge Intelligence (EI) represents a transformative shift in 6G
network architecture, moving from centralized, cloud-based
processing to decentralized intelligence closer to the end-users
(Adeshina et al, 2024). As 6G targets URLLC in environments
marked by extreme heterogeneity, traditional cloud AI models
become increasingly inadequate due to latency, privacy, and
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Edge intelligence in 6G: distributed Al, resource optimization,
and use cases for ultra-low latency applications.

bandwidth these
embedding Al capabilities directly into edge nodes such as base

constraints. EI addresses limitations by
stations, small cells, access points, and even user devices (Singh et al.,
2022; Zaoutis et al., 2025).

This supports data

processing, context-aware decision-making, and collaborative

edge-centric  architecture real-time
intelligence, making it ideal for delay-sensitive and privacy-
critical applications (Wang B. et al., 2025). Instead of sending all
raw data to a central cloud, edge devices execute localized learning
and inference tasks. For instance, Federated Learning allows
multiple edge nodes to train a shared global model without
sharing raw data, thereby enhancing privacy and reducing
network overhead (Abreha et al., 2022). Similarly, Split Learning
divides neural network models between clients and edge servers,
offering a secure and resource-efficient paradigm suitable for
constrained devices (Ren and Lee, 2025). These learning methods
are particularly advantageous in scenarios such as massive machine-
type communication and the tactile internet, where responsiveness
and adaptability are essential (Singh et al., 2022).

Beyond learning, Edge Intelligence enables dynamic resource
orchestration, illustrated in Figure 2. Unlike static provisioning
models, edge nodes in 6G autonomously manage spectrum,
compute resources, energy budgets, and caching functions (Sefati
et al., 2024). Techniques such as reinforcement learning, graph-
based optimization, and game theory empower edge agents to
respond adaptively to dynamic network conditions, user mobility,
and QoS fluctuations (Subrahmanyam, 2025). This distributed
decision-making fosters latency reduction, energy-efficiency, and
fair service allocation (Zhong et al., 2022).

Critically, EI also enables seamless coordination with RIS and
semantic communication, which are foundational to the 6G vision
(Friha et al, 2024). Through predictive analytics, edge agents
anticipate user mobility and channel conditions to guide real-
time RIS reconfiguration, optimizing beam orientation and signal
quality (Zawia et al, 2025). In semantic communication, EI
facilitates the extraction and prioritization of contextually
relevant data filtering, compressing, or discarding information
based on user intent, task criticality, or situational awareness
(Yang et al., 2022b; Zawia et al., 2025).
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The practical applications of edge intelligence span multiple
critical domains. For example, in predictive handover, edge nodes
analyze mobility and signal strength data to anticipate and manage
handover events, reducing service interruptions (El-Hajj, 2025). In
autonomous vehicle networks, edge AI supports real-time
perception, decision-making, and control functions that are
highly sensiive to latency and unsuitable for centralized clouds
(Biswas and Wang, 2023). In augmented and virtual reality (AR/
VR) scenarios, edge-based inference ensures fast rendering, position
tracking, and contextual responsiveness, which are essential in
industrial metaverse applications and smart healthcare (El-Hajj,
2025; Biswas and Wang, 2023).

Despite its transformative potential, deploying Edge Intelligence
in 6G comes with several challenges. These include heterogeneous
hardware environments, limited energy and processing capacity,
and the complexity of maintaining model convergence and
consistency across distributed nodes (Abd Elaziz et al, 2024).
Federated models often struggle with fairness and robustness
under dynamic and Non-IID. Data distributions (Cao et al,
2023). Moreover, effective coordination mechanisms are still
needed to integrate edge nodes with centralized clouds, RIS
controllers, and semantic engines (Golpayegani et al., 2024).

In nut shell, Edge Intelligence is a core enabler of 6G networks
not merely a support function. By enabling distributed inference,
preserving user privacy, and facilitating cross-layer coordination
with RIS and semantic engines, EI paves the way for intelligent,
resilient, and ultra-low-latency communication infrastructures (Jian
et al., 2022; Rancea et al., 2024).

