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The rapid expansion of IoT devices has led to increasingly complex networks,
such as Smart Campuses, where ensuring interoperability, scalability, and energy
efficiency becomes crucial. Existing middleware solutions, such as Z-Wave and
LoRaWAN, have proven effective in specific applications but fail to address the
diverse demands of dense and heterogeneous Internet of Things (IoT)
environments. The limited scalability of Z-Wave (232 devices) and the high
latency of LoRaWAN (150 ms) highlight the need for a more comprehensive
solution. This study presents a middleware designed to overcome these
limitations through a modular, microservices-based architecture. The system
enables dynamic protocol translation and adaptive resource management,
demonstrating robust performance with 120 devices deployed and validated
in a Smart Campus scenario. Additionally, simulations using NS-3 extended the
evaluation to 500 virtual devices, supporting scalability analysis under varying
traffic and heterogeneity conditions. The middleware incorporates optimization
strategies, such as data compression and adaptive task prioritization, to improve
energy efficiency and operational performance. Experimental validation in a
controlled environment demonstrated a 26.7% reduction in power
consumption for optimized nodes, achieving an average of 60 W compared
to 80 W for non-optimized nodes. Response times averaged 130 ms on
optimized nodes, outperforming LoRaWAN while achieving a 94%
interoperability success rate. Deployment in a real Smart Campus confirmed
the robustness of the middleware, maintaining consistent performance under
dynamic conditions and in the presence of external interference.
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1 Introduction

The exponential growth of Internet of Things (IoT) devices has revolutionized
education, healthcare, and manufacturing sectors. This expansion has led to complex
environments where interoperability, scalability, and energy efficiency are no longer
optional but fundamental requirements for effective implementation (Bebortta et al.,
2024). Middleware systems have emerged as critical enablers in these environments,
facilitating seamless communication between heterogeneous devices (Lamnaour et al.,
2024). However, existing middleware solutions often fail to address the intricate demands of
dense IoT environments, such as Smart Campuses, where dozens to hundreds of devices
operate simultaneously under different standards and protocols (Dos Santos et al., 2022).
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Deploying middleware in a Smart Campus exemplifies these
challenges. Security systems, environmental monitoring tools, and
energy management devices require high levels of interoperability
and minimal response times to ensure reliable and efficient
operations (Prandi et al., 2019). Furthermore, the increasing
density of devices necessitates middleware that can scale
dynamically without compromising energy efficiency, a critical
factor for sustainability in resource-constrained environments.
These demands underscore the need for middleware solutions
integrating advanced capabilities such as real-time adaptability,
modularity, and efficient resource management.

Significant limitations remain despite the progress achieved with
existing middleware solutions like Z-Wave (Gvozdenovic et al.,
2024) and LoRaWAN (Jabbar et al., 2024). Z-Wave offers low-
latency communication with an average response time of 100 ms but
is constrained by its ability to support only 232 devices per network
(Braghin et al., 2023). Similarly, LoRaWAN demonstrates
exceptional energy efficiency, with an average consumption of
40 W. Still, its interoperability is limited to 85%, and its latency
is unsuitable for real-time applications like Smart Campuses. These
constraints highlight a critical gap in the middleware landscape: the
lack of a unified solution that combines scalability, real-time
adaptability, and high interoperability while maintaining
energy efficiency.

The middleware proposed in this study directly addresses these
gaps by introducing several innovative features. Its modular
architecture, based on microservices, enables seamless
integration of heterogeneous IoT devices and dynamic
adaptation to emerging protocols. Furthermore, the middleware
employs advanced resource optimization techniques, including
adaptive scheduling algorithms, data compression strategies,
and real-time protocol translation mechanisms. These features
collectively position the middleware as a transformative solution
for dense IoT environments capable of overcoming the limitations
of existing technologies.

The development and validation of the middleware were
conducted in two phases. In the first phase, controlled
experimental tests evaluated its performance against key metrics,
including energy consumption, response times, and interoperability
rates. The results demonstrated that optimized nodes achieved a
25% reduction in power consumption, resulting in an average
energy use of 60 W, compared to 80 W. Additionally, response
times were improved, averaging 130 ms, compared to LoRaWAN’s
180 ms. The interoperability rate reached 94%, demonstrating the
middleware’s ability to integrate diverse devices across various
protocols. This evaluation involved the deployment of
approximately 120 IoT devices operating under varied conditions
within a Smart Campus.

In the second phase, the scalability of the middleware is explored
through simulation with NS-3 and Python bindings. The simulated
environments expanded the deployment to 500 virtual devices to
analyze latency, throughput, and integration behavior under high-
density conditions. This enables controlled stress testing,
complementing real-world validation and supporting a broader
performance evaluation (Ferreira et al., 2022). Moreover, the
deployment provided insights into areas for further optimization,
particularly in latency-critical applications, which will guide future
iterations of the middleware.

This study significantly contributes to IoT middleware by
combining experimental rigor with practical validation in real-
world environments. The proposed middleware’s ability to
balance key metrics such as scalability, interoperability, and
energy efficiency addresses a commonly overlooked challenge in
existing solutions. Its modular and adaptive design establishes a
foundation for future research and development in dense IoT
networks, paving the way for applications in energy management,
security, and real-time connectivity. This work advances the design
and validation of middleware and provides a reproducible
methodology for addressing scalability, interoperability, and
energy efficiency in dense IoT environments. The proposed
system represents a step forward in integrating cutting-edge
technologies, such as microservices and hybrid edge computing
strategies, to create innovative solutions for modern IoT challenges.

2 Literature review

IoT middleware development has constantly evolved due to the
need to manage complex and heterogeneous networks in
environments such as the Smart Campus (Nagowah et al., 2024).
Interoperability, energy efficiency, latency, and scalability are some
of the central challenges addressed in literature. One of the primary
challenges in IoT networks is ensuring interoperability between
devices that operate with diverse protocols. Works like those of Shu
et al. (2022) have addressed this problem through adapter-based
middleware, which translates specific protocols to enable
communication between heterogeneous devices. However, these
solutions are often limited to applications, which makes it
challenging to scale in higher-density environments. A more
advanced alternative is the microservices-based architecture
proposed by Emami Khansari and Sharifian (2024), which
decouples device and protocol management, allowing for more
flexible and modular integration. Although robust, this approach
faces significant latency challenges when handling hundreds or more
devices, especially in dynamic networks. Domínguez-Bolaño et al.
(2024) highlight similar challenges in Smart Campuses, emphasizing
the need for middleware that can manage densely connected
environments while maintaining seamless interoperability and
low latency. Recent surveys on smart city middleware expand
this perspective, identifying functional and non-functional
requirements that remain unsolved, including scalability, security
under big data workloads, context management, and regulatory
compliance, all of which are equally relevant in Smart Campus
environments (Goumopoulos, 2024).

Interoperability requires translating protocols and ensuring
devices operate efficiently within the network (Pink et al., 2021).
This point directly connects with the need for solutions that support
device diversity and operate efficiently. Energy efficiency is a top
priority in IoT networks, particularly in applications where devices
operate on limited battery power. LoRaWAN is recognized for its
energy-efficient operation in IoT environments, particularly at the
end-node level. Recent evaluations emphasize that energy
consumption is strongly dependent on duty cycle, spreading
factor, and traffic load. Efficient resource allocation strategies are
crucial for prolonging node lifetime in large-scale deployments
(Garrido-Hidalgo et al., 2023). This protocol is particularly
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suitable for rural or industrial networks, where long distances and
low bandwidth are essential. However, these benefits come with
sacrifices in latency and responsiveness, limiting their applicability
in high-demand environments, such as a Smart Campus. Rana et al.
(Tange et al., 2020) provide a systematic review highlighting that
LoRaWAN’s energy efficiency is suitable for static IoT environments
but struggles to adapt to hybrid networks that require real-time
responsiveness. Similar limitations have been observed in healthcare
IoT ecosystems, where middleware frameworks are still considered
immature in terms of interoperability and lack robust mechanisms
for privacy and security, challenges that are transferable to Smart
Campus scenarios (Dowdeswell et al., 2024).

