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This study investigates the characteristics of multinational firm’s interactions
within and across activity sectors and the impact of intra-urban connections,
during crisis propagation. By employing data that reflect ownership relations
aggregated on the city level, we constructed the partial-multiplex, directed
network of cities, divided into five layers by activity sector. The network was
examined in two states: one excluding intra-urban interactions and one including
them. The difference between these two states highlight the significant role of
intra-urban networking processes in the global economy. The five layers differ
both structurally and in terms of vulnerability during crisis propagation. The
Knowledge Intensive Services (KIS) layer is the densest and most populous
layer of all and its firms are more likely to be owners than subsidiaries. Using a
simple stochastic Susceptible-Infected-Recovered (SIR) model, we simulated a
crisis diffusion on the network of cities. Our results revealed that in the absence of
intra-urban connections, KIS was both the most vulnerable and most influential
layer in crisis propagation. The inclusion of intra-urban links sets off a complex
interplay of factors that affect diffusion outcomes in nuanced ways: while it
generally enhances the impact of the crisis and the influence across layers
becomes rather homogeneous it can also have a protective effect, in cases of
very dense and well-connected layers, such as KIS.
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1 Introduction

Transnational (“global”) firms entail ownership relations that form a complex worldwide
network. Vitali et al. (2011) studied this network and found it to have a dense, intertwined,
small-sized core that controls a large part of the whole network. Given the assumption that
ownership relations are likely to reveal the financial connections between the firms (Santos
and Rumble, 2006; Vitali et al., 2011), these conclusions further imply that the worldwide
financial network is in turn very complex and heavily interconnected and thus susceptible to
the spreading of a crisis (Stiglitz, 2010; Battiston et al., 2012). Furthermore, strong spatial
concentrations of firms induce emerging local agglomeration economies (Camagni and
Capello, 2004; Rozenblat, 2010) by fostering mutual reinforcement of global firms’ networks.

In that context, what is the role of cities–and regional interactions in general - in these
networks, from this local/global perspective? As Sassen (1991) stated, cities play a vital role in
the evolution of these networks and vice versa. Specifically, the cities attract firms because

OPEN ACCESS

EDITED BY

Claudio Castellano,
Istituto dei Sistemi Complessi (ISC-CNR),
Italy

REVIEWED BY

Sergi Lozano,
University of Barcelona, Spain
Elka Korutcheva,
National University of Distance Education
(UNED), Spain

*CORRESPONDENCE

Panos Argyrakis,
panos@auth.gr

RECEIVED 10 August 2023
ACCEPTED 03 November 2023
PUBLISHED 16 November 2023

CITATION

Tsouchnika M, Kanetidis M, Argyrakis P
and Rozenblat C (2023), Crisis spreading
in multinational firms’ network: the dual
influence of local interactions.
Front. Complex Syst. 1:1275934.
doi: 10.3389/fcpxs.2023.1275934

COPYRIGHT

© 2023 Tsouchnika, Kanetidis, Argyrakis
and Rozenblat. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original author(s)
and the copyright owner(s) are credited
and that the original publication in this
journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Complex Systems frontiersin.org01

TYPE Original Research
PUBLISHED 16 November 2023
DOI 10.3389/fcpxs.2023.1275934

https://www.frontiersin.org/articles/10.3389/fcpxs.2023.1275934/full
https://www.frontiersin.org/articles/10.3389/fcpxs.2023.1275934/full
https://www.frontiersin.org/articles/10.3389/fcpxs.2023.1275934/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fcpxs.2023.1275934&domain=pdf&date_stamp=2023-11-16
mailto:panos@auth.gr
mailto:panos@auth.gr
https://doi.org/10.3389/fcpxs.2023.1275934
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/complex-systems
https://www.frontiersin.org
https://www.frontiersin.org/journals/complex-systems
https://www.frontiersin.org/journals/complex-systems#editorial-board
https://www.frontiersin.org/journals/complex-systems#editorial-board
https://doi.org/10.3389/fcpxs.2023.1275934


they contain and sustain what they need, i.e., experts in possession of
special skills and, in turn, the firms contribute to the cities’ global
character and significance in the world economy. Sassen notices a
shift in activity precedence from manufacturing, commercial
banking, etc. to the knowledge business, being at the heart of the
reciprocal relationship that moulds both cities and firms into a
worldwide network of complex interactions. Similar conclusions
have been reached in a precursory empirical study of the European
urban system by Rozenblat and Pumain (1993), who found evidence
of skill and economic networks accumulation in its largest centres.
Lastly, Taylor (2010) reviews Sassen’s and other similar ideas on the
cities’ role and, drawing from them, he introduces a proper network
perspective into the city/firms/world-economy interplay. The nodes
of this network are the cities, but they are not the actors themselves.
In practice, they are territorial active nodes, merely acting as “nests”
that incorporate the firms’ interactions, both within and across
cities. In other words, a city-node is a “catalyst” that reflects the
collective emerging interactions between its firms to the outside
world. These firms are the Advanced Producer Services1 (APS)–also
known as Knowledge Intensive Services (KIS) - which are
considered the prime actors in the cities’ network formation, by
seeking out and utilising the expertise accumulated in large cities.
Thus, according to Taylor’s 3-level network model, the KIS firms’
interactions comprise the sub-nodal (basic-level) network that
supports their industrial, management and financial strategies in
different locations, while the cities’ interactions shape the
geographical structure of the firms’ world-economy network that
makes up the supra-nodal network level, sitting on top of the city
level network.

