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Complexity science and machine learning are two complementary approaches to
discovering and encoding regularities in irreducibly high dimensional phenomena.
Whereas complexity science represents a coarse-grained paradigm of
understanding, machine learning is a fine-grained paradigm of prediction. Both
approaches seek to solve the “Wigner-Reversal’ or the unreasonable ineffectiveness
of mathematics in the adaptive domain where broken symmetries and broken
ergodicity dominate. In order to integrate these paradigms | introduce the idea of
"Meta-Ockham” which 1) moves minimality from the description of a model for a
phenomenon to a description of a process for generating a model and 2) describes
low dimensional features—schema—in these models. Reinforcement learning and
natural selection are both parsimonious in this revised sense of minimal processes
that parameterize arbitrarily high-dimensional inductive models containing latent,
low-dimensional, regularities. | describe these models as “super-Humean” and
discuss the scientic value of analyzing their latent dimensions as encoding
functional schema.
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1 Complex schemata and statistical manifolds

The passage from data to orderly knowledge resembles a sequence that starts with
perception and measurement and concludes with concepts and rules. The philosopher
Emmanuel Kant in the 1781 Critique of Pure Reason (Kant, 1908) described the mapping
from sense impressions (direct or instrumentally mediated) to concepts, as a production of
Schema. Schemata are rules that transform the rich world of input-data to an abstract
domain of categories, where categories are the stuff of thought, theory, and science. The
Kantian idea of the schema was adopted by both John Holland and Murray Gell-Mann in
their definitions of complex systems. For Holland a schema is a binary string whose fixed
elements (as opposed to wild cards) define an equivalence class of coordinates encoding
optimal solutions in adaptive landscapes. Complex systems are for Holland agents in
possession of map-like schemata (Holland, 2000). For Gell-Mann, schemata, which he
also called the IGUS (Information Gathering Utilizing System) are compressed rule systems
capable of receiving inputs from history and environment in order to predict and act on
states of the world (Gell-Mann, 1995). These span genomes, nervous systems, and even
material culture. In this way schema strongly resemble the emphasis placed on codes in “code
biology” which draws parallels between culture and biology as two representational domains
that consider mappings from syntactic marks to semantic symbols (Barbieri, 2015). James
Hartle formalized the IGUS in order to explore the origin of the emergent concepts, present,
past, and future, by placing an IGUS in Minkowski space in order to trace the emergence of
“subjective” world lines (Hartle, 2005). In this way connecting complexity (agentic life) to
simplicity (variational physics). We can say that complex reality evolves coding systems
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which retain a coarse-grained memory, or archive, of their adaptive
histories. The underlying symmetries of physics are recurrently
overlaid with fundamentally non-ergodic rule systems.

Schemata bear a striking resemblance to the idea of manifolds in
data science, which are low dimensional geometric encodings, that
capture stable relationships in high dimensional data sets
(LawrenceSaul and Roweis, 2003). In moving from “measurement”
to “concept”, machine learning algorithms continuously deform
vector spaces in order to discover parsimonious manifolds. In this
way learning in a neural network looks like it might be computing
Holland/Gell-Mann schema and thereby creating complex systems
directly from data. It is our purpose to extract scientific insights
from these compressed simulacra.

Complexity science and machine learning are two of the more
successful endeavors that seek to make discoveries in schema-rich
phenomena. Their targets are not physical matter but teleonomic/
purposeful matter. Both approaches have been promoted as providing
insights and predictions for classes of phenomena that have been
described as reflexive or agentic-systems that encode historical data
sets for the purposes of adaptive decision-making. An open question is
whether machine learning is in fact capable of discovering such adaptive
schema. Several recent efforts provide clues about a few of the challenges
that this project is likely to encounter and what human ideas and
constraints need to be added to purely associative models in order that
they provide intelligible generative outputs. We might describe these
requirements in terms of priors, constraints, and strategies. All restrict
configuration spaces in order to enhance processes of induction.