On the other hand, more adaptable solutions, such as those
developed by Yin et al. (2024), have incorporated critical task
prioritization algorithms in edge nodes, reducing energy
consumption without significantly compromising performance.
Although effective, these strategies present limitations when
implemented on devices operating with standard hardware,
reducing their generalization. Chaudhary et al. (2024a) address
similar issues in their privacy-preserving authentication protocol
for smart grids, demonstrating the importance of middleware
solutions that balance security, energy efficiency, and adaptability.
In parallel, lightweight toolkits for embedded nodes, such as the
pluggable security modules proposed by Minovski et al.,
demonstrate that it is possible to integrate authorization
mechanisms with less than 10% execution overhead on
constrained IoT devices, extending middleware applicability to
highly resource-limited environments (Kim et al., 2023).

Latency is a critical challenge in IoT networks, especially in real-
time applications such as security systems or emergency control.
While protocols such as MQTT, according to Hanon and Salman
(2024), achieve latencies below 50 ms in ideal environments, these
figures increase significantly when many heterogeneous devices are
integrated. In this sense, Z-Wave offers an advantage bymaintaining
average response times of 100 ms, but its limited scalability capacity
reduces its applicability in more complex environments. Chaudhary
et al. (2024b) propose advanced key exchange protocols that address
latency and security concerns, particularly in hybrid IoT networks,
such as smart cities. Recent middleware research has also
demonstrated the feasibility of applying machine learning
techniques for real-time workload adaptation. For instance,
Preuveneers et al. (2020) present an adaptive middleware that
dynamically reconfigures data management tactics, such as
sharding, replication, and caching, using adaptive Hoeffding
trees, thereby optimizing latency and throughput under changing
conditions. These approaches illustrate the potential of intelligent
middleware to ensure responsiveness in dense and dynamic
IoT scenarios.

This contrast between response times and scalability connects
directly with the need for hybrid architectures that balance both
aspects, which have recently been addressed in scalable solutions.
Scalable design is crucial in IoT networks with high device density.
Tamizshelvan and Vijayalakshmi (2024) proposed middleware
based on distributed architectures that support up to
3000 devices, improving resource management and reducing
failure points. However, this centralized approach may not scale
well to dynamic networks with rapid variations in workload. To
overcome this limitation, Zaydi and Bakkoury (2024) introduced

hybrid architectures that combine edge computing and cloud
computing, thereby improving scalability while reducing latency.
Despite these advances, real-world deployments are often limited to
a few hundred devices. This study builds on that approach,
validating a middleware system through real-world deployment
with 120 devices and simulated scalability tests that extend to
500 devices.

3 Materials and methods

3.1 Test environment

The test environment in which this work is developed is a Smart
Campus, which integrates heterogeneous IoT devices distributed
across different functional areas, connected by various protocols and
standards. This environment provides a realistic representation of
the challenges inherent to interoperability and adaptability in IoT
systems, offering an ideal testbed to validate the proposed
middleware.

The technological infrastructure of the Smart Campus
comprises a hybrid network that combines wired and wireless
technologies. IoT devices, including sensors, actuators, and
monitoring systems, operate under different communication
standards and perform critical energy management, security, and
connectivity functions. Environmental sensors, for example, are
designed to monitor variables such as temperature, humidity, and
air quality. At the same time, actuators control systems such as
lighting and air conditioning based on the conditions detected.
Security and access sensors reinforce surveillance, detecting
movements and managing entry permits in restricted areas.

The communication protocols used reflect the technological
diversity of the campus. Environmental monitoring sensors use
the MQTT protocol to transmit data in real-time, using their
ability to operate on low-latency networks (Shin and Jeon, 2024).
On the other hand, lighting actuators employ the CoAP protocol,
optimized for resource-constrained devices (Mishra and Reddy,
2024). In addition, security cameras and access sensors operate
under protocols such as HTTP, Zigbee, and Bluetooth Low Energy
(BLE), each tailored to the specific needs of their function (Alaparthi
and Rao, 2017). This variety of protocols represents one of the
leading interoperability challenges middleware must solve,
integrating devices and systems into a functional and
scalable ecosystem.

The specific areas of the campus involved in this study include
academic buildings, common areas, and open spaces. In educational
buildings, the implementation focuses on energy management,
integrating intelligent Heating, Ventilation, and Air Conditioning
(HVAC) and lighting systems that respond to schedules and
occupancy levels. In common areas, the focus is on security and
connectivity, with an emphasis on valuating the interaction between
cameras, access sensors, and communication networks. Open
spaces, such as gardens and sports areas, serve as test beds for
environmental monitoring and efficient water resource
management, where devices face more challenging connectivity
and power conditions.

In total, 120 physical IoT devices were deployed across these
areas, distributed among sensors, actuators, and innovative
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infrastructure components. To extend the evaluation, simulation
scenarios were configured with up to 500 virtual devices using public
datasets and open-source traffic generators. These simulations
allowed stress-testing the middleware under larger-scale
conditions, maintaining realism while avoiding artificial inflation
of deployment numbers. The simulated nodes replicated
heterogeneous device behavior and communication patterns,
including protocol diversity and middleware constraints,
supporting the middleware’s scalability evaluation.

The Smart Campus represents a heterogeneous IoT
environment, which is evident in the diversity of technologies
deployed and the complexity of operations. The connected
devices come from different manufacturers and use standards
that are not natively supported, reflecting a typical scenario in
IoT environments (el-Khaeri Kesuma et al., 2024). This allows us
to evaluate the middleware’s capacity to integrate and communicate
heterogeneous devices and test its scalability in a dynamic
environment that continuously incorporates new devices
and services.

The campus’s technological complexity also guarantees the
validity of the results obtained. The infrastructure includes
centralized and distributed systems, with nodes processing data
at the edge and cloud servers managing larger-scale operations. This
provides an ideal scenario to evaluate the middleware’s flexibility,
highlighting its ability to adapt to different architectures and
operational demands.

3.2 Obtaining and processing data

Data acquisition and processing in the Smart Campus are
organized into three main stages: data sources, acquisition
process, and preprocessing. These stages ensure that information
generated by heterogeneous IoT devices is efficiently captured,
transformed, and prepared for analysis.

3.2.1 Data sources
The Smart Campus hosts a community of approximately

8,000 students, 500 teachers, and 200 administrative staff, all of
whom interact with the IoT systems deployed across various
functional areas. Environmental sensors, placed in classrooms,
public areas, and open zones, monitor parameters such as
temperature, humidity, air quality, and ambient noise. These
sensors, configured to transmit data every 10 s, contribute
significantly to the daily data flow.

In total, the physical deployment comprises 120 IoT devices,
including environmental sensors, lighting actuators, smart HVAC
nodes, access sensors, and security cameras. To assess large-scale
performance, simulated devices were added to reflect higher
densities. Based on typical transmission frequencies, a simulation
of 500 sensors and 300 actuators would yield approximately
8.64 million and 432,000 records per day, respectively. Access
systems log an average of 50,000 entry and exit events per day,
while security cameras generate over 500 GB of video data.

Each device type uses protocols aligned with its operational
constraints: environmental sensors transmit via MQTT, which
supports real-time messaging on constrained networks; lighting
actuators use CoAP, selected for its low overhead in energy-

sensitive scenarios; security cameras rely on HTTP for media
streaming and device management; and access sensors operate
over BLE for proximity-based control (Xu et al., 2024). This
protocol heterogeneity exemplifies the core challenge of
middleware integration in a diverse and distributed IoT ecosystem.

3.2.2 Acquisition process
Middleware implements a specialized module to capture real-

time data from IoT devices, managing heterogeneity and a
significant volume of information. This module interacts directly
with the devices through specific adapters that translate the data into
a standard format. During acquisition, the data is temporarily stored
on local nodes (edge), optimizing latency and reducing the load on
central servers before being sent to the cloud for large-scale analysis
(Kumar et al., 2023).

Data quality is ensured through algorithms for detecting
inconsistencies and anomalous values. For example, if a temperature
sensor records readings out of range, the middleware flags these values
for validation. This validation uses predictive models trained with
historical data and simultaneous measurements from other nearby
sensors. This ensures that the processed data is reliable and
representative of the actual conditions on campus.

The module also implements dynamic discovery techniques,
automatically identifying and configuring new devices connected to
the network. This allows the system to integrate new devices without
interruptions in the existing data flow, ensuring the middleware’s
scalability and adaptability.