Global cities often harbour many local ownership linkages
between their firms, the most significant example being London,
with the percentage of links among firms located within its urban
region exceeding 70% in 2010, but decreasing to 50% in 2019
(Rozenblat, 2021). In an average city, more than 35% of the
firms’ linkages are local (Lennert et al., 2010). A city with a
dense network of local links is found to attract more external
investments (Rozenblat, 2015). Additionally, these local linkages
can potentially augment the effect of a crisis on the city’s firms, as
witnessed in London, in 2008, when cascading failures put
thousands of people out of job. The 2014–2016 first crisis of
Russian cities due to the boycotts that followed the Crimea
invasion showed an adaptive resilience of their multinational
companies (Rogov et al., 2022) that asserts that the shock
changed both intra-cities networks and the ones with their global
environment (Laboy and Fannon, 2016). Locally–inside cities–the
“relatedness” between specialised activity sectors (their inter-
connections) quickly changed to adapt to new conditions of the
global specialisation of other cities. However, as demonstrated by
Pan et al. (2020) for Beijing, the global insertion of cities in
globalisation largely depends on the capabilities of mobilisation
of private and state investments and planning inside the cities.

The question of the impact of internal dynamics of cities on their
global influence is critical, as cities are on the forefront of geopolitics,

pandemic, and disaster turbulence. However, as suggested in
economic geography, firms’ relations represent much more than
pipelines of epidemic or innovation diffusion. For the whole
economic health of cities, they create a tissue of diverse activities
supporting the city’s system economy. This permits the emergence
and the renewal of local powerful groups of interest directly or
indirectly linked to global dynamics in top-down and bottom-up
processes for activity sectors that continuously evolve in their
production processes and their relations with other activity
sectors. While the balance between intra-urban and inter-urban
connections has been explored for over 20 years under the concept
of “local buzz and global pipelines” (Bathelt et al., 2004), there are
limited comparative studies that methodically assess the role of
various activity sectors’ local networks within a broader global
context across a vast network of cities. Therefore, it is essential to
leverage the available databases and methodologies to address this
issue in the present context.

In view of the above we asked the following questions:

• To what extent do the various activity sectors interact with and
influence each other?

• Is there a sector that is more dominant in their interplay?
What is the role of Knowledge Intensive Services (KIS) in the
activities’ network?

• How vulnerable is the global multi-sectorial network of cities
to the spreading of a crisis?

• Do local interactions between different types of sectors
enhance the spreading of a crisis in the network and, if so,
to what extent?

To explore these questions, we studied the worldwide network of
cities, in a way that would presumably reveal the effect of both local
and global interactions between the different sectors on the
spreading of a financial crisis that can manifest either nationally,
as observed in scenarios like wars and associated restrictions (akin to
the challenges faced by Russian cities), or internationally, in which
case the crises often have their roots in preceding national upheavals,
particularly in the backdrop of strong inter-city linkages on a global
platform. Specifically, we derived the directed network of cities from
the aggregated interactions (ownership relations) between the firms
harboured in them, and divided it into a 5-layer (corresponding to
the 5 activity sectors) partial-multiplex, directed and weighted
network. Subsequently, we distinguished between two distinct
cases, the partial-multiplex in which the local interactions within
cities have been excluded and the one in which they were included.

We performed a thorough structural analysis and an SIR
simulation of crisis spreading on both these networks and
compared the results. A previous attempt (Battiston et al., 2018)
to model the sectorial interplay and the local interactions’ effect on
crisis spreading, using the same data sets, failed to capture the
intrinsic structural features and the dynamics of the system. In the
present analysis, the stochastic SIR model employed was adjusted
according to the inferences drawn from the rigorous structural
analysis to make it more intuitive and fitting, and yield more
robust results. Our findings are indicative of the unique role of
KIS firms in the network of cities and also reveal that while the intra-
urban connections intensify the spreading of a crisis, they can also
have a protective effect in certain cases.

1 A producer service firm is one that serves businesses, as opposed to
consumer service firm that serve individuals and households (Taylor
et al., 2012).
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2 Materials and methods

2.1 Data description

The construction of the networks for this study was based on
two databases, namely, the ORBIS databases (Bureau van Dijk,
2010 and Bureau van Dijk, 2013)2, 3.

To obtain a robust account of the economic ties between cities
worldwide, we started off by determining the financial
links–reflected in ownership networks - between the firms
harboured in these cities (Alderson and Beckfield, 2004; Wall,
2009; Taylor, 2010). To this end, we began by building a large
database of all direct and indirect linkages formed by financial
ownership of the top 3,000 multinational corporations
worldwide, according to their turnover in 2012 (linkages
observed in 2013) from the ORBIS database (Bureau van Dijk,
2013). It comprises 800,000 enterprises and 1.2 million ownership
links in 2013. Subsequently, we worked to restore and fill out
inaccurate or missing information by focusing mainly on the
locations and activities of the firms. The team developed an
original method of geographical aggregation of firms within
comparable Large Urban Regions (LURs) at a world scale
(Rozenblat, 2020), which include cities and their surrounding
functional urban regions. Thus, the locational spatial units for
each city are the extended functional urban areas defined as the
accessibility zones around major worldwide metropolises. The LURs
are coded by their IATA main airport’s 3 DIGIT codes, to avoid the
ambiguity of the way cities’ names are written (Rozenblat et al.,
2017). This LUR unit provides a consistent and universal frame of
reference within which we can compare “cities”4 around the world in
ameaningful way. It also allows us to approach “local linkages” using
a unified concept of expanded areas for cities globally through a
replicable method, a perspective not found in existing literature on
comparative studies of cities’ global networks.