1.1 The need for knowledge-based priors

Neural networks are universal function approximators and can be
trained to simulate dynamical systems (Narendra and Parthasarathy,
1990). The obvious way to do this is to latently encode second order
differential equations of motion in a network and output velocities and
momenta so as to conform to any desired trajectory. In large non-linear
dynamical systems this leads to a rather complicated reward function
which needs to provide gradient information to all relevant degrees of
freedom. An alternative approach is to make use of physical constraints.
In this case in the form of Hamiltonian mechanics which exploit
propositional knowledge of differentiable manifolds—symplectic
geometry. In recent work Miller and colleagues compare the
performance of networks trained by exploiting prior knowledge of
conservation laws through Hamiltonian-based feedback, versus those
trained with no prior “knowledge” of the symmetries of physics (Miller
et al.,, 2020). For both linear and non-linear oscillators, Hamiltonian
Neural Networks (HNNs) scale in system size far more effectively than
regular neural networks. Hence knowledge of a fundamental physical
principle, the principle of least action, improves a purely correlational
machine learning model by promoting more minimal and robust
reward signals.

1.2 Sparsity constraints encoding reality
statistics

A well documented fact of many natural signals, to include
visual data and sound data, is that they are full of redundancies or are
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informationally sparse-much can be eliminated without loss of
information. This is what makes lossy compression techniques
(e.g, JPEG) and sound (e.g, MP3) possible.
Compressed sensing techniques can input large machine-learned

for images

associative data sets (vectors in R™) and reduce them to far smaller
data sets (vectors in R” where n <« m) (Donoho, 2006). These sparse
encodings of the data are given by a relatively small set of dominant
coefficients of a suitable orthonormal basis (e.g., Fourier basis).
These bases are the naturally induced schema of large, sparse data
sets. It has been shown that through the use of a suitable optimal
algorithms for compressed sensing, n =~ Nlog(m). Hence prior
knowledge of basis might significantly accelerate the process of
associative learning.

1.3 Strategic common knowledge

One of the interesting features of schema-rich systems is their
“insider-ability” to encode other schema-rich systems. A compelling
example for this is coordination in a Bayesian game played among
agents with or without a common prior - a shared schema. Bayesian
games are games of incomplete information where different players
possess different private information. This private information
relates to the particular subgame being played. Games are made
up from multiple subgames (e.g., normal form bimatrix games)
which are selected by a stochastic process described as “nature’s
move”. There are distributions over these types. Actions within a
subgame receive payoffs according to which typem or move, nature
makes. For example, agents could be playing a cooperative game
(CG) or a prisoner’s dilemma (PD) game. The actions for both
subgames are shared knowledge (cooperate and defect) but the
payoffs vary according to the subgame selected. In a one shot
game the CC subgame will favor cooperation and the PD
Dekel
distribution over nature’s moves is not shared (the common

subgame defect. and colleagues argue that if the
prior) then an optimal Bayesian learner will not be able to learn
the mixed Nash equilibrium over subgames (Dekel et al., 2004). This
suggests a way that elementary forms of prior “social knowledge”
might enhance strategically-deployed machine learning.

2 Wigner reversals and Feynman limits

Ernst Mach in The Economy of Science (Ernst, 1986) observed
that “The sciences most developed economically are those whose
facts are reducible to a few numerable elements of like nature. Such is
the science of mechanics, in which we deal exclusively with spaces,
times, and masses” and “Mathematics may be defined as the
The
parsimonious reasoning during the course of the scientific
revolution lead Alfred North Whitehead to quip, “The history of
the 17th century science reads as if it were some vivid dream of Plato
or Pythagoras” (Alfred North Whitehead, 1956).