3.2.3 Data preprocessing
Data preprocessing transforms captured information into a

homogeneous format, ready for analysis and functional applications.
This process includes several critical stages that address data quality,
redundancy, and inconsistency issues. Normalization unifies
measurements from heterogeneous devices, ensuring consistency in
subsequent analyses. For example, temperature data recorded in Celsius
and Fahrenheit are converted to a standard scale using specific
functions built into the middleware. Data cleansing removes
inconsistencies using advanced techniques. Missing values are
imputed using predictive models trained on historical data, while
outliers are identified using statistical methods, such as z-scores, and
corrected or discarded as appropriate.

Eliminating redundancies is crucial to optimizing the quality of
the dataset. When multiple devices monitor the same variable,
duplicate data is filtered using algorithms prioritizing lower-
latency, higher-accuracy readings. Anomaly detection is
performed using machine learning models that analyze patterns
and highlight events that do not correspond to normal campus
conditions. For example, a sharp drop in energy consumption
records could indicate system failure or unusual behavior that
requires further investigation.

Anomaly detection is performed using machine learning models
that analyze temporal and statistical patterns in the preprocessed
data. The middleware implements an ensemble-based approach that
combines Random Forest classifiers for the supervised detection of
known anomalies and an Isolation Forest model for the
unsupervised detection of previously unseen events. The feature
set includes energy consumption profiles, network traffic metrics
(packet frequency, size, and protocol type), and access control
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events. Models were initially trained and validated with publicly
available datasets (UNSW-NB15 and CICIDS2018) and
subsequently fine-tuned with traffic and energy data collected
from the Smart Campus deployment. Inference is executed at the
edge nodes to ensure sub-100ms detection latency for critical events,
while the cloud infrastructure aggregates results to reduce false
positives and support long-term model updates. This hybrid
strategy ensures that the system can identify both expected
anomalies (e.g., unauthorized access attempts) and emerging
abnormal behaviors (such as sudden drops in energy
consumption) with high reliability.

Figure 1 illustrates the complete data capture and processing
flow, which describes how data is acquired, verified, normalized, and
prepared for analysis. This process ensures that the processed data is
high-quality, consistent, and valuable for the middleware’s
analytics modules.

3.3 Middleware architecture

The proposed middleware architecture design addresses the
challenges inherent to heterogeneous IoT environments, ensuring

efficient and scalable integration of devices operating under different
protocols and standards. This architecture is based on principles of
modularity and flexibility, which facilitates adaptation to new
devices and operating scenarios (Jepsen et al., 2023). Leveraging a
microservices-based structure, the middleware achieves high
modularity, enabling seamless integration of heterogeneous
devices and adaptation to evolving IoT requirements.

3.3.1 Main components
The middleware, deployed and validated in a Smart Campus

environment, comprises specialized modules, each designed to fulfill
a specific function within the system. The Protocol TranslationModule
acts as a bridge between heterogeneous devices, transforming data into
compatible formats that can be processed uniformly. It supports
protocols such as MQTT, CoAP, HTTP, and BLE. Unlike static
solutions, this module incorporates adaptive algorithms that
dynamically select the optimal translation strategy based on the
communication context, reducing latency and enhancing system
efficiency. Its modular design allows for the easy addition of support
for new protocols, ensuring future-proof interoperability.

The Dynamic Discovery Module automatically identifies and
configures devices that connect to the campus network. It
implements real-time discovery algorithms capable of recognizing
new devices and adapting to changes in network topology without
manual intervention. This capability is critical for managing high-
density environments like Smart Campuses, where device
configurations frequently change.

The Orchestration Module coordinates operations between
devices and services, ensuring tasks are distributed efficiently. It
uses adaptive scheduling policies to prioritize critical tasks and
balance workloads across nodes. The module also incorporates
resource-aware decision-making algorithms, optimizing energy
usage in resource-constrained scenarios.

The Monitoring Module provides real-time insights into
middleware operations, offering key metrics such as device status,
data traffic, and resource utilization. It includes a graphical interface
allowing system administrators to quickly identify problems and
make informed decisions. The monitoring framework also supports
predictive analytics, using historical data to anticipate potential
failures or performance bottlenecks.

The middleware integrates advanced Energy Optimization
Strategies, introducing a mathematical model to allocate
resources dynamically based on the workload and energy
constraints. The model minimizes overall energy consumption
while ensuring performance objectives are met. This approach is
formalized through the following optimization problem (Equations
1-4):

minEtotal � ∑
N

i�1
Pi · ti( ) (1)

Pi ≤Pmax, ∀i ∈ N (2)
ti ·Wi ≥Tmin, ∀i ∈ N (3)

∑
N

i�1
Wi ≤Wtotal (4)

Etotal represents the total energy consumed, Pi is the power
consumption of the i-th device, ti is the operational time, Wi is the
bandwidth allocated to the i-th device, andN is the total number of

FIGURE 1
Workflow of the data capture and processing process.

Frontiers in Communications and Networks frontiersin.org05

Gutierrez et al. 10.3389/frcmn.2025.1672617

mailto:Image of FRCMN_frcmn-2025-1672617_wc_f1|tif
https://www.frontiersin.org/journals/communications-and-networks
https://www.frontiersin.org
https://doi.org/10.3389/frcmn.2025.1672617


devices in the network. Constraints ensure that individual power
limits (Pmax), minimum throughput (τmin), and overall bandwidth
capacity (Wtotal) are respected.

The middleware uses a heuristic-based adaptive scheduling
algorithm to solve this real-time optimization problem.
Compared to traditional IoT scheduling algorithms, such as
IoT-SCH and LEACH-C, the proposed model reduces energy
consumption by up to 15% in scenarios simulating up to
500 devices, as validated in combined real and synthetic
benchmarks. The architecture employs a microservices-based
structure, ensuring system flexibility and modularity. Each
module operates independently, allowing for upgrades and
maintenance without affecting the rest of the components.
This design also supports horizontal scalability, enabling new
modules or nodes to be added without significant
reconfiguration efforts. Figure 2 illustrates the middleware
architecture design, which shows the interaction between key
components. Each module plays an essential role in the system,
from data capture and transformation to monitoring
and security.

3.3.2 Functional design
The architecture is designed to provide three main

functionalities: interoperability, adaptability, and security. The
protocol translation module achieves interoperability, allowing
devices with different communication standards to interact
seamlessly. This approach removes technical barriers and
optimizes the exchange of information in real-time.

Middleware integrates an Artificial Intelligence (AI) task
prioritization mechanism within the orchestration module.

This mechanism employs a reinforcement learning algorithm
to dynamically assign priorities to tasks based on criticality and
available resources. By analyzing real-time data, including
network load, device status, and execution deadlines, the
system ensures that high-priority operations, such as
emergency alerts, are processed with minimal latency, even
under fluctuating conditions.

Additionally, the protocol translation module employs adaptive
strategies for selecting protocols. Instead of relying on fixed rules, the
module uses heuristic algorithms that evaluate latency,
compatibility, and energy metrics to determine the most efficient
translation path. For instance, the middleware can switch
dynamically between MQTT and CoAP in hybrid deployments
to optimize throughput and reduce overhead. This adaptability is
critical in mixed-protocol environments.

The adaptive scheduling algorithm introduced in the energy
optimization strategies dynamically adjusts resource allocation to
meet these functional requirements. For instance, the algorithm
prioritizes critical tasks under peak load conditions by reallocating
bandwidth and reducing energy consumption in low-priority
operations. This dynamic adjustment ensures sustained
performance even in high-density environments.

The dynamic discovery module ensures adaptability by
facilitating the integration of new devices and the system’s
expansion. This ensures that the middleware can be scaled
without affecting its performance. Security is a priority in
architecture. The security module includes authentication and
encryption mechanisms that protect communication and ensure
data integrity. In addition, this module continuously monitors
operations to detect potential threats or unauthorized access.

FIGURE 2
Block diagram of middleware architecture.
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3.4 Technologies and tools used

The deployment of the middleware within the Smart Campus
context required the integration of advanced software tools and
communication frameworks to ensure modularity, real-time
operation, and scalability across both real and simulated
environments.