We then constructed the individual network of each of the
3,000 multinational corporations’ networks in this processed
database. A firm’s individual network comprises the
headquarters, its subsidiaries (nodes) and the subsidiaries of
subsidiaries (which can extend up to more than 30 levels, in
some cases) and the directed financial linkages between them
(links), as derived from ownership relations. A threshold was
enforced on the strength of the linkages, below which the link
between two firms was omitted. Specifically, a link between two
nodes is drawn only if the total percentage of a subsidiary’s capital
owned by the headquarters, either directly or indirectly - through
other subsidiaries - is at least 10%. This percentage corresponds to
the generally admitted limit of ensured long term investment, and
not only volatile portfolio of capital (Joisce and Patterson, 2006).
Indeed, when the stake is below this threshold, it is typically
perceived that there is neither decision-making influence nor
technological transfer. In practice, holding more than 10% in

equity is commonly viewed as the benchmark for asserting
control over an asset (Bertrand, 2005; Corporations, 2007). The
collection of all these individual networks resulted in a quasi-tree
(20% of the linkages create cycles), weighted and directed network of
800,000 firms and their 1.2 million ownership relations that reflect
the financial linkages between them, as captured in 2013.
Additionally, the firms of this network were classified into five
categories, according to their main field of activity, i.e., high-tech
(HT), low-tech (LT), knowledge-intensive-services (KIS), less-
knowledge-intensive-services (LKIS) and other (OTH) (Manual,
2005).

The next step was to move from the firm network to the
geographically aggregated, overlaying network of cities. The exact
proportion of owned capital is not always available with desired
precision. Therefore, we used the total number of financial linkages
between all firms located in a pair of cities as a measure of the
intensity of their interaction. Specifically, a directed link from node i
(corresponding to city i) to node j (corresponding to city j) is drawn
if at least one firm located in city i owns part of another firm located
in city j. The strength (weight) of this directed link is the total
number of all such ownership relations5 (Eq. 1), where the
summation is over all pairs of firms k of which the first is
located in city i and owns a percentage of the second which is
located in city j. When i = j the ownership relation is between a pair
of firms in the same city, therefore these links represent intra-urban
interactions.

wij � ∑
k

lk (1)

Lastly, we divided the network of cities into five-layers,
according to the five activity sectors specified in the OECD
activity classification. Each of these five layers is a network of
cities that harbour firms active in one specific sector, i.e., the HT
cities’ network, the LT cities’ network, etc. Naturally, a city can be
present in multiple layers at the same time. The five layers are also
connected to each other, through the linkages between the levels’
cities, as the cities harbour firms of all activity types.

We considered two distinct cases: in the first case we only take
into account the links between different cities, lij, i ≠ j and in the
second, we also include intra-urban links, i.e., links that result from
relations between firms located in the same city, lij, i = j. The
resulting networks are shown in Figure 1. Each of these networks is a
weighted, directed, multi-layered, partial-multiplex network of
cities, featuring 36,952 (inter-urban) and 37,362 (inter + intra
urban) pairs of cities, connected through 389,749 and
632,550 firms’ links, respectively (Figures 1A, B). The total of
242,801 intra-urban links present in just 410 cities constitute very
dense sub-graphs in the underlying network of firms.

2.2 Method of simulation

We use a simple stochastic SIR model (see Section 2.3) to
simulate the spreading of a crisis on the two derived partial-

2 Bureau van Dijk Electronic Publishing http://www.bvdep.com/

3 ORBIS 2010, 2013: BvD–University of Lausanne (CitaDyne group) and
University of Paris (ERC GeoDiverCity group) http://geodivercity.parisgeo.
cnrs.fr/blog/

4 For the sake of simplicity, we will refer to this spatial unit as “city”. 5 Each such ownership relation counts for 1.
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multiplex networks of cities, one without any intra-urban links and
one with the intra-urban links taken into consideration. The SIR
model is frequently used in infection spreading simulations on
networks (Kermack and McKendrick, 1927; Newman, 2002;
Keeling and Rohani, 2008; Eames et al., 2009; Dickison et al.,
2012; Kamp et al., 2013; Newman, 2018). There are many
variations of this model, including the SI, SIS, SIR, SIRS, etc.
models (Kermack and McKendrick, 1927; Newman, 2018). SIR
stands for Susceptible (S), Infected (I) and Recovered (R),
comprising the three states each node of a network is allowed to
be in, at any given time. Susceptible nodes are the ones that are
currently “healthy” and can potentially become infected through
their first neighbours in the network, infected nodes are all nodes
affected by the disease (here, the crisis) and the recovered/removed
nodes are the nodes the have recovered from the infection, which
cannot get re-infected and can no longer spread the infection to their
first neighbours.

Another plausible choice for the stochastic model would be
SIS or SIRS, however, given the temporal scope of the
investigation, it is reasonable to assume that once a firm is
affected by a crisis and subsequently recovers, it would not be
immediately susceptible again within the short-term horizon.
This is further bolstered by the adaptive nature of businesses.
Typically, firms that emerge from economic downturns
undertake corrective and preventive measures, enhancing their
resistance against similar future shocks. These measures can
range from financial restructuring and diversifying revenue
streams, to building contingency reserves, all of which
contribute to a form of “immunity” in the aftermath of a

crisis. Thus, within a short-term perspective, the SIR model
aptly captures this transient phase of susceptibility, impact,
and subsequent “immunity”, making it a suitable choice for
our analysis.

In each of the two partial-multiplex networks there are two
different types of links between the nodes, regarding the activity
types: the intra-layer type, which connect nodes of the same
activity (e.g., HT-HT) and the inter-layer links, which connect
nodes of different activities (e.g., HT-KIS). Both types of
connections represent sets of interactions between the nodes
of the partial-multiplex. Thus, each of the two partial-
multiplex networks essentially represents 25 sets of
interactions between its nodes, of which the five are within the
bounds of each layer (intra-layer) and the rest are the sets of
interactions of each layer with all the other layers. The SIR model
in this study is parameterized to incorporate the network
topology shaped by all 25 sets of interactions.