The authoritative statement on minimal math with a maximum

economy of counting”. success of economical or

of explanatory power was made by Eugene Wigner in 1960 (Wigner,
1990) in a paper on The Unreasonable Effectiveness of Mathematics
in the Natural Sciences. Describing the success of mathematical
models in accounting for both planetary motion using classical
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FIGURE 1

Fundamental physical theory achieves high granularity fits to observables with parsimonious theories. This is the phenomenology described by
Eugene Wigner as “the unreasonable effectiveness of mathematics”"—Wigner's World. Complex reality does not achieve this degree of propositional
compression and requires larger models (high description length) that fit coarse-grained observables—Complex reality.

mechanics, and complex spectra and the Lamb shift using quantum
mechanics, Wigner proposed an “empirical” law of epistemology.
The law describes a surprising correspondence between the
deductive rules of mathematics and the laws of physics.

The philosopher of mathematics Marc Steiner refined Wigner’s
insight in order to explain this epistemological law as a property of
formal mathematical analogies for physical processes (Steiner,
1989). For example, the mathematical property of linearity can
be analogized to the physical phenomenon of superposition. The
key requirement is that physical processes are regular enough to be
captured by relatively simple propositions.

When we turn to complex reality Wigner’s epistemological law
unravels. There are few instances of a parsimonious mathematical
theory in biology, anthropology, or economics, that rival the
numerical precision of theories in mathematical physics.
Wigner’s insight is effectively reversed, mathematics seems to
be-at least by the standards of physics—unreasonably ineffective
in the complex domain (see Figure 1). A partial answer for the
“Wigner Reversal” was provided by Richard Feynman in his
Lectures on Physics (Feynman et al., 1963) where he asks what is

meant by understanding something in physics:

We can imagine that this complicated array of moving things
which constitutes “the world” is something like a great chess
game being played by the gods, and we are observers of the
game. We do not know what the rules of the game are; all we are
allowed to do is to watch the playing ... Of course, if we watch
long enough, we may eventually catch on to a few of the rules.
The rules of the game are what we mean by fundamental
physics. Even if we knew every rule, however, we might not
be able to understand why a particular move is made in the
game, merely because it is too complicated and our minds are
limited.”

The principal character of complex reality is that while it obeys the
laws of physics it is not determined by the laws of physics. As Anderson
made very clear in his foundational paper, More is Different (Anderson,
1972), the ontological character of complexity is an accumulation of
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broken symmetries, also called “frozen accidents”, that amass over the
course of biological and cultural evolution. These broken symmetries
impose a very restrictive upper bound on the power of parsimonious
mathematics (Krakauer, 2023) typically suited for ergodic systems.
Complex reality can be said to cross what I like to call a “Feynman
Limit” where understanding the game of reality is dominated by
decidably non-ergodic “moves” beyond which the fundamental rules
or laws of physics lose much of their explanatory power. Complex
reality evolves towards irreducibly high dimension and complication,
with little of Mach’s “economy of counting” or Whitehead’s “vivid
dream of Pythagoras”, and resembles far more the historically-
encrypted natural histories of Linnaeus (Krakauer et al., 2017).

3 Ockham versus Meta-Ockham razors

Despite the apparent irreducibly of complexity, an intriguing
feature of complex phenomena is the high information content of
descriptive and predictive models, and the low information content of
processes generating the same models. Two illustrative examples
include the high information content of genomes and deep neural
networks versus the relative simplicity of natural selection (NS) and
reinforcement learning (RL). Both NS and RL can be used to evolve or
train arbitrarily complicated agents and models. Stated differently, the
Darwinian logic for the evolution of a bacterium or a mammal remains
essentially invariant, as does the RL scheme for training a simple
classifier versus a large language model. There is a Wigner-Reversal
in terms of the many parameters required to fit observations but it is
accompanied by a surprising simplicity in terms of the small number of
parameters of the generative process. Ockham’s razor does not apply to
complex systems and yet there is what we might call a Meta-Ockham’s
razor applicable to constructing them. What is required is an historical
process that can break symmetries and store these in suitable memories.
And one consequence of these processes is that they typically result in
schema (genes; circuits, modules) that encode a coarse-grained
reflection of the world in which the model lives. We should think of
Meta-Ockham as any parsimonious process or algorithm that is able to
discover emergent forms of schema-rich effective theory.
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Wigner's world is parsimonious at the level of observables but far from parsimonious in origin. The processes behind these worlds, often described as
the fine-tuning of physical reality, are very large (P1) or effectively infinite in complication. Complex reality is not parsimonious but meta-parsimonious
(P2). Processes like natural selection and reinforcement learning can scale to arbitrarily large models. Hence physical knowledge and complex knowledge

achieve minimality in different domains of explanation.