3.4.1 Software and frameworks
The middleware has been developed using modern

programming languages and libraries that ensure its performance
and flexibility. The primary language used is Python, chosen for its
ability to handle real-time data and its compatibility with various
specialized libraries. Key libraries used include Paho-MQTT, which
implements communication protocols, and Asyncio, which allows
efficient management of concurrent operations (Robinson Joel et al.,
2023). Flask has been integrated as a lightweight web framework for
visualization and monitoring of metrics.

The middleware integrates multiple IoT communication
protocols. MQTT is used for lightweight, low-latency data
transmission from environmental sensors and other devices.
CoAP facilitates efficient control of lighting and other actuators.
HTTP is used for transmitting data streams from visual surveillance
systems, while BLE supports access and presence sensors. The
system’s architecture incorporates a protocol translation
algorithm that facilitates seamless interaction across this protocol
diversity. Below is the pseudocode illustrating the logic of the
translation process (See algorithm 1):

Require: IncomingData, ProtocolSource, ProtocolTarget

Ensure: TranslatedData

1: Begin

2: if ProtocolSource == MQTT and

ProtocolTarget == HTTP then

3: PARSE(IncomingData)

4: FORMATDATAASHTTP(IncomingData)

5: else if ProtocolSource == CoAP and

ProtocolTarget == MQTT then

6: PARSE(IncomingData)

7: FORMATDATAASMQTT(IncomingData)

8: else if ProtocolSource == BLE and

ProtocolTarget == CoAP then

9: PARSE(IncomingData)

10: FORMATDATAASCOAP(IncomingData)

11: else

12: RAISEERROR(”Unsupported Protocol”)

13: end if

14: Return TranslatedData

15: End

Algorithm 1. Protocol Translation Algorithm.

In practice, the protocol translation process is executed through
modular adapters, each dedicated to a specific communication
standard (MQTT, CoAP, HTTP, and BLE). Incoming messages
are first parsed into a normalized internal representation and placed
in a lightweight in-memory buffer. This buffer decouples the arrival
of messages from their reformatted delivery, allowing concurrent
processing threads to handle multiple translations in parallel. The

reformatting stage maps the normalized data into the target
protocol’s data structures, applying headers, payload encoding,
and metadata as required. This modular architecture ensures that
protocol translation occurs within sub-100 ms under the observed
traffic load, even in scenarios with simultaneous data flows from
sensors, actuators, and access devices. Errors or unsupported
conversions are isolated at the adapter level to prevent cascading
failures and maintain service continuity in real-time conditions.

This algorithm ensures real-time translation between protocols,
supporting the middleware’s capability to maintain uninterrupted
communication across a heterogeneous IoT landscape. It plays a
central role in enabling the interoperability and flexibility required
by dense, multi-protocol Smart Campus deployments.

3.4.2 Hardware
The hardware infrastructure used includes a variety of sensors,

actuators, and IoT devices, which were selected to reflect the
technological diversity of the test environment. Environmental
sensors, such as DHT22 and MQ-135, monitor variables
including temperature, humidity, and air quality, generating data
at 10-second intervals. Lighting actuators comprise Zigbee-based
devices that enable remote control of lighting systems.

Security cameras are IP devices that support the HTTP protocol,
featuring a standard 1080p resolution and the capability to stream
real-time video to the central system. Access sensors, such as the
ESP32 BLEModule, employ BLE technology to record entry and exit
events in restricted areas.

Test nodes are equipped with Raspberry Pi 4 processors and
operate as local processing points at the edge. They are also equipped
with cloud servers that manage more complex analysis tasks. Edge
nodes are configured to handle light operations such as protocol
translation and temporary data storage, while cloud servers are
responsible for large-scale analysis and long-term storage.

In total, 8 Raspberry Pi 4 units were deployed as distributed edge
nodes across the Smart Campus. Each device managed a subset of
the approximately 120 connected sensors and actuators (on average
12–18 endpoints per node), operating as a local gateway to perform
protocol translation, lightweight buffering, and short-term state
management. This distribution keeps CPU and memory usage
well below saturation under the observed traffic patterns
(environmental sensors at 10-second intervals, sporadic BLE
access events, and low-duty actuation), ensuring sub-100 ms local
translation paths while delegating heavy analytics and long-term
storage to the cloud. This threshold aligns with latency requirements
reported in IoT communication standards; for instance, Z-Wave is
documented to sustain reliable operation with latencies around
100 ms when supporting up to 232 devices (Rafiq et al., 2023).
Security cameras expose HTTP streams directly to the central
system; edge nodes only coordinate discovery and control,
thereby avoiding the forwarding of video payloads. This design
balances load and provides room for failover without concentrating
all 120 devices on a single unit. The suitability of Raspberry Pi
platforms as IoT gateways in real deployments has been documented
in prior research (Glória et al., 2017).

3.4.3 Network infrastructure
The Smart Campus connectivity scheme combines edge

computing and cloud technologies to ensure efficient and scalable
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data flow. IoT devices send data to distributed edge nodes, which
process the information locally to reduce latency and minimize
network load. These nodes are connected via Wi-Fi 6 networks,
which support high transmission speeds and ensure system stability
even under high-demand conditions.

The cloud infrastructure uses storage and processing services
on scalable platforms, capable of managing large volumes of data
generated by sensors and cameras. This hybrid approach allows
middleware to combine the advantages of edge and cloud
computing, optimizing both response time and
analysis capacity.

3.5 Implementation processes

Implementing middleware in the Smart Campus involves
carefully designed steps to ensure optimal operation, the efficient
integration of heterogeneous devices, and the effective use of
available resources.

3.5.1 Middleware configuration
Themiddleware’s initial installation and configuration process is

performed in several stages. First, the core modules are deployed on
the edge processing nodes and in the cloud infrastructure. The edge
nodes, based on hardware such as Raspberry Pi 4, are configured
with the Raspberry Pi OS and pre-installed middleware. This
middleware includes all the adapters needed to handle protocols
such as MQTT, CoAP, HTTP, and BLE.

During the initial setup, a secure connection between the edge
nodes and the cloud is established via encrypted channels using the
Transport Layer Security (TLS) protocol (Sosnowski et al., 2024). In
addition, dynamic discovery policies are configured so that the
middleware can automatically identify connected devices on the
campus network. These policies define parameters such as polling
intervals and integration priorities, ensuring that the system can
quickly adapt to changes in the infrastructure. The process ends with
creating a test environment where the core functions of the
middleware, including protocol translation and device
monitoring, are validated. The results of these tests are used to
adjust specific configurations, such as data quality thresholds and
storage policies.

3.5.2 Device integration
One of the core functions of middleware is integrating

heterogeneous devices. Devices connected to the system transmit
data using different protocols translated in real time to ensure

interoperability. For example, an environmental sensor that uses
MQTT to transmit temperature measurements can interact with a
lighting actuator operating under CoAP. The middleware receives
the sensor data, translates it into the format required by the actuator,
and ensures that the desired action (e.g., adjusting lighting intensity)
is executed correctly.

Another practical example is the integration of security cameras
and access sensors. Cameras transmit images and videos in real-time
using HTTP, while access sensors record events using BLE.
Middleware translates this data into a standard format, allowing
a monitoring module to analyze access events and synchronize video
recordings, improving campus security. In addition, the middleware
employs adaptive policies to handle devices that change state or
connect/disconnect from the network (Saifeng, 2024). This includes
automatically reconfiguring communication paths and updating
device tables in real-time, ensuring continuous and
efficient operation.

3.5.3 Resource optimization
Resource optimization ensures that the middleware operates

efficiently, particularly in high-density environments with large
volumes of heterogeneous data. This is achieved through
computational strategies and mathematical formulations that
prioritize energy efficiency, bandwidth reduction, and intelligent
resource allocation.

One of the strategies implemented is the reduction of energy
consumption at edge nodes, modeled as an optimization problem.
Considering that each node i has an energy consumption Ei(t) as a
function of time t, the objective is to minimize the total consumption
Etotal(t) under the following constraints (Equations 5, 6):

Minimize : Etotal t( ) � ∑
N

t�1
Ei t( ) (5)

Subject to : Ri t( )≥Rmin ∀i, t (6)

Ri(t) represents the resources assigned to each task, and Rmin is
the minimum required resource to guarantee the operation.
Adaptive scheduling algorithms redistribute critical tasks Tc and
non-critical tasks Tnc, prioritizing the execution of Tc during times
of high demand.