6 Convergence of semantic
communications, RIS, and edge
intelligence

The convergence of semantic communications, reconfigurable
intelligent surfaces, and edge intelligence marks a fundamental shift
in the design of Al-native 6G networks. This integration establishes
a cross-disciplinary synergy that breaks away from the conventional
isolated approach, in which communication, computation, and
control operate independently (Zawia et al., 2025). In contrast,
the 6G vision embraces a unified, co-optimized architecture to
enable ultra-reliable, low-latency, and context-aware services
(Valsalan et al., 2024).

This convergence occurs at both the functional and architectural
levels. Semantic encoding at the application layer, RIS-based
channel control at the physical layer, and real-time decision-
making at the network edge are no longer treated as separate
modules. Instead, they co-evolve in a distributed and dynamically
reconfigurable topology (Liu et al., 2025). This architecture supports
cross-layer optimization, where traditional OSI boundaries between
PHY, MAC, and application layers, are relaxed or redefined to
enable end-to-end semantic intelligence (Mustafa et al., 2024).

For instance, a semantic encoder may collaborate directly with
RIS controllers to prioritize the transmission of meaning-critical
content. Simultaneously, edge nodes act as orchestration agents,
using local sensing and Al inference to manage RIS configurations in
real time, thereby aligning physical-layer adaptations with semantic-
layer demands (Zhang et al., 2022). This interplay facilitates a
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Integrated 6G architecture: convergence of semantic
communications, RIS, and edge intelligence.

closed-loop intelligent system, one that can sense, infer, and
adapt to evolving user and environmental contexts.

A practical example of this synergy is seen in semantic-aware
RIS beam steering. In this setup, RIS dynamically configures its
elements not just to enhance SNR but also to preserve the semantic
integrity of the transmitted content (Wang X. et al., 2025). For
example, in a smart healthcare system, if an edge node detects that
critical patient telemetry is being sent, it may prompt RIS
reconfiguration to minimise latency and improve reliability for
that specific stream (Zeng and Bao, 2023). Figure 3 illustrates
this interplay, showing the feedback loop between semantic
inferences, RIS control logic, and edge-based orchestration.
Another area of synergy is edge-driven semantic compression
and interpretation. Edge devices perform localized semantic
extraction, dramatically reducing bandwidth requirements while
maintaining content fidelity. These compressed packets are then
optimised by RIS for directional, low-energy transmission,
completing a loop from meaning extraction to environment-
aware delivery (Polese et al., 2023).

In parallel, RIS plays a transformative role in federated learning
(FL) by optimizing uplink and downlink paths among distributed
clients. In traditional FL, convergence can be hampered by
unreliable connections, especially in mobile scenarios (El-Hajj,
2025). With RIS, the network dynamically enhances link quality
and  synchronisation, updates and
communication overhead. More advanced schemes even allow

minimizing  dropped
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TABLE 2 Al-native 6G use cases and core technological enablers.

Use Case/
Application

Description

Core technological enablers

10.3389/frcmn.2025.1655410

References

Digital Twin-Enabled
Factory Automation

Virtual mirroring of manufacturing processes for
predictive maintenance, adaptive production, and
zero-latency control loops

Metaverse & Immersive
Communication Platforms

Real-time 3D interactions, high-fidelity graphics,
dynamic avatar updates, and virtual collaboration

Semantic Communications (critical state
transmission), RIS (robust low-latency channels),
Edge Intelligence (on-site analytics, federated
learning)

Semantic Communications (context-aware
rendering), RIS (holographic beamforming), Edge
Intelligence (computation offloading, low-latency
updates)

Zaoutis et al. (2025), Mon et al.
(2025); Islam et al. (2025), Xu et al.
(2023)

Hatami et al. (2024), Joda et al.
(2022); Ahmed et al. (2024),
Zaoutis et al. (2025)