This highlights a fundamental distinction between complexity
science and machine-learning on the one hand and fundamental
physical science on the other. In fundamental physics, Ockham’s
razor applies to the structure of physical reality (e.g., the standard
model), whereas theories that purport to explain the standard
model, to include solutions to the “fine-tuning problem”
(Donoghue, 2007), are often infinitely complicated. These include
theories of the multiverse (infinite diversity from which we select our
own Universe) (Carr and Ellis, 2008), Top Down Cosmology
(infinite diversity of initial conditions) (Stephen, 2003), and
simulation theory (an infinite regress on the weak anthropic
principle) (Bostrom, 2003). This situation is illustrated in 2 in
which complex reality maps to non-parsimonious models and
meta-parsimonious (P2) processes, whereas physical reality maps
to parsimonious models and non-meta-parsimonious processes
(P1) (Figure 2).

4 Discovering schema in “super-
humean” models

To make progress in our understanding of the complex domain I
would like to suggest that it will be necessary to integrate the fine-
grained paradigms of prediction provided by machine learning with
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the coarse-grained paradigms of understanding provided by
complexity science. In Figure 3 I lay out four quadrants in a
theory space described by two dimensions of model parameters
and phenomenal dimensions. Physical theory (B), sensu Wigner and
Mach, expresses low dimensional rule systems (e.g., gravitation)
using fundamental parameters (e.g., the gravitational constant).
(A) are simplified by
searching for more fundamental rules, invoking principles such

Unnecessarily complicated models

as symmetry, thereby realizing Ockham’s razor. Irreducibly high
dimensional phenomena are fit using effective parameters capturing
innumerable higher order associations (C) or described with coarse-
grained equalities among emergent schema (D). Finding schema in
very large statistical associations goes beyond the application of
Ockham’s razor (i.e., eliminating correlations below a certain
threshold) to discovering new mechanical dependencies among
effective degrees of freedom through processes like natural
selection and reinforcement learning.

Figure 4 plots a possible course for scientific discovery through
theory space. All models begin with a suitable simplification of
parts and their interactions such that complicated processes can be
based on simple components - they are microscopically coarse-
grained (MiC). In population genetics genes are encoded as simple
linear or non-linear contributions to a global fitness function
(Ewens, 2004); in physics particles are encoded as charges in
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FIGURE 3

A categorical theory space for mathematical science. (B): physical theory describes low dimensional phenomena with a small number of
fundamental parameters. (A): low dimensional phenomena often begin with theories of excessive complication above a Complication Threshold.
Ockham'’s razor is used to move theories into the space of parsimonious physical theory (A->B). (C): high dimensional phenomena can be described with
large associative models capturing a variety of feature-rich manifolds. C": these can be simplified by through lossy compression that prune sub-
threshold parameters (C->C'). (D): through suitable coarse-graining and abstraction low dimensional constructs with effective parameters are discovered
in machine learning models through the application of a Meta-Ockham'’s razor.
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FIGURE 4