The middleware also implements data compression techniques
before transmission to the cloud. This is modeled as a bandwidth
optimization problem, where the objective is to minimize the
volume of data transmitted Dtrans, while maintaining the quality
required for analysis. The compression function can be represented
as in Equation 7:

TABLE 1 Setup times and integration success rate by device type.

Device Type Protocol Setup time (seconds) Integration success rate (%)

Temperature Sensor Sensor MQTT 29.5 98

Humidity Sensor Sensor CoAP 34.2 95

Lighting Actuator Actuator CoAP 36.1 96

Security Camera Camera HTTP 44.8 94

Access Sensor Sensor BLE 24.3 97
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FIGURE 3
Analysis of configuration times by protocol in IoT devices.

TABLE 2 Average energy consumption and reduction with and without optimization.

Node type Optimization Average energy consumption (W) Reduction (%)

Edge Node Without Optimization 75 0

Edge Node With Optimization 55 26.67

Cloud Node Without Optimization 200 0

Cloud Node With Optimization 160 20.0

FIGURE 4
Variability of energy consumption over time in different scenarios.
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Dtrans � ∑
M

k�1
αk ·Dk (7)

Dk is the original volume of data generated by device k, and
αk ∈ (0, 1] is the compression factor applied.

In the case of security cameras, context-adapted downsampling
algorithms are applied. Non-critical streams have a higher
compression factor, αk → 0.5, while important recordings are
sent with minimal compression, αk → 1.

Another key strategy is the dynamic management of
computational resources at edge nodes, modeled as a resource
allocation problem. CPU and memory allocation is done using
an efficiency maximization approach as presented in Equation 8:

Maximize : U t( ) � ∑
P

j�1

Rj t( )
Cj

(8)

Where U(t) is the total utilization, Rj(t) is the resources
allocated to task j, and Cj is the maximum capacity of the node.

This allows for measuring their impact on energy savings,
performance improvement, and operational cost reduction. The
results obtained are used to dynamically adjust middleware
configurations, ensuring continuous and efficient operation even
under high-demand conditions. They also provide system
functionality, interoperability, and efficiency while optimizing
available resources. This methodology ensures that the
middleware can adapt to the changing needs of the campus and
deliver consistent performance in a complex IoT environment.

3.6 Middleware evaluation

The evaluation of the middleware developed for the Smart Campus
focuses on representative use cases that reflect the primary needs of the
IoT environment and specific metrics that allow measuring its
performance. Monitoring and logging tools capture real-time data
and generate detailed reports to ensure reliable results.

3.6.1 Defined use cases
The functionality of the middleware is validated in three key

areas: energy management, security, and connectivity. In energy
management, the middleware optimizes energy consumption by
dynamically monitoring and controlling systems such as automated
lighting and HVAC (Saleem et al., 2023). Temperature and daylight
sensors provide real-time data that the middleware uses to adjust
lighting intensity and HVAC system usage. This use case evaluates
the middleware’s ability to reduce energy consumption without
compromising user comfort.

For security, the middleware integrates surveillance cameras and
access sensors, allowing real-time monitoring of suspicious events
and logging of unauthorized access. The system also validates video
recordings against recorded access events, ensuring synchronization
between heterogeneous devices.

Regarding connectivity, the middleware assesses its ability to
manage communication between IoT devices that use
heterogeneous protocols. This includes ensuring that both real
and simulated devices are automatically detected, and their data
is correctly translated in real time, maintaining system integrity and
continuity.

3.6.2 Metrics evaluated
Middleware evaluation is based on quantitative metrics that

reflect its performance and efficiency:

• Response time: The interval from when a device sends data
until it is processed, and the corresponding actions are
executed is measured. An average response time of less
than 100 ms for edge nodes is ideal.

• Energy consumption: The energy efficiency of edge nodes is
evaluated by measuring the average consumption during
critical and non-critical operations. The goal is to achieve a
20% reduction compared to systems that do not use
optimization techniques.

• Interoperability success rate: The success rate of the
middleware in integrating devices that operate under
different protocols is measured. A 95% or higher success
rate is optimal, reflecting the middleware’s ability to handle
heterogeneous environments with scenarios including up to
500 devices, of which 120 were real and the rest simulated
using public datasets and synthetic generators.

3.6.3 Tools for monitoring and recording metrics
Monitoring tools integrated into the middleware capture and

analyze metrics in real-time. These tools include:

• Prometheus collects and stores performance data, such as edge
node response times and CPU consumption.

• Grafana visualizes key metrics through interactive dashboards
that identify real-time trends and anomalies.

• Wireshark is used to analyze network traffic and validate
protocol translation, ensuring the integrity of
communications.

• EnergyLogger, a specific system designed to record and
analyze energy consumption in real-time, using sensors
connected to test nodes.

TABLE 3 Detected events and generated responses.

Event type Total events Detection rate (%) Response success rate (%) Average response time (s)

Unauthorized Access 90 94 92 1.3

Network Anomalies 60 98 98 1.1

Overall 150 96 95 1.2
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These tools generate detailed reports that facilitate middleware
evaluation in defined use cases. They provide key information to
identify areas for improvement and validate compliance with system
objectives.

3.7 System validation

The system was validated for the Smart Campus through
controlled experimental tests and live tests in actual conditions.
These stages allow us to evaluate the middleware’s effectiveness in
simulated environments and its operational performance in a
complex and dynamic IoT environment.

3.7.1 Experimental tests
The experimental tests were designed to validate the effectiveness of

the middleware in specific scenarios representative of the defined use
cases. These tests were conducted in a controlled environment
comprising 120 real devices, complemented with up to
380 simulated instances, for a total load of 500 nodes configured to

replicate realistic Smart Campus conditions. One of the scenarios
evaluated was the integration of devices operating with different
protocols. Environmental sensors were tested using MQTT, lighting
actuators based on CoAP, and security cameras transmitting
data using HTTP.

Another scenario evaluated was the energy efficiency of the edge
nodes. Energy consumption was measured during critical operations,
such as protocol translation and execution of real-time monitoring
algorithms. Response time is also evaluated under high load conditions,
simulating increased connected devices and the volume of data
transmitted. The middleware maintained an average response time
of 85 ms, highlighting its ability to handle real-time operations even in
high-demand situations.

3.7.2 Deployment in the smart campus
Live testing was conducted at the Smart Campus, where the

middleware was deployed to evaluate its performance under real-
world conditions. Three key areas—energy management, security,
and connectivity—were monitored during these tests. In energy
management, the middleware dynamically controlled lighting and

TABLE 4 Average integration times and latency by protocol.

Protocol Average integration time (s) Integration variability (s) Average latency (ms) Latency variability (ms)

MQTT 5.2 0.5 20 2

CoAP 7.8 0.7 30 5

HTTP 12.3 1.2 50 7

BLE 4.5 0.4 15 1.5

FIGURE 5
Response times under different load levels for optimized and non-optimized nodes.
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HVAC systems in two academic buildings. Daylight and
temperature sensors provided real-time data, which the
middleware processed to adjust lighting intensity and HVAC
system operation.

In the security area, the middleware integrated surveillance cameras
and access sensors to monitor events in real-time. During testing,
15 unauthorized access attempts were detected and recorded, which the
system automatically blocked. In addition, the middleware
synchronized video recordings with access events, improving
security analytics capabilities. Regarding connectivity, the
middleware automatically detected and integrated 25 additional
connected IoT devices during testing, with no interruptions in the
data flow. This result demonstrated the system’s ability to adapt
efficiently to infrastructure changes and scale.

4 Results

4.1 Configuration and integration results

The results in this section were obtained through a meticulous
experimental testing process designed to evaluate the middleware’s
capability in integrating IoT devices in a controlled environment.
The tests included a representative set of devices spanning
environmental sensors, lighting actuators, security cameras, and
access sensors, each operating under protocols such as MQTT,
CoAP, HTTP, and BLE. Each device was configured individually,
following a standardized procedure encompassing initial discovery,
protocol configuration, and validation of its operation in the
middleware. During this process, key metrics were recorded,
including the average time required for the initial configuration
of each device and the integration success rate. Additionally, any
failures or delays associated with the configuration were monitored
to identify patterns that could improve system efficiency.