Transmission of task-relevant medical data with
ultra-low latency and high reliability for
telemedicine and robotic surgery

Remote Surgery &
Healthcare Robotics

Smart Cities & Autonomous
Transportation

Real-time coordination among vehicles,
infrastructure, and sensors for safety, traffic, and
energy management

Semantic Communications (medical feature
extraction), RIS (channel adaptation in hospitals),
Edge Intelligence (local data processing, Al-assisted
diagnosis)

Semantic Communications (critical intent data), RIS
(V2X signal enhancement), Edge Intelligence (real-
time inference and decision-making)

Nguyen et al. (2023); Gupta et al.
(2022); Zaoutis et al. (2025)

Jha et al. (2024); Basharat et al.
(2022); Gooi et al. (2023); Xu et al.
(2023)

RIS to factor in gradient importance or user context to optimize
learning schedules, forming RIS-aware federated intelligence
(Rahbari et al., 2023).

This convergence also addresses core 6G challenges such as
semantic ambiguity and scalability. By combining edge-based
reasoning with RIS reconfiguration, the system can preserve
message meaning in unpredictable channel conditions.
Additionally, RIS can distribute semantic tasks across edge
devices, enabling collaborative reasoning in heterogeneous, multi-
user environments (Ahmed et al., 2024).

The result is an emergent class of 6G services: autonomous
drone fleets coordinated through semantic mission cues, real-time
digital twins powered by RIS-augmented streams, and immersive
AR/VR supported by edge-rendered semantic frames and delay-
sensitive routing. These capabilities are not mere outcomes of
stacking technologies, they emerge from deep, multidimensional
co-design (Merluzzi et al., 2023).

This triadic convergence-optimizing meaning (semantics),
propagation environment (RIS), and decision intelligence (edge),
is foundational to the vision of 6G as a self-evolving, context-aware,
and ultra-reliable infrastructure (Xu et al., 2023).

Yet, challenges remain. While frameworks like DeepSC and
Semantic Compression and Completion (SCC) are state-of-the-art,
they are mostly validated in simulated settings. Only partial real-
world implementation, e.g., deploying DeepSC on NVIDIA Jetson
edge boards, has been achieved, and open-world performance is
constrained by unstructured data and semantic label scarcity (Choe
et al., 2024; Jouini et al,, 2024). Similarly, practical RIS deployments
remain limited. Although prototypes such as ZTE’s programmable
metasurfaces and Southeast University’s STAR-RIS mmWave
testbeds exist, most semantic-RIS frameworks remain conceptual
due to hardware reconfiguration delays and semantic modelling

complexity (Yan et al., 2024).

7 Applications and use cases

The
communications, RIS, and edge intelligence in 6G networks

combination of Al-native architecture, semantic

Frontiers in Communications and Networks

enables a previously unseen variety of prospective applications
(Zaoutis et al., 2025). These applications are no longer limited by
traditional throughput and latency constraints but rather by
context-awareness, real-time adaptability, and semantic precision,
allowing intelligent services to be deployed across verticals such as
manufacturing, healthcare, immersive environments, and urban
mobility. This integration ensures that communication is no
longer solely about transmitting data but about prioritizing
meaning, relevance, and contextual reliability at the network edge
(Xu et al., 2023).

Factory automation powered by digital twins represents a
disruptive  transformation. Here, physical manufacturing
processes are mirrored in virtual environments for predictive
maintenance and real-time process optimization (Mon et al,
2025). Semantic communication drastically reduces overhead by
transmitting only task-relevant deviations, while RIS maintains
reliable connectivity in complex electromagnetic environments.
Edge intelligence performs localized analytics and supports
federated learning for predictive anomaly detection (Islam et al.,
2025). The result is a near-zero-latency, self-optimizing industrial
ecosystem, impossible with traditional 5G systems. Immersive
environments and metaverse applications also benefit from this
technological trinity. Semantically compressed rendering, enabled
by semantic encoders, transmits only perceptually salient elements.
RIS holographic beamforming supports high-speed 3D streaming,
while edge intelligence dynamically offloads compute tasks and
tracks user behavior in real time (Hatami et al., 2024; Joda et al,,
2022). Applications such as collaborative design, VR-based tourism,
and virtual classrooms rely on this seamless sensing-compute-
communication loop, enhanced by semantic-aware QoS policies
that prioritize intent over content type (Ahmed et al., 2024).