Paths through theory space. All theory starts with suitable microscopic coarse-graining (MiC) and increases in complication as the dimension of
phenomena increase (Quadrant B). Physical theory saturates in complication by discovering fundamental symmetries. Hence further increases in
dimension are not matched by an increase in fundamental parameters (e.g., the theory of gravity is not extensive in the number of massive objects).
Statistical models control their size through appropriate penalties on parameter numbers. This scaling holds true up to a Feynman-Limit where
broken symmetries and broken ergodicities dominate over fundamental regularities. Statistical models continue to grow without bound describing/fitting
increasingly high dimensional phenomena whereas physical models cease to be informative. Very large statistical models (Quadrant C) achieve Super-
Humean encodings of irreducible complex data sets. Through macroscopic coarse-graining (MaC1-2) statistical models of different ranks can be
approximated through the discovery of schema that replace pure associations with causal mechanical dependencies. MaC-1 illustrates a relatively small
statistical model in which model correlations allow for compression into a mechanical theory which remains insensitive to dimension (Quadrant D). MaC-
2 describes the case where only very large statistical models yield to coarse-graining. This is a case where new mechanical theory can only be discovered
once a suitable super-Humean model has been trained.
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suitable fields (Kosyakov, 2007), and in game theory agents are
encoded as strategies and interactions as scalar payoffs (Osborne,
2004).

A suitable MiC is always necessary in order to explore collective
properties of a given system. A good example is provided by neural
network models in which neurons are encoded as rectified linear
units (Arora et al, 2016) trained to encode very large data sets
allowing for unprecedented “super-Humean” (after Hume for
whom all knowledge is associative and causal mechanism
nominal) inductive performance. This enables the discovery of
regularities not present in smaller models. Evidence for such
discontinuities in model scaling is now abundant and comes
from the remarkable success of very large neural networks in a
variety of complex domains, including performance on computer
and combinatorial games (Schrittwieser et al, 2020), visual
classification tasks (Chen et al, 2021), language production
(Mitchell and Krakauer, 2023), and prediction in structural
biology (Jumper et al., 2021).

What remains to be explored is the use of these models as
auxiliaries for understanding complex reality. Complexity science
can take as input large statistical models - constructed from simple
(MiC) elements - in order to discover within them suitable
macroscopic coarse-grainings (MaC). Whereas the MiC units are
assumed in all scientific models and theories the MaC properties
need to be found. The value of a MaC is that they provide the basis
for development of low dimensional effective theories. In Figure 4 I
illustrate the discovery of coarse-grained schema in statistical
models (MaCl1-2) associated with significant reductions in
effective parameters.

Both physical models and statistical models are able to provide
parsimonious descriptions of simple systems (Quadrant B).
Physical models do so by finding minimal mechanisms and
statistical models do so through suitable regularization. Physical
mechanisms start losing their explanatory power when symmetry
is broken-systems transition to non-ergodicity - wherein much of
the phase-space of a system becomes localized. Physical theory
does not stop working at this limit but offers few further
predictions. For statistical models as dimensionality increases
the number of effective parameters increases. This achieves
better fits to data (Quadrant C). It is possible however for
“effective degrees of freedom” to be discovered in large
statistical models which are in effect induced MaCs of the
underlying data sets produced by any algorithm that obeys the
Meta-Ockham principle. That is a minimal process producing a
maximal model with latent low-dimensional regularities. Two
putative MaCs are illustrated in 4. I consider examples for Mac-
1 (schema discovery in modest statistical models) and Mac-2
(schema discovery in super-Humean models).

4.1 Schema in MaC-1: latent states

Autoencoders and variational autoencoders provide means of
compressing data sets by learning embeddings, or latent spaces, in
unlabeled data sets (Dor Bank et al, 2020) typically using
reinforcement learning. Linear autoencoders are in effect solving
simple eigenvalue problems resembling principal component
Variational ~autoencoders achieve uniform