Initially (at time-step = 0 of the Monte Carlo simulation) all
nodes (cities) are in the S state. A node, chosen at random, is
considered to be infected. This node is considered the seed (or
origin) of the infection/crisis. In all subsequent time-steps, the
crisis can propagate from an infected node to any of its
susceptible nearest neighbours, by following the network’s
directed links. The probabilistic rate q at which a susceptible
node can become infected is largely determined by the network
topology.

In previous studies regarding epidemics on weighted networks q
is intuitively presumed to be proportional to the weight of the
directed link from the source to the target node (Eames et al., 2009;

FIGURE 1
The partial-multiplex network of cities of multinational firms by activity sector. [1. (A): intra-urban connections excluded, 1. (B): intra-urban
connections included].
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Kamp et al., 2013). In Garas et al. (2010), which includes a
simulation of the spreading of an economic crisis in the
worldwide network of countries, a protective factor represented
by the node’s total weighted degree was added, introducing a
measure of the country’s “immunity”, i.e., its resistance against
being “infected” by the crisis.

This approach yielded very good results in Garas et al. (2010),
therefore we followed it in Battiston et al. (2018)–our first attempt to
model a crisis diffusion in the worldwide network of cities derived
from our ownership relations data. However, the results indicated
that this model was not an equally good fit to our network’s
topology. That analysis comprised a basic structural analysis of
the five network layers and the comparison of the time evolution of
the spreading of the crisis with and without intra-urban connections.
The main problems were that the comparison of the spreading effect
within and across sectors, with and without intra-urban
connections, revealed only minimal differences that were within
the statistical error, and most importantly the intensity of the crisis
diffusion was very low in all simulations, and therefore our results
were incompatible with real-world catastrophic incidents such as the
one witnessed in London, in 2008, when a single crisis brought on
cascading failures.

The culprit was the use of the total weighted degree of the
cities as the denominator of the model used in the simulation
process. This denominator acts as a protective factor against the
“infection”. As many connections in our network - and especially
the intra-urban ones - represent strong relations they can have
very high weights through which they can spread the crisis,
however they often also add up to high total weighted degrees,
overemphasising the stamina of the city, thus contributing to
conditions that are highly unfavourable for spreading. Another
repercussion of this complication is that the crisis diffusion is
particularly hindered on a layer that is very dense and contains
many highly intense connections, an indication that is mostly
counterintuitive.

In this standpoint, we have chosen the total node degree, instead
of the total weighted degree to serve as the protective factor in the
model of the present analysis. By using the total degree we are
focusing on the sheer number of connections a city has, rather than
the strength of those connections. This can provide a clearer and
more generalizable insight into how crises spread. In this context,
cities with a higher number of connections, even if some of them are
minor, might have a buffering or dilution effect on the transmission
of a crisis. Each connection, regardless of its weight, represents a
potential channel for economic interactions, resources, information
flow, and support. A city with many connections might be able to
distribute or buffer the impact of a crisis across its numerous ties,
thereby reducing the probability of a concentrated shock from any
single source. This buffering effect can hinder the transmission of
the crisis, making the city more resistant to shocks from individual
connections. Also, cities with a higher number of connections might
be more diversified in their economic ties. Even if some of these
connections are weak (low weight), they still represent different
economic relationships and dependencies. A city with a diverse
range of connections might be more resilient to shocks from any
single source, similar to the concept of portfolio diversification in
finance. Moreover, weighted connections can introduce noise, as
they are determined by factors that can vary over time or are subject

to measurement errors. By focusing on the total degree, the potential
noise is reduced which enables capturing more stable and consistent
patterns in the data and the simulation processes. Lastly, the range of
the set of values of the link weights is very wide and therefore the
total weighted degrees are highly non-uniform, whereas the total
degrees’ values are considerably more uniform.

Therefore, in the subsequent analysis, q is intuitively
presumed to be proportional to the intensity of the ownership
relation between two cities, represented by the weight of the
directed link from the source to the target node, and reversely
proportional to the susceptible city’s economic resistance to the
“infection”, represented by the total-degree of the target node.
The weight of the directed link is determined by the number of
subsidiary/headquarters relationships between firms located in
the source and target cities, the total-degree of the target node is
the sum of its in and out degrees, and k is a multiplicative factor
that was set to 1 for all intra-layer and all intra-urban
interactions. Moreover, a variety of (constant) values in the
range 0 ≤ k ≤ 1 were considered for the (non-intra-urban)
inter-layer links. The upper and lower bounds of this set are
the limit values of k in our model. Specifically, setting k to 0 for all
inter-layer interactions (including intra-urban ones) is the
special case for which all layers are detached, and there are no
inter-layer links between them. Accordingly, setting k to 1 for all
inter-layer interactions is the special case for which all
connections (intra and inter-layer and intra-urban) are treated
the same and q is determined solely by the topology of the
network, i.e., the weights of the links and the total degrees of
the nodes. In conclusion, the probabilistic rate q at which a
susceptible node can become infected is determined by the
following formula (Eq. 2):

q � k
weight of the directed link

total degree of target node
, (2)

where k = 1 for all intra-layer and intra-urban interactions and 0 <
k ≤ 1 for all inter-layer connections that are not intra-urban. In the
special case for which the layers are examined as completely
detached (single-layer cases), k = is set to 0 for all inter-layer
interactions (including intra-urban ones).