In remote surgery and robotic healthcare, ultra-low latency and
semantic clarity are mission-critical as shown in Table 2. Semantic
communication ensures the transmission of task-relevant clinical
data (e.g., tool trajectory, anomaly markers), not redundant visual
streams (Nguyen et al., 2023). RIS emulates direct line-of-sight to
reduce signal degradation, while edge intelligence supports real-time
inference and privacy-preserving diagnostics without cloud
dependency (Gupta et al., 2022).

frontiersin.org


https://www.frontiersin.org/journals/communications-and-networks
https://www.frontiersin.org
https://doi.org/10.3389/frcmn.2025.1655410

Ogenyi et al.

The system architecture guarantees sub-millisecond round-trip
latencies, vital for tactile feedback and remote precision operations.
Smart cities and autonomous transport networks showcase
domain.  RIS-enhanced V2X
signal  quality
environments (Basharat et al., 2022). Semantic-aware vehicular

another  vital  application

communication maintains in dense wurban

communications reduce channel congestion by prioritizing
critical events (e.g., braking or collisions). Edge intelligence at
intersections and in vehicles enables predictive traffic modelling,
collision avoidance, and grid control (Li and Li, 2022) This tightly
integrated system fosters resilient, self-organizing urban ecosystems,
improving safety, sustainability, and scalability (Jha et al., 2024; Gooi
et al,, 2023; Serodio et al., 2023). In all these domains, security and

privacy emerge as critical enablers of trust, safety, and continuity.

7.1 Emerging threat models,
countermeasures, and real-world limitations

As 6G networks evolve into intelligence-native infrastructures,
the attack surface expands significantly, exposing them to novel
threat models beyond conventional cybersecurity risks. Al-native
protocols and semantic inference mechanisms could be vulnerable
to adversarial attacks, model poisoning, and data manipulation,
where malicious actors inject perturbed inputs or misleading
semantic cues to influence decisions at the edge or core.
Furthermore, RIS introduce new physical-layer vulnerabilities,
including the possibility of malicious reprogramming or side-
channel eavesdropping via unintended signal reflections (Ahmed
et al, 2025; Won et al,, 2024). The distributed nature of edge
intelligence also broadens the exposure to attacks on federated
learning protocols, including inference leakage, sybil attacks, or
compromised nodes within cooperative training environments
(Firdaus and Rhee, 2022).

A multi-layered security approach needs to be created to address
these emerging threats. Artificial intelligence in intrusion detection
systems (IDS) also seems like a solution, since it enables the
proactive detection and response to suspicious activity on any
level of the 6G stack based on pattern recognition and anomaly
detection (Naeem et al., 2023). Node authentication and spectrum
access policies can be improved with the help of trust-aware
reinforcement learning frameworks, which can continuously learn
the adversarial patterns (Ali et al., 2021). At the physical layer,
cryptographically bound network functions are under investigation
that can secure RIS control protocols and avoid unauthorized
reconfiguration (Guo et al, 2024). In the meantime, federated
learning methods using differential privacy and secure multi-
party computation are able to reduce privacy leakage and
maintain performance at distributed training (Ficili et al., 2025).

Although these innovations are in place, there are still several
limitations in the real world. First, security protocols can be
associated with latency and computational overheads, which are
contradictory to the aim of 6G services, which are ultra-low-latency
(Won et al., 2024). Second, existing countermeasures are based on
theoretical hypotheses or controlled settings and were not validated
in large-scale dynamic network settings. Finally, there exist gaps in
regulation and standardization of the security benchmarks of AI-
native functions and RIS control, and thus worldwide consensus is
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hard to reach. These limitations will need joint research among

wireless security, cryptography, systems engineering, and

policy fields.