analysis. more
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encodings of data in latent space than “vanilla” autoencoders by
adding explicit regularization terms (minimizing a similarity loss).
In the language of this paper—autoencoders are discovering MaCs in
data sets. With these in hand, such as with PCA, effective theories
can be expressed in terms of a smaller number of latent variables.
Whereas techniques of factor analysis, including PCA, are
notoriously sensitive to the choice of variable and the order of
observation, autoencoders are considerably more robust. In recent
work exploring the effect of bottlenecks in variational autoencoders,
it has been found that bottleneck-based coarse-graining is able to
efficiently discover latent spaces for representing handwritten digits
and visual images typical of Street View housing numbers (Wu and
Flierl, 2020). And similar results have been discovered by stacking
bottlenecked autoencoders in neural networks input with acoustic
signals derived from speech (Gehring et al., 2013). Both studies
illustrate how statistical models can be: 1) trained with a simple
algorithm, and 2) manipulated in order to arrive at low dimensional
encodings of data. These then become the basis for more traditional
mechanical models. Increasing the size of data sets does not increase
the dimensionality of these models as long as the underlying features
are those used by the “real-world” system. A very nice example for
this kind of hybrid approach comes from use of symbolic regression
to extract algebraic laws for dark-matter dynamics from Graph
Neural Networks (Cranmer et al., 2020). The project aligns the
physical domain/problem (particle interaction) with a bias in
network structure (graphs of interactions), and then finds closed
form, interpretable expressions, capturing regularities in the data.

4.2 Schema in MaC-2: biological features
and units

Living systems discover means of adapting and behaving in very
complicated environments. A crucial aspect of these abilities is
that
independent functional traits. Both cells and the nervous system,

constructing  schema, in non-trivial ways, generate
when analyzed at a sufficient remove from primary chemical and
sensory inputs, are characterized by a range of efficient and
composable low dimensional and mechanical units that can be
aggregated into adaptive functions. Recurrent neural networks
trained through reinforcement on very large chemical data-bases
of molecules are able to generate idealized, highly coarse-grained
described  with

sequences of atoms. These are able to generate realistic

molecules (schema-molecules), concatenated
distributions of molecular properties (Flam-Shepherd et al,
2022). Novel molecules can then be discovered by selecting an
appropriate property from these distributions and extracting
associated “schema-molecules”. Hence large data sets train
generative neural networks to discover essential features of
molecules which then become the coarse-grained basis for more
traditional chemical models. Much as idealized molecules (e.g.,
strings of letters) are induced schema, so are dynamical
trajectories through space produced by robotic limbs. Spatial
autoencoders, trained on very large data sets-real world
dynamical images-are able to acquire through reinforcement
learning compact states whose activation trace out efficient
robotic manipulation paths (Finn et al., 2016). Hence through a

suitable process for inducing a MaC, very large machine learning
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models, might provide exactly the preprocessed data required by
lower dimensional mechanical theories of function.

5 Conclusion

I propose that both machine learning and complexity science are
in a fundamental sense in pursuit of functional schema. Both study the
structure of machines that encode adaptive histories—from molecular
sensors to language games. Fortunately, they do so in complementary
ways, which we might think of as the machine-learning pre-
processing of phenomena (encoding non-trivial dependencies), and
the complexity science post-processing of encodings (coarse-graining
into schema). Coarse-graining by virtue of revealing natural units
provides gains in terms of computational efficiency (Israeli and
Goldenfeld, 2006), limits combinatorial explosions (Feret et al,
2009), enables the analysis of behavior over long time-scales
(Espanol, 2004), elucidates causal interactions (Flack, 2017), and
can provide a principled compression for non-linear time series
(Shalizi and Crutchfield, 2001).

The scientific revolution provides a useful analogy for this
relationship in its connection of scientific instruments to theories.
The light telescope captures and focuses visible wavelengths and
provides these as inputs to a reduced mathematical theory, e.g., the
theory of orbits. And reduced theories such as general relativity
allows for the design of a gravitational wave detector on principles
independent from optics. If we think of machine learning as an
algorithmic telescope, and become expert in its modes of operation,
there is a prospect of discovering entirely new rules and laws for
noisy domains that through more direct observation have proven
recalcitrant to simplification. And very large statistical models can
provide, by virtue of Meta-Ockham processes, the foundation for
entirely new mechanical theories in the complex domain.
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