Setting k equal to 1 for all intra-layer and intra-urban
interactions aims to capture the intensity of these relations, as
links between firms of the same activity or located in the same
city are presumed to be stronger and more influential in the spread
of the crisis compared to links between different types of activities
and across different cities. This choice, in combination with
exploring a range of k values for the inter-layer links, allows us
to investigate the impact of inter-layer links on the spread of crises of
varying intensities, while also controlling for the effect of the intra-
layer and intra-urban links. Moreover, by comparing the spreading
on the two partial-multiplex networks, one with intra-urban links
and one without, we can isolate the contribution of inter-layer links
to the overall spread of the crisis. Finally, at each time-step infected
nodes recover at a constant average Recovery Rate (RR). Several
values of RR were examined in our simulations, in the range 1/100 ≤
RR ≤ 1. RR = 1 is the upper limit for this parameter as it resolves to
the special case for which an infected node recovers immediately, at
the next time-step. By exploring various combinations of RR and k,
we have determined that all qualitative diversity of the system
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unravels in the range 0 ≤ k ≤ 0.1 for k, and 1/30 ≤ RR ≤ 1 for RR. The
simulation stops when no new nodes can be infected.

2.3 SIR model overview

The Susceptible-Infected-Recovered (SIR) model, traditionally
used to describe the dynamics of infectious diseases, has been
adapted in our study to represent the spread of an economic
crisis through a network. At any given time t, the model
identifies entities as either susceptible, infected, or recovered.
Susceptible entities, denoted as S(t), have not yet been impacted
by the crisis but remain at risk. Infected entities, represented by I(t),
are currently affected by the crisis and can transmit it to those
susceptible. Meanwhile, recovered entities, R(t), have been affected
by the crisis and have since recovered, gaining immunity.

The dynamics of the SIR model can be described by the
following set of differential equations:

dS t( )/dt � -β × S t( ) × I t( )
dI t( )/dt � β × S t( ) × I t( )-γ × I t( )

dR t( )/dt � γ × I t( )
where β is the transmission rate, representing the probability of
transmitting the crisis from an infected entity to a susceptible entity.
In our model, β is influenced by the weight of the directed link
between entities and the total degree of the target entity. γ is the
recovery rate (RR), indicating the rate at which infected entities
recover and become immune.

The term β × S(t) × I(t) represents the new infections that arise from
interactions between susceptible and infected entities. The interaction
between susceptible and infected entities is crucial here. As more entities
become infected, the rate of new infections can increase, especially if
there’s a large pool of susceptible entities. Conversely, as the number of
susceptible entities decreases, the rate of new infections will slow down,
even if there aremany infected entities. The term γ× I(t) in the equations
signifies entities that recover from the crisis.

The SIR model provides insights into how an initial economic
shock can propagate through a network, affecting a subset of entities

and leading to varying dynamics of susceptibility, impact, and
recovery.

3 Results

3.1 Structural analysis

We started by performing a thorough structural analysis on the
partial-multiplex and directed network. Initially, we examined the
five layers (HT, LT, KIS, LKIS, and OTHER) of the partial-multiplex
as five separate, directed networks. Each of these five networks
represents the interactions between firms within the same activity
sector.

The derived total, in and out-degree distributions of the five
layers are right-skewed and heavy-tailed. None of the probability
distribution functions [power-law, truncated power-law,
exponential, lognormal, modified lognormal power-law (MLP)]
most likely followed by such data was found to be a good fit to
the derived distributions. The basic structural features, shown in
Table 1, are a first indication that KIS is the most dominant of all
layers, as expected [see Section 1 and (Sassen, 1991; Rozenblat and
Pumain, 1993; Taylor, 2010)]. Specifically, it appears that of all five
layers, layer KIS is the most numerous and densest network, with the
intensity of its links - reflected in their corresponding weights - being
spectacularly high. It also exhibits the most tightly connected
communities and has the highest percentage of mutually
connected pairs of nodes.

Furthermore, we ranked the nodes on the five layers according
to their in/out-degree, in/out-weighted-degree, in/out-closeness,
betweenness and weighted-betweenness centralities, to explore
whether there are any nodes (cities) that rank high in all (or
some) of these centralities, on all layers. Our results indicate that
eight nodes (cities) of the five layers of the network stand out with
respect to these eight centralities. Firstly, Paris and London were
found to be major hubs, as they rank in the top-7 in all centralities,
on all five layers. On LKIS in particular, the two cities rank in the
top-2 in all centralities, except for London ranking third in out-
weighted degree. Out of the two, London ranks higher in in-
centralities, while Paris ranks higher in out ones, except for in-
degree on LKIS and out-weighted degree on KIS. This finding could
suggest that Paris hosts relatively more owner firms and less
subsidiaries than London does.

Moreover, six more cities, namely, Tokyo, Milan, Madrid,
Moscow, New York and Amsterdam were found to be significant
in terms of high centrality rankings on all layers. Specifically, with
respect to the criterion of ranking in the top-20 in any of the eight
centralities considered, on all five layers, we found the following:
First of all, all six cities satisfy this criterion with respect to the
betweenness and weighted-betweenness centralities. This implies
that all six cities are significant in terms of maintaining the network’s
coherence. On top of that, Tokyo also ranks in the top 20 cities in all
three out-centralities and none of the in ones, whereas the opposite
holds for Milan; Madrid and Moscow meet the criterion only for in-
degree centrality, and New York meets it for four out of the six
centralities, namely, in, out and out-weighted degree and in-
closeness centralities. These results could indicate that Tokyo is

TABLE 1 Basic structural properties of the five layers, High-Tech (HT), Low-Tech
(LT), Knowledge Intensive Services (KIS), Less Knowledge Intensive Services
(LKIS) and Other (OTH), of the partial-multiplex, directed network. (SCC stands
for Strongest Connected Component).

HT LT KIS LKIS OTH

Nodes 704 775 879 801 783

Largest SCC size 343 355 558 452 354

Number of SCCs 360 416 315 341 423

Links 6,085 4,551 15,266 7,761 3,965

Links, weighted 11,053 7,572 109,473 24,888 12,598

Density 0.012 0.008 0.020 0.012 0.006

Transitivity 0.094 0.063 0.191 0.143 0.077

Reciprocity 0.169 0.164 0.405 0.308 0.253
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favoured by owner firms, Milan, Madrid and Moscow by
subsidiaries, while New York is more of a mix.