8 Key research challenges

The integration of semantic communications, RIS, and edge
intelligence in Al-native 6G networks unlocks unprecedented
opportunities but also introduces multifaceted research and
standardisation challenges (Gupta et al, 2022). One of the
foremost challenges is the joint modelling of semantic
understanding, physical-layer propagation environments, and Al-
based decision-making (Li and Li, 2022).

communication systems are primarily optimized for bit-level

Traditional

accuracy and channel capacity, without accounting for the
contextual or application-level meaning of information. In
contrast, semantic communications require a paradigm shift
enabling systems to interpret, extract, and communicate meaning
aligned with application tasks (Friha et al., 2024). Achieving this
calls for sophisticated models that combine semantic context with
dynamic physical channel behaviors, including RIS configurations,
while leveraging real-time AI-driven adaptation mechanisms (Bilal
et al, 2025). Another complex challenge lies in orchestrating
resources across the semantic, physical, and edge intelligence
layers. In 6G, performance requirements such as ultra-low
latency, semantic accuracy, and resilience under mobility require
the joint management of resources like spectrum, RIS phase shifts,
and edge compute capacity. Unlike traditional OSI-layered
networks, Al-native 6G systems demand deeply integrated cross-
layer frameworks that coordinate semantic encoding, RIS-assisted
transmission, and edge learning (Song et al, 2022). Effective
orchestration will necessitate multi-objective  optimization
strategies, distributed learning techniques, and game-theoretic
models capable of real-time adaptation to dynamic
environmental and traffic conditions (Tan et al., 2024). Security,
trust, and privacy pose significant concerns in decentralized edge
intelligence and semantic transmission systems. Edge-Al inference
on local user data raises risks of data leakage, model poisoning, and
adversarial semantic attacks (Wei and Liu, 2025). These attacks may
distort the interpreted meaning of information without altering its
bit representation, a unique threat in semantic communications
(Tan et al., 2024). Addressing these risks requires secure semantic
encoding schemes, integrity verification at both semantic and
physical layers, and lightweight privacy-preserving techniques like
federated learning with differential privacy, suitable for resource-
constrained edge devices (Bilal et al., 2025).

Hardware limitations represent a practical bottleneck. The
deployment of semantic-aware encoders, adaptive RIS panels,
and edge-Al accelerators must overcome constraints in power
efficiency, real-time performance, and platform interoperability
(Ahmed et al.,, 2024). Energy consumption is especially critical in
distributed RIS and edge deployments operating autonomously.
Scalability challenges are also intensifying, as future networks will
interconnect vast numbers of heterogeneous devices requiring
seamless semantic and Al capabilities (Bhide et al, 2025).
Solutions may include low-power neuromorphic processors,
metamaterials, and standardized

tunable open hardware
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FIGURE 4
Key research challenges in Al-native 6G networks across
semantic, RIS, edge, and standardization layers.

interfaces (Othman et al, 2025). Despite rapid technological
advances, standardization remains in its early stages and
represents a key Dbarrier to large-scale adoption and
interoperability, as shown in Figure 4. Existing frameworks such
as those from the 3rd Generation Partnership Project (3GPP) still
focus predominantly on bit-level communication and radio access
protocols, with little support for semantic fidelity or task-orientated
performance metrics (Shi et al., 2023). Recognizing this, the
International Telecommunication Union -Telecommunication
Standardization Sector (ITU-T) Study Group 13 has initiated
efforts on semantic-aware networking by defining KPIs and use
cases for future semantic communication services (Shi and Xiao,
2024). European Telecommunications Standards Institute (ETSI),

through its Industry Specification Group on Experiential Network
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Intelligence (ENI), is working on context-aware Al models and edge
intelligence alignment (Tanevski et al., 2024). In parallel, Institute of
Electrical and Electronics Engineers (IEEE) has launched initiatives
under IEEE P7010 to address algorithmic transparency and
semantic fairness in edge-Al systems, which could serve as a
reference for communication-layer trustworthiness. Additionally,
RIS-specific standardization is still emerging, with efforts underway
to define signaling interfaces and configuration protocols through
3GPP SA1 and SA2 working groups (Jian et al., 2022). However, the
lack of unified metrics, semantic performance benchmarks, and
regulatory alignment across national authorities creates significant
interoperability gaps.