Table 1 presents the results of the average configuration time and
the device integration success rate by type and protocol used. MQTT-
based devices, such as temperature sensors, showed the lowest average
setup time of 29.5 s and a success rate of 98%. On the other hand,
devices using HTTP, such as security cameras, had the highest average
setup time of 44.8 s and a slightly lower success rate of 94%. Access
sensors, which operate with BLE, stood out for their lowest setup time of
24.3 s, but with a success rate of 97%. This analysis shows that lighter
protocols, such as MQTT and BLE, facilitate faster and more reliable
integration, while more robust protocols, such as HTTP, present more
significant configuration challenges.

It is essential to note that the evaluated protocols utilize different
wireless communication media: BLE operates over Bluetooth Low
Energy, whereas MQTT, CoAP, and HTTP are deployed overWi-Fi.
Although these media differ in coverage, bandwidth, and latency, the

middleware abstraction layer ensured a consistent integration
process across them. As a result, the observed differences in
setup times and integration rates were mainly protocol-
dependent rather than caused by the underlying medium.

Figure 3 presents the variability of device setup times by
protocol, using box-and-whisker plots to visualize the spread of
the data. MQTT and BLE show less variability, indicating that their
setup times are more consistent, which is ideal for real-time
operations. In contrast, devices using HTTP show a greater
spread, with times ranging from 30 to 60 s, which could lead to
delays in high-demand scenarios. CoAP, although closer to MQTT
in terms of average times, shows an intermediate spread, suggesting
some variability in setup depending on the device.

These results demonstrate that the middleware is highly effective
at managing heterogeneous device integration. However, the choice
of protocol significantly influences both the speed and reliability of
the configuration process. Optimizing integration workflows for
more complex protocols, such as HTTP, remains crucial to reducing
delays and ensuring consistent behavior in large-scale IoT
environments.

4.2 Energy management

The results of this section were obtained through controlled tests
on edge and cloud nodes, evaluating their energy consumption in
different scenarios, with and without the optimization strategies
implemented in the middleware. Measurements were recorded at
regular intervals over 24 h, allowing us to analyze the average values
and the variability in energy consumption.

Table 2 presents the average energy consumption values, and the
percentage of reduction achieved through optimization on edge and
cloud nodes. Edge nodes without optimization recorded an average
consumption of 75 W, while with optimization, it was reduced to
55 W, achieving a decrease of 26.67%. On the other hand, cloud
nodes showed an average consumption of 200 W without
optimization, which was reduced to 160 W with the applied
strategies, achieving a reduction of 20%. These results reflect that
the applied optimization strategies, such as adaptive scheduling and
critical task prioritization, significantly impact energy efficiency,
especially at edge nodes, which are more sensitive to efficient
resource management.

Figure 4 presents the variability of energy consumption over
time in both scenarios. It can be observed that, without optimization,
energy consumption in edge and cloud nodes is higher and less
consistent, with peaks that reflect tasks that are not prioritized or
distributed efficiently. In contrast, consumption with optimization
shows a more stable trend, with lower peaks and a more uniform use
of energy throughout the day. The more excellent stability in the

TABLE 5 Attack tolerance coefficient in different protocols.

Metric Experimental results Real-results

Energy Consumption (W) 55 (Optimized)/ 75 (non-optimized) 60 (Optimized)/ 80 (non-optimized)

Response Time (ms) 120 (Optimized)/ 250 (non-optimized) 130 (Optimized)/ 270 (non-optimized)

Interoperability Success Rate (%) 96 94
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optimized scenario shows that the middleware can dynamically
manage tasks, reducing unnecessary operations during periods of
low demand.

The results demonstrate that implementing optimization
strategies in the middleware significantly reduces energy
consumption in heterogeneous IoT environments and stabilizes
resource use, making the system more predictable and efficient in
continuous operations.

4.3 Evaluating threat detection and response
in IoT networks

Security tests were conducted to evaluate the middleware’s
ability to detect and respond to security events on the Smart

Campus. These tests included simulations of unauthorized access
attempts, the generation of anomalies on the network, and the
evaluation of the system’s responses. Events were recorded in real-
time and classified according to the actions’ type, severity, and
effectiveness to mitigate their impacts.

Unauthorized access attempts were simulated by sending
incorrect credentials and replicating identities of legitimate
devices. In parallel, unusual traffic patterns were introduced
into the network to evaluate anomaly detection. The
middleware used machine learning algorithms trained with
historical data from the campus to identify irregular patterns
and set real-time alerts. Each detected event automatically
triggered predefined responses, such as blocking the suspicious
device, notifying system administrators, and recording incidents
in a secure log.

FIGURE 6
Comparison of key metrics and energy consumption in different environments.

TABLE 6 Comparison of middleware performance with existing IoT protocols.

Metric Proposed
middleware (this work)

Z-Wave [Rafiq et al. (2023),
Fuller et al. (2017)]

LoRaWAN [Basford et al. (2020),
Finnegan et al. (2018)]

Power Consumption (W) 60 (Optimized)/80 (Not Optimized) Low-power operation Energy-efficient; lifetime up to years (duty-cycle
dependent)

Response Time (ms) 130 (Optimized)/270 (Not
Optimized)

100 400–2000+

Scalability (Supported
Devices)

500 (120 real + 380 simulated) 232 Thousands

TABLE 7 Extended benchmark: Middleware performance compared to existing solutions.

Metric Proposed middleware Z-Wave LoRaWAN

Throughput (kbps) 500 200 300

Ease of Integration (Qualitative) High Medium Medium-Low

Latency in Hybrid Networks (ms) 140 150 170

Frontiers in Communications and Networks frontiersin.org13

Gutierrez et al. 10.3389/frcmn.2025.1672617

mailto:Image of FRCMN_frcmn-2025-1672617_wc_f6|tif
https://www.frontiersin.org/journals/communications-and-networks
https://www.frontiersin.org
https://doi.org/10.3389/frcmn.2025.1672617


Table 3 presents the results obtained during the tests. The
middleware recorded 150 events, 90 of which corresponded to
unauthorized access attempts and 60 to network traffic
anomalies. The overall detection rate was 96%, with an average
response time of 1.2 s. Unauthorized access attempts were mitigated
by 92%, while network anomalies were successfully
managed by 98%.

The results demonstrate that the middleware is highly capable of
detecting and mitigating real-time threats across heterogeneous IoT
infrastructures. Notably, the machine learning model showed strong
performance in anomaly detection, owing to its ability to model
normal behavior with high granularity and accurately flag atypical
patterns. However, spoofing attacks involving identity replication
posed a relatively higher challenge. Their successful mitigation rate,
though high, indicates room for improvement. Future work may
include the integration of biometric authentication, multi-factor
validation, or behavioral profiling, aiming to reduce vulnerability to
sophisticated impersonation tactics further. This evaluation
confirms that the middleware’s security module is not only
reactive but also adaptive, capable of evolving to match new
threat profiles with minimal human intervention—an essential
feature for large-scale, dynamic IoT deployments.

4.4 Evaluating latency and integration of
real-time IoT devices

The results evaluated the middleware’s ability to integrate IoT
devices in real time and ensure efficient data exchange. These tests
included connecting devices operating under different protocols
(MQTT, CoAP, HTTP, and BLE) and measuring the average
integration time, latency during communication, and variability
in both metrics.

Table 4 presents the detailed results of these tests. Devices using
BLE and MQTT showed the lowest integration times, with averages
of 4.5 and 5.2 s, respectively, and a minimum variability of 0.4 and
0.5 s. This highlights the efficiency of these protocols in quickly
connecting devices to the middleware. In contrast, HTTP-based
devices presented the highest integration time, with an average of
12.3 s and a variability of 1.2 s, indicating that more robust protocols
require more complex configurations. Devices operating with CoAP
fell somewhere in the middle, with an average integration time of
7.8 s and a variability of 0.7 s.

Regarding latency during data exchange, MQTT and BLE again
stood out with low average values of 20 ms and 15 ms, respectively,
and limited variability of 2 ms and 1.5 ms. These results demonstrate
that lightweight protocols are ideal for applications requiring fast
real-time responses. On the other hand, HTTP presented the highest
average latency, 50ms, and significant variability, 7 ms, reflecting the

overhead inherent to this protocol in IoT environments. CoAP, as in
integration, showed intermediate values with an average latency of
30 ms and variability of 5 ms.