Finally, we analysed the connections between the five layers,
i.e., the inter-layer connections, for the partial-multiplex, directed
network, for both cases: with and without the intra-urban links
considered. The study of the inter-layer connections reveals
information about the interactions between firms of different
activity sectors. For each pair of layers, we determined three
quantities, the source/target nodes, the links and the weighted
links, for both the “without intra-urban links” and the “with
intra-urban links” cases6. The results are shown in Tables 2, 3,
respectively. Each of these tables can be thought as a matrix whose
elements i, j depict the results for the pair of layers (Li, Lj). For
example, for i = 2 and j = 5, element (2, 5) (line 2/column 5) of
Table 2, depicts the ownership relations from cities on layer 2,
i.e., LT, to cities on layer 5, i.e., OTH.

Specifically, there are 909 links (and 1,394 weighted links,
i.e., the sum of the weights of the 909 links) directed from
214 source nodes (cities that harbour owner firms) on layer LT
to 407 target nodes (cities that harbour subsidiaries) on layer OTH,
in the partial-multiplex network without intra-urban links. Likewise,

element (4, 2) of Table 3, reveals the ownership relations from cities
on layer LKIS to cities on layer LT, represented as 1,488 links (and
3,119 weighted links, i.e., the sum of the weights of the 1,488 links)
directed from 349 source nodes (cities that harbour owner firms) on
layer LKIS to 524 target nodes (cities that harbour subsidiaries) on
layer LT, in the partial-multiplex network with intra-urban links.

In that context, the non-diagonal elements of Tables 2, 3 show the
extent and intensity of the inter-layer interactions, i.e., the interactions
between firms of different activities. There are no intra-urban links in
the diagonal elements of Table 3, as they would only yield self-loops on
each layer. Both Tables indicate that layer LKIS is the layer that is
impacted the most by other layers, as it is on the receiving end of inter-
layer interactionsmore often than any other layer is. Likewise, KIS is the
layer that impacts all other layers the most, as links to any other layer
originate from KIS more often than on any other layer. In other words,
LKIS firms tend to be subsidiaries to HT, LT, KIS and OTH owner
firms, whereas KIS firms tend to be owners of HT, LT, LKIS and OTH
firms. Thus, KIS and LKIS layers stand out in the partial-multiplex,
directed network, as “source” and “sink” layers, respectively, of the
directed links. This result also corroborates the crucial role that KIS
firms play in shaping the global network of cities (see Section 1 and
(Sassen, 1991; Camagni and Capello, 2004; Rozenblat, 2010)).

Lastly, the layers that influence KIS the most (other than itself)
are LKIS and HT. Interestingly, although out of these two layers,
LKIS is the one having the most firms that are owners to KIS firms,
nonetheless, the layer that has the most links directed to KIS firms is

TABLE 2 Basic features of the connections between the five layers, High-Tech
(HT), Low-Tech (LT), Knowledge Intensive Services (KIS), Less Knowledge
Intensive Services (LKIS) and Other (OTH), of the partial-multiplex, directed
network of cities, intra-urban connections excluded.

HT LT KIS LKIS OTH

HT 391–686 263–481 361–493 398–623 196–368 nodes
(from-to)

6,085 1,923 3,985 5,959 859 links

11,053 2,667 8,610 12,802 1,276 weighted links

LT 216–389 432–755 333–476 408–602 214–407 nodes
(from-to)

1,150 4,551 2,393 4,209 909 links

1,490 7,572 5,178 8,028 1,394 weighted links

KIS 353–647 342–721 585–876 482–781 351–710 nodes
(from-to)

7,487 6,834 15,266 10,830 6,269 links

36,479 27,082 109,473 59,517 29,679 weighted links

LKIS 209–406 231–462 406–582 506–785 263–454 nodes
(from-to)

1,159 1,090 3,657 7,761 1,264 links

1,565 1,751 9,993 24,888 2,930 weighted links

OTH 147–300 183–417 360–457 338–544 428–757 nodes
(from-to)

557 822 2,127 2,139 3,965 links

737 1,271 5,055 6,661 12,598 weighted links

TABLE 3 Basic features of the connections between the five layers, High-Tech
(HT), Low-Tech (LT), Knowledge Intensive Services (KIS), Less Knowledge
Intensive Services (LKIS) and Other (OTH), of the partial-multiplex, directed
network of cities, intra-urban connections included.

HT LT KIS LKIS OTH

HT 391–686 350–527 419–542 459–651 266–412 nodes
(from-to)

6,085 2,159 4,307 6,295 1,041 links

11,053 3,704 13,117 16,451 2,073 weighted links

LT 276–427 432–755 399–524 487–650 304–471 nodes
(from-to)

1,334 4,551 2,695 4,586 1,139 links

2,129 7,572 8,798 11,805 2,491 weighted links

KIS 429–666 451–741 585–876 572–794 448–726 nodes
(from-to)

7,821 7,204 15,266 11,333 6,637 links

44,608 34,743 109,473 95,094 39,936 weighted links

LKIS 277–451 349–524 498–620 506–785 371–515 nodes
(from-to)

1,361 1,488 4,088 7,761 1,565 links

2,427 3,119 22,556 24,888 7,319 weighted links

OTH 213–348 279–478 448–527 451–596 428–757 nodes
(from-to)

708 1,036 2,492 2,527 3,965 links

1,209 2,052 10,203 14,137 12,598 weighted links

6 There are no intra-urban links in the diagonal elements of Table 3, as they
would yield self-loops on each layer.

Frontiers in Complex Systems frontiersin.org07

Tsouchnika et al. 10.3389/fcpxs.2023.1275934

https://www.frontiersin.org/journals/complex-systems
https://www.frontiersin.org
https://doi.org/10.3389/fcpxs.2023.1275934


HT and not LKIS. This implies a tendency for HT firms to be owners
of more than one KIS firm, revealing the role of finance in the
innovative processes of HT firms.