Bridging these gaps requires multi-stakeholder collaboration
among academia, industry consortia, and global standard bodies.
Reference architectures, testbeds, and benchmarking tools must be
co-developed to support integration across semantic layers,

RIS Al frameworks.
discussions regulatory policy, ethical
safeguards, and global alignment are vital to ensure 6G
inclusivity, accountability, and resilience (Jahid et al., 2023).

To summarize, the path to realizing the goal of Al-native 6G

programmable elements, and edge

Furthermore, around

networks driven by semantic communications, RIS, and edge
intelligence is riddled with challenging research hurdles in

modeling, resource management, security, hardware, and
standards. Addressing  these  difficulties necessitates
multidisciplinary ~approaches that include communications

theory, artificial intelligence, hardware design, and cybersecurity.
The solutions to these open challenges will not only enable
breakthrough applications in business, healthcare, the meta-verse,
and urban transportation but will also serve as the foundation for
future intelligent societies.

9 Future directions

The evolution toward Al-native 6G networks presents a
transformative opportunity to reimagine not just communication
efficiency but the semantic, and environmental

intelligence of the network itself. Building upon the core enablers

cognitive,

discussed in this review: semantic communications, RIS, and edge
intelligence several emerging technologies are poised to address
current limitations, amplify system resilience, and enable new
paradigms of performance, security, and adaptability (Ali
et al.,, 2023).

9.1 Quantum semantic communications

Expanding on the need for secure and meaning-centric
7.1, quantum
communication represents a radical leap. Unlike conventional

transmission raised in  Section semantic
quantum systems, which focus on bit transmission and key
distribution, quantum semantic systems will encode and teleport
meaning, leveraging quantum state modulation and natural
language comprehension (Liu et al, 2023). These systems could
address both semantic compression bottlenecks and the security
threats of semantic manipulation, discussed earlier, by enabling

non-classical, context-aware communication that is inherently
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resistant to eavesdropping (Hassan et al,, 2025; Erhard et al,, 2020).
Future research must bridge semantic encoding frameworks with
quantum entanglement protocols and error-resilient channel modelling.

9.2 Bio-inspired Al agents for edge and RIS
co-evolution

To address non-IID data distribution, autonomy under dynamic
uncertainty, and adaptive inference challenges from Sections 7.1, 8,
bio-inspired AI agents offer promising solutions. These agents,
modeled after neural plasticity and swarm intelligence, could
enable lifelong learning, self-organization, and resilient inference at
the edge (Traniello and Avargues-Weber, 2023). Their decentralized
adaptability aligns well with edge-RIS synergy discussed in Section 6,
offering the potential to continuously reconfigure wireless
environments and semantic prioritization policies under changing
conditions (Baeza et al.,, 2025). Neuromorphic computing hardware,

optimized for energy efficiency, will be a critical enabler here.

9.3 Intelligent metasurfaces and active RIS

As discussed in Section 6, current RIS models remain limited in
configurability and semantic responsiveness. The next generation-
active RIS and intelligent metasurfaces, will evolve from passive
reflectors into programmable electromagnetic processors (Ahmed
et al.,, 2024). These surfaces could semantically filter or enhance
signal content before reflection, acting as autonomous semantic
relays. When coupled with localized edge-AI orchestration, active
RIS could address latency constraints in dynamic environments
(Ashrat Q. M. et al, 2023), and mitigate beamforming-related
vulnerabilities raised in Section 7.1. Future research must co-
design AI control loops, hardware adaptability, and multi-user
fairness within the constraints of energy and spectral efficiency.