The results demonstrate that the middleware effectively handles
the integration of IoT devices in real-time, although performance
varies considerably depending on the protocol used.While protocols
such as MQTT and BLE are faster and more stable, HTTP requires
improvements in optimization to reduce latency and integration
time. Furthermore, the stability and speed observed in lightweight
protocols reinforce the viability of middleware in applications that
demand high reactivity and low configuration time.

4.5 Performance metrics

The results were obtained through experimental tests
designed to evaluate the behavior of the middleware under
different load levels (low, medium, and high). During the
tests, multiple simultaneous requests sent to the optimized
and non-optimized nodes were simulated, the response times
were recorded, and their variability was analyzed. These tests
allowed for measuring the optimization strategies’ impact on the
system’s overall performance.

Figure 5 presents the response times obtained for optimized and
non-optimized nodes under different load levels, using box-and-
whisker diagrams to reflect the variability of the results. In the low
load scenario, the optimized nodes showed an average response time
of 50 ms, with a limited dispersion showing consistent performance.
In contrast, the non-optimized nodes recorded an average time of
80 ms, with a more excellent dispersion in the data, suggesting
inefficiency in request handling.

The differences between the optimized and non-optimized
nodes became more apparent as the load increased to medium
and high levels. In the high-load scenario, the optimized nodes
maintained an average response time of 120 ms with moderate
variability. The non-optimized nodes achieved a significantly higher
average of 250 ms, with a noticeably high dispersion. These results
indicate that non-optimized nodes are more susceptible to
performance degradation under high-demand conditions.

The analysis of the results demonstrates that the optimization
strategies implemented in the middleware reduce average response
times across all load levels and stabilize performance, minimizing
variability in operations. This positions the middleware as an
efficient solution for dynamic IoT environments, where the
ability to handle fluctuating loads consistently is crucial.
However, the increased variability in high-load scenarios suggests
that although the optimized system has robust performance, it could
further benefit from additional resource management techniques to
improve its stability under extreme conditions.

TABLE 8 Validation areas, evaluation parameters, and references to detailed results.

Functionality Evaluation parameters Detailed results

Energy Management Average consumption (with/without optimization); reduction percentage Table 2

Security Detection rate, response success, and response time for unauthorized access and anomalies Table 3

Connectivity Setup time by device type; integration success rate across heterogeneous devices Table 1
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4.6 Comparative analysis between
experimental tests and performance in the
smart campus

The middleware was validated under two distinct conditions:
controlled experimental testing and live deployment in the Smart
Campus. This dual-context evaluation enabled the analysis of
system behavior under both reproducible stress conditions and
real-world operational dynamics. The metrics considered include
energy consumption, response time, and interoperability success
rate, enabling a quantitative comparison of middleware
performance across different environments.

4.6.1 Experimental tests
In the controlled environment, a predefined set of

heterogeneous IoT devices was used to simulate high-load and
protocol-diverse conditions. Optimization mechanisms were
applied to specific nodes to assess their impact on energy and
latency metrics. As shown in Table 5, optimized edge nodes
achieved an average energy consumption of 55 W, while non-
optimized nodes reached 75 W, resulting in a reduction of
26.7%. In terms of response time, optimized nodes consistently
processed requests in 120 ms, compared to 250 ms in non-optimized
configurations. Furthermore, the middleware reached a 96%
interoperability success rate, indicating robust handling of
heterogeneous protocols in this controlled setup.

The column labeled “Real-Results” refers specifically to the
metrics obtained under real operational conditions, where
dynamic device loading, network interference, and variable
workloads influence system behavior. These values complement
the experimental benchmarks by providing evidence of the
middleware’s stability in non-deterministic scenarios and are
further supported by the analysis of the Smart Campus
implementation.

4.6.2 Deployment in the smart campus
Implementing the middleware in the Smart Campus allowed

us to evaluate its performance under actual conditions, where
external factors such as dynamic device loading and
communication interference influence system behavior.
Figure 6 illustrates the results obtained, comparing key
metrics between experimental and real environments. In
objective tests, the average power consumption increased
slightly to 60 W on the optimized nodes and 80 W on the
non-optimized nodes due to fluctuations in real workloads.
Response times also showed a moderate increase, reaching
130 ms on the optimized nodes and 270 ms on the non-
optimized nodes, reflecting the impact of dynamic conditions
on the campus network. The interoperability rate remained high
at 94%, confirming the middleware’s ability to adapt to a diverse
and active IoT environment.

The results show that although real-world conditions slightly
increased the energy consumption and response time metrics
compared to the experimental environment, the middleware
maintained efficient and consistent performance. The stability of
the interoperability rate highlights the system’s robustness in
handling heterogeneous environments. These findings confirm
the middleware’s feasibility in operating in complex scenarios

such as the Smart Campus, where variability and resource
demands are constant factors.

4.7 Comparison with existing proposals

To evaluate the effectiveness of the proposed middleware, we
compared it against two widely adopted IoT communication
protocols, Z-Wave and LoRaWAN. While these are not
middleware systems, they are included as baselines due to their
extensive deployment and well-documented performance
characteristics in terms of latency, interoperability, and
scalability. The objective is not to equate their nature with
middleware but to provide a functional benchmark that
contextualizes the performance of our solution.

The evaluation results are summarized in Table 6. The values for
the proposed middleware correspond to our experimental
measurements, while those for Z-Wave and LoRaWAN are
drawn from documented protocol capabilities.

Regarding response times, the middleware achieved 130 ms in
optimized conditions, outperforming LoRaWAN deployments that
typically exhibit latencies in the order of hundreds of milliseconds to
seconds depending on spreading factor and traffic load (Basford
et al., 2020), but slightly behind Z-Wave, which maintains low-
latency communication around 100 ms in home and building
automation scenarios (Rafiq et al., 2023). While Z-Wave provides
fast responsiveness, its scalability is constrained to approximately
232 devices per network with a maximum of four hops (Fuller et al.,
2017). In contrast, LoRaWAN is designed for large-scale
deployments supporting thousands of devices per gateway
(Finnegan et al., 2018). The proposed middleware achieves a
balanced trade-off between latency, scalability, and
interoperability, validated at a scale of 500 devices (120 real and
380 simulated nodes combined) in controlled Smart
Campus scenarios.

An extended benchmark was conducted to provide a more
comprehensive evaluation, focusing on metrics critical for IoT
environments such as throughput, ease of integration, and
latency in hybrid networks. The middleware achieved a
throughput of 500 kbps, significantly outperforming Z-Wave
(200 kbps) and LoRaWAN (300 kbps). This improvement
highlights the middleware’s ability to handle high data volumes
efficiently, essential for real-time communication applications.

The modular and adaptive architecture of the middleware also
enabled a high ease-of-integration score, surpassing the medium
scores of Z-Wave and LoRaWAN. This adaptability reduces
deployment times and enhances compatibility with heterogeneous
devices, a key advantage in agile scaling and fast onboarding
scenarios. Latency in hybrid networks was also assessed, with the
middleware achieving 140 ms, better than LoRaWAN’s 170 ms and
comparable to Z-Wave’s 150 ms. These results are summarized
in Table 7.

These results underscore the middleware’s scalability,
interoperability, and throughput strengths, making it a robust
solution for dynamic IoT environments such as Smart Campuses.
The 26.7% reduction in energy consumption highlights its ability to
balance energy efficiency with high device density, a challenge that
existing solutions like Z-Wave and LoRaWAN fail to address
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comprehensively. Its ease of integration further enhances its
applicability in scenarios requiring seamless deployments,
particularly in environments where rapid scaling and device
diversity are priorities.

While the middleware demonstrates superior scalability and
interoperability, there is room for further improvement in energy
consumption to match LoRaWAN’s low-power performance in
specific scenarios. Similarly, latency optimization for critical real-
time applications could further enhance its competitiveness with
Z-Wave in low-latency environments. These insights provide a clear
roadmap for future enhancements.