3.2 Spreading process simulations with SIR
model

Subsequently, we simulated the spreading process on the two
partial-multiplex networks, by employing the SIR model described
in Section 2.2. We first performed a set7 of simulations on each of the
five layers separately, for comparison purposes. Treating the layers
as separate networks corresponds to the case of no inter-layer
connections, i.e., k = 0. Then, we carried out six sets of
simulations on each of the two partial-multiplex networks, while
monitoring the spreading of the crisis on each of the five layers. Each
set of simulations corresponds to one of the following cases of “seed”
layer (the layer in which the crisis originates), namely, HT, LT, KIS,
LKIS, OTH, and random. In the “random” case, the seed layer is
chosen at random in each simulation.

Starting with the partial-multiplex network without intra-urban
interactions, we initially calculated the average infected mass <M>
and its distribution. For each simulation, the infected mass, M, also
known as epidemic size, is measured by the percentage of the
recovered nodes at the end of the spreading process.

Figure 2A depicts the evolution of the fractions of susceptible
(S), infected (I) and recovered (R) nodes on layer LKIS, for k =
0.1 and RR = 1/30, for a crisis originating in the same layer. At the
beginning of each simulation all nodes are susceptible (fraction of
susceptible nodes = 1.0) and there are no infected nodes (fraction of
infected nodes = 0). Note that S + I + R = 1 at all times. As can be
seen, the percentage of recovered nodes starts is initially 0 and
eventually reaches a constant value of 0.4, therefore, in this case

<M> is approximately 40%. The corresponding frequency
distribution of the infected mass distinct values (of each
simulation) is shown in Figure 2B. The distribution comprises
two strong peaks, one at M ≈ 0% and a second at around M ≈
95%, with no intermediate values. Distributions of this type are
called bimodal. The first peak arises from cases in which only one or
a few nodes are affected, whereas the second one from cases in which
the majority of the networks’ nodes are affected. Thus, in this case,
the observed bimodality implies that in most cases the crisis dies out
fast, however if it manages to survive through the initial simulation
steps, it spreads over a large portion of the network nodes. Thus, the
prediction on the course of the infection largely depends on the
neighbourhood it originates from, i.e., the connectivity of the
initially infected node, as also seen in (Gallos and Argyrakis, 2003).

To examine the effect of k and RR on bimodality, the
distribution of the infected mass M was calculated for a
collection of values for the two parameters. The results for k =
0.01 and RR ranging from 1/6 to 1 (images not shown) show that for
layer KIS the distribution ofM is always bimodal, for every value of
RR and in all cases of seed-layer, even in the single-layer case. For
any other layer, i.e., HT, LT, LKIS, and OTH, one can readily observe
the emergence of bimodality as RR increases. Specifically, as RR
increases, a peak appears at relatively largeM values, which becomes
progressively more prominent and eventually breaks off as the
distribution gets into its bimodal state. The rate at which this
transition unravels varies for each layer and is also affected by
the seed-layer to some extent.

Furthermore, by repeating the process of varying RR for k =
0.05 and k = 0.1, it was found that the value of RR at which the
bimodality state is reached increases with k. Overall, our results
suggest that for large values of RR the crisis is hampered early on and
therefore it is highly improbable that it will affect large portions of
the network. The lower the RR, the more likely it is that the crisis will
afflict large parts of the network.

Subsequently, the same sets of simulations were performed on
the partial-multiplex network with the intra-urban links included, to
compare the spreading features on the two networks. We first
calculated the distribution of infected mass M, to assess the effect

FIGURE 2
(A) Fraction of Susceptible (S), Infected (I) and Recovered (R) nodes on layer LKIS (k=0.1, RR=1/30), with the crisis originating on the same layer and (B)
distribution of infected mass (M).

7 Each set comprises 10,000 simulations; all results are the average of one
set of simulations.
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of intra-urban connections on the probability that the crisis will
survive and affect a large portion of the network. Figure 3 shows the
distribution of infected mass, M, for varying values of k and RR, for
both partial-multiplex networks.

It is evident that the presence of intra-urban links significantly
increases the number of cases in which the crisis spreads to the
majority of the cities in the network. This effect appears to be
considerably more dramatic when the spreading is hindered, i.e., in
cases of high RR and/or low k.

These findings were quantified by calculating the relative
increment of large-M occurrence percentage in the intra-urban
partial-multiplex, with respect to the percentage in the partial-
multiplex without intra-urban connections (Eq. 3). The results
are shown in Table 4.

100
large −M − occurrenceswith( ) − large −M − occurrenceswithout( )

large −M − occurrenceswithout
(3)

Our results suggest that for a fixed RR, smaller values of k result
in higher occurrence of large-M (e.g., case 1–case 3 or case 2–case 4).
Likewise, for a fixed k, larger values of RR lead to higher occurrence
of large-M (e.g., case 1–case 2 or case 3–case 4). Finally, the greatest
difference is observed between the two extremes (case 1–case 4).

Apart from the distribution of infected mass M, its average, <M>,
was also calculated, for varying values of k and RR, in order to compare
the extent of the crisis spreading on the layers of the two partial-
multiplex networks. Figure 4 depicts the calculated average M, for all
layers in the two networks, for five combinations of k and RR values.