9.4 Blockchain and zero-trust architectures

The vulnerabilities in federated learning, RIS reprogramming,
and semantic attacks identified earlier demand a new trust
paradigm. Blockchain, in combination with zero-trust security
architectures, can offer verifiable provenance for semantic
encoders, authenticated RIS control, and immutable logs for edge
model updates (Friha et al, 2024; Ren and Lee, 2025). These
distributed trust
multi-domain

frameworks are particularly relevant for

coordination in multi-tenant, environments.
Lightweight consensus algorithms and privacy-preserving smart
contracts will be essential to meet URLLC constraints, while
logging bolster
accountability in healthcare, vehicular, and financial applications

(Li et al., 2025; Han et al., 2024).

secure  semantic can transparency  and

9.5 Global-scale SAGS networks

To overcome the geospatial limitations of terrestrial
infrastructure, especially in disaster, rural, or underwater
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environments, SAGS networks will play a pivotal role. By
integrating satellites, HAPs, aerial drones, and underwater nodes
with terrestrial 6G systems, SAGS networks can enable ubiquitous
semantic interoperability, coordinated edge intelligence, and
resilient RIS deployment (Cao et al., 2023). However, this vision
demands progress in topology-aware RIS reconfiguration, multi-
domain semantic translation, and policy harmonization across
space, sea, and terrestrial jurisdictions. These networks may also
require cross-layer AI protocols that orchestrate semantic task
allocation across vastly heterogeneous platforms.

9.6 Summary

Each of the emerging directions outlined above directly
responds to the challenges of dynamic control, semantic
integrity, energy-efficiency, and decentralized trust discussed in
Sections 6 through 8. Together, they represent a co-evolutionary
pathway for the 6G ecosystem where architectural flexibility, real-
time semantic cognition, programmable propagation, and
autonomous security mechanisms are co-designed across layers
and domains.

As we push the boundaries of what networks can do, the
convergence of quantum information science, biological
intelligence models, secure distributed ledgers, and adaptive
wireless environments promises to transform Al-native 6G from
a high-performance infrastructure into a global cognitive ecosystem
capable of interpreting, reasoning, and adapting to the needs of

intelligent societies.

10 Conclusion

This review has analyzed the intersection of three major
enabling technologies: semantic communication, RIS, and edge
intelligence, which altogether transform what 6G networks can
do. Unlike past generations, which prioritised throughput and
latency, 6G aims to integrate cognition, context awareness, and
intent recognition into the communication stack. The semantic
communication minimizes transmission overheads because it
communicates content based on meaning but not data, which
increases efficiency in content delivery. RIS provides control of a
wireless environment that is programmable and dynamically
enhances signal propagation, coverage, reliability, and energy-
efficiency. Edge intelligence is the process of decentralizing
inference and privacy-preserving
network edge, near the user.

computation to perform
analytics in real time at the
Combining these technologies creates a smart and flexible
network fabric that can be responsive to changing user
requirements and environmental situations. To give an example,
edge-based semantic processing may preselect data based on
relevancy before transmission, whereas RIS may guide signals
ideal propagation. The of AI techniques

implemented in these systems also makes it possible to perform

towards use
predictive, intent-based orchestration that is learnt via user behavior
and network conditions. The synergies enable a responsive and
flexible network architecture that is appropriate to new use cases,
including immersive extended reality (XR), real-time digital twins,
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autonomous systems, and intelligent healthcare. But to achieve such
vision, not only technological advances are needed, but also the
standardized benchmarks provided by organizations such as ITU,
3GPP, and IEEE, at least in the areas of semantic fidelity, RIS control,
and AI robustness. System design must also incorporate ethical
values, such as transparency, fairness, and data security.

Finally, 6G will be a paradigm shift from the traditional
communication infrastructure to cognitive systems that perceive,
reason, and act. This transformation will require research, industry,
and policy cross-disciplinary collaboration to develop smart,
inclusive, sustainable future networks.
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