Beyond protocol baselines, our results were also contrasted with
recent middleware proposals. Microservice-based orchestration at the
fog layer can optimize service composition and elasticity (Emami
Khansari and Sharifian, 2024). Yet, it does not target on-the-fly
multi-protocol translation at the edge with device onboarding under
heterogeneous traffic, which is a core focus of our system (achieving an
optimized end-to-end response of 130 ms with validated
interoperability). Distributed governance and data-security
infrastructures (Tamizshelvan and Vijayalakshmi, 2024) prioritize
access control and compliance at scale; our evaluation complements
this, emphasizing runtime interoperability and response-time behavior
across 120 real devices and up to 500 combined devices.
Edge–fog–cloud frameworks in healthcare and smart cities highlight
open challenges—interoperability, scalability, energy efficiency, and
security (Zaydi and Bakkoury, 2024; Goumopoulos, 2024)—which
our deployment addresses empirically through cross-protocol
translation and adaptive integration policies on campus. In parallel,
automated configuration layers for data backends (Preuveneers et al.,
2020) and pluggable security toolkits for constrained devices (Kim et al.,
2023) are orthogonal to our contribution. We integrate secure channels
and anomaly detection, while our main novelty lies in achieving
protocol-level interoperability with measured latency, throughput,
and device-integration performance in situ.

The evaluation covered three key functional areas of the
middleware: energy management, security, and connectivity.
While the detailed numerical results have been presented in the
previous subsections, Table 8 summarizes the validation framework
by explicitly listing the evaluation parameters associated with each
functionality and referencing the sections where the results
are detailed.

5 Discussion

The results obtained in this study and the literature review
highlight advances and limitations that position the proposed
middleware as a comprehensive solution for complex IoT
environments such as the Smart Campus. Compared with
existing solutions, such as Z-Wave (Gvozdenovic et al., 2024)
and LoRaWAN (Jabbar et al., 2024), the proposed middleware
demonstrates significant advancements in scalability,
interoperability, and energy efficiency. At the same time, Z-Wave
exhibits an average response time of less than 100 ms; however, its
limited scalability, restricted to only 232 devices, significantly limits
its applicability in dense networks. Similarly, LoRaWAN achieves

excellent energy efficiency (40 W) but compromises latency and
interoperability, with an 85% success rate, due to its focus on low-
power, long-range applications. In contrast, the proposed
middleware achieves a balance across these metrics, supporting
up to 500 devices in simulated conditions with a 94%
interoperability rate while maintaining energy consumption of
60 W in optimized scenarios. This balanced performance marks
a notable improvement over the trade-offs traditionally observed in
IoT middleware implementations.

The middleware’s architecture incorporates features that
existing solutions lack, such as adaptive protocol translation,
which dynamically adjusts to heterogeneous device requirements,
ensuring efficient communication across diverse protocols. This
capability directly addresses limitations in Z-Wave and
LoRaWAN, which rely on static protocol designs. Furthermore,
the modular microservices-based architecture supports the seamless
integration of new technologies and emerging IoT standards,
enhancing system flexibility and future-proofing its design.

The middleware’s validated scalability with 500 simulated
devices provides a critical advantage in moderately dense
environments. Although the platform has not yet reached
massive-scale deployment, its tested capacity significantly
surpasses that of Z-Wave and approaches the scale of
LoRaWAN, validating its applicability in moderately dense IoT
networks. The middleware’s dynamic orchestration module
further enhances performance by balancing workloads across
nodes, optimizing throughput, and minimizing latency under
high loads. These features demonstrate the middleware’s capacity
to operate effectively in scenarios where existing solutions fail to
meet the demands of heterogeneous and expanding infrastructures.

Energy efficiency improvements also highlight the middleware’s
transformative impact. While LoRaWAN excels in low-power
scenarios, its trade-offs in interoperability and latency limit its
applicability. The middleware addresses these issues through
energy-aware scheduling algorithms and adaptive data
compression techniques, achieving competitive energy
consumption without sacrificing scalability or response times.
These innovations not only reduce operational costs but also
contribute to the sustainability of large-scale IoT networks,
aligning with broader goals of environmental and economic
efficiency (Goumopoulos, 2024).

The practical implications of these improvements extend
beyond technical performance. In Smart Campus environments,
the ability to integrate diverse devices seamlessly enhances the user
experience by reducing downtime and improving reliability. The
middleware’s modularity also simplifies deployment and
maintenance, reducing implementation complexity and associated
costs. These advantages position the middleware as a transformative
solution for IoT networks requiring high scalability, efficiency, and
adaptability (Rana et al., 2021).

Despite these advances, the study identifies several limitations.
Although the middleware achieves a 94% interoperability rate,
challenges remain in integrating devices with proprietary
protocols. This limitation could be mitigated through advanced
protocol translation algorithms or by encouraging
standardization in communication interfaces. Future work could
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explore machine learning-based approaches to optimize further
protocol adaptation in real-time, potentially improving
interoperability beyond the current metrics (Chaudhary
et al., 2024a).

Energy consumption, while competitive, remains slightly higher
than that of LoRaWAN in optimized scenarios. Addressing this
limitation requires exploring additional optimization strategies,
such as AI-driven resource allocation and more efficient data
handling techniques. By incorporating such an approach, the
middleware could further enhance its applicability in energy-
constrained environments, such as rural IoT networks
(Chaudhary et al., 2024b). Latency also represents a critical area
for improvement. While 130 ms response times are suitable for
many applications, specific use cases, like emergency systems,
demand lower latencies. Hybrid architecture leveraging edge and
cloud computing could help address this challenge by more
effectively distributing workloads and ensuring real-time
responsiveness in critical scenarios.

It is important to emphasize that the proposed middleware
is not limited to a specific proprietary medium. Its
implementation in this study was based on standard wireless
infrastructures, specifically Wi-Fi (IEEE 802.11ax) and BLE for
access devices. Therefore, the comparison with Z-Wave and
LoRaWAN is not intended as a direct medium-to-medium
evaluation, but rather a functional benchmark between
representative IoT solutions. This approach highlights how
the middleware, when running on common communication
infrastructures, can achieve competitive performance in
latency, scalability, and interoperability, while offering
greater flexibility through protocol translation and
heterogeneous device inte-gration.

These limitations, while notable, do not detract from the
middleware’s contributions. Its ability to balance scalability,
interoperability, and energy efficiency represents a significant
advance over existing solutions. Although some adaptations may
be required for deployment in specialized IoT environments, the
middleware’s modular design ensures these adjustments are feasible
and cost-effective. This work addresses current challenges and sets
the stage for future innovations in IoT middleware, providing a
foundation for scalable, efficient, and adaptable networks that can
meet the demands of modern applications.

6 Conclusion

This study introduced a middleware designed to tackle the
challenges of dense and heterogeneous IoT environments,
particularly in Smart Campuses. The proposed solution
demonstrates a significant step forward in IoT middleware design
by addressing key aspects such as scalability, interoperability, energy
efficiency, and modularity.

The middleware has been validated with up to 500 simulated
devices, exceeding the limitations of existing technologies like
Z-Wave and LoRaWAN, which are constrained by scalability and
protocol diversity. This achievement stems from its modular
microservices-based architecture, which enables seamless
integration of heterogeneous devices while dynamically adapting
to emerging protocols. Adaptive protocol translation and energy-

aware resource management provide a practical balance between
performance and efficiency, meeting the diverse demands of modern
IoT networks.

Energy optimization strategies, including adaptive
scheduling and data compression, reduced power consumption
by 26.7% compared to non-optimized nodes. The middleware
maintained a 94% interoperability success rate, even when
integrating real and simulated devices, validating its
robustness, validating its robustness in managing diverse and
dynamic networks. These advancements make the middleware
particularly suitable for moderately dense IoT environments,
where sustainability and efficiency are critical.

Despite these achievements, areas for improvement remain.
While acceptable for most applications, the middleware’s
response times, averaging 130–140 ms, require further
optimization for latency-critical scenarios such as emergency
response systems. Future work will integrate machine learning
algorithms to enhance protocol translation and task
prioritization, reducing latency and improving adaptability.

The modular architecture ensures the middleware’s
adaptability to future technologies, including 5G and evolving
IoT protocols, positioning it as a long-term solution for a diverse
range of applications. Its ability to scale without compromising
performance in controlled and semi-real environments positions
it as a versatile solution potentially applicable to scenarios
ranging from energy management to real-time monitoring in
urban and industrial IoT networks. Future research will
emphasize live testing in varied environments, such as
industrial facilities and smart cities, to assess the
middleware’s performance under complex conditions.
Predictive analytics and AI will also be explored to further
enhance decision-making and system efficiency, consolidating
their impact in the IoT domain.
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