Regarding the cases of the partial-multiplex network without the
intra-urban connections [cases 1(a)-5(a)], our results indicate the
following: In terms of the seed layer effect, <M> is clearly the highest
on all layers when the crisis originates on layer KIS. The impact of
the other layers as seed-layers varies, depending on the spreading
conditions, i.e., the values of k and RR. For the most part, LKIS is the
seed-layer that induces the second-highest <M> values. In terms of
<M> levels in general, layer KIS is consistently affected the most,
while the remaining four layers are rather indistinguishable. The
difference in <M> levels between layer KIS and the other layers is
progressively reduced as k increases and RR decreases, with all five
layers being practically identical in the upper extreme state
[case 5(a)].

Moreover, regarding the cases of the partial-multiplex network
with the intra-urban connections included [cases 1(b)-5(b)], we
notice the following: In terms of the seed-layer effect, LKIS is now
the seed-layer that affects all layers the most, with KIS following

FIGURE 3
Distribution of infectedmassM for varying values of k and RR for the two partial-multiplex networks, without (blue disks) andwith (red squares) intra-
urban connections.

TABLE 4 Percentages of large-M-occurrences relative increment in the partial-multiplex network with intra-urban connections, with respect to the partial-
multiplex network without intra-urban connections.

CASE 1 k = 0.01, RR = 1/8 CASE 2 k = 0.01, RR = 1/30 CASE 3 k = 0.1, RR = 1/8 CASE 4 k = 0.1, RR = 1/30

Random 74.93 32.38 44.90 20.56

HT 103.1 42.93 50.04 24.12

LT 107.1 44.36 51.14 23.61

KIS 33.94 12.30 24.54 8.515

LKIS 61.38 30.49 46.27 18.34

OTH 88.37 40.65 56.78 31.17
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close behind, except in case 5(b) where this situation is reversed.
Furthermore, <M> levels are lowest when the crisis originates from
LT. However, these differences are rather insignificant and, for the
most part, the inclusion of the intra-urban links renders the seed-
layer effect on the levels of <M> notably less prominent. In terms of
<M> levels in general, the impact of crisis spreading on all layers has
broadly increased with the inclusion of intra-urban links, as reflected
in higher <M> levels, with the exception of KIS in cases 3b and 5b,
when KIS is the seed-layer, where no significant difference or even a
decrease in <M> levels is observed, respectively. A minor decrease is
also observed for HT in case 5b with KIS as seed-layer. Overall, the
differences between the layers are rather small, except for case 1b.
However, despite the small differences between the layers, it is worth
noting that for the most part HT is the layer that is affected the least
by the crisis spreading, while KIS gradually shifts from being the
most impacted layer in case 1b, to the least affected, ranking even
lower than HT in case 5b. Therefore, we conclude that the intra-
urban links do not enhance the spreading of a crisis on KIS as much
as on the other four layers, as also implied by the results of Table 4.

Furthermore, by considering the extreme case (case 6) of RR = 1/
100 and k = 1 (i.e., all connections are treated as equal and q is solely
determined by the topology of the network, see Methods), we
conclude that the system has already reached a qualitatively
stable state by case 5. Specifically, as Figure 5 shows, cases 5 and
6 are qualitatively identical, and they only differ quantitatively, in
that in case 6 <M> is considerably higher. Also, given that the
standard deviation of the mean for <M> in all six cases, for all layers
never exceeds the value of 0.5, we conclude that our basic findings
regarding the overall behaviour of the system as we shift towards
higher k and lower RR values are valid, i.e., in the cases with no intra-
urban links, while in terms of <M> levels KIS is the most affected
layer initially, the five layers gradually become indistinguishable.
Also, the seed-layer effect is always significant for KIS, as all layers

invariably exhibit the highest <M> values when the crisis starts on
KIS than on any of the rest of the layers, for which the variation of
the seed-layer effect becomes rather unremarkable. In the cases with
the intra-urban connections included, the seed-layer effect tends to
vanish, while KIS gradually becomes the least affected layer, ending
up being the lowest layer in terms of <M>, even lower than HT,
which has been persistently low from the start. Lastly, the tendency
for KIS and HT to be less impacted when the intra-urban links are
added, becomes progressively more apparent.

Additionally, the relative increment of <M> in the intra-
urban partial-multiplex with respect to the partial-multiplex
without intra-urban connections (Eq. 4) reveals that the
spreading of the crisis is clearly amplified by the addition of
the intra-urban connections in all cases, albeit the degree of the
intensification varies with k and RR.

100
Mwith −Mwithout

Mwithout
(4)

Specifically, for the five k-RR combinations featured in
Figure 4, the overall difference in <M> levels (a-cases vs.
b-cases), for the two partial-multiplex networks, averaged over
the five layers and all seed-layer options, is 1187.2% (1a vs. 1b),
68.6% (2a vs. 2b), 26.7% (3a vs. 3b), 36.7% (4a vs. 4b), and 13.2%
(5a vs. 5b). These results imply that the degree of <M>
enhancement with the addition of the intra-urban links grows
with increasing RR and with decreasing k, which is also in
agreement with the results shown in Table 4.

Finally, the number of infected nodes was monitored on all five
layers, for all seed-layers, in each of the five cases. Layers HT, LT,
LKIS, and OTH were found to be very much alike, quantitatively.
The results for layers HT and KIS are depicted in Figure 6.

In the cases without the intra-urban connections, there is a
variation in the peak and the speed of the crisis diffusion on each

FIGURE 4
Average infected mass M on the five layers of the two partial-multiplex networks [without (cases (A)) and with (cases (B)) intra-urban connections],
for varying values of k and RR, from all seed-layers. (The graph points are joined for visualisation purposes.)
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FIGURE 5
Comparison of case 5 of Figure 4 (RR = 1/30 and k = 0.1) and extreme case 6 (RR = 1/100 and k = 1). There are no qualitative differences between the
two cases; the system has reached a qualitatively stable state by case 5. In cases (A) (left column) the intra-urban linkages are excluded, while in cases (B)
(right column) the intra-urban linkages are included.

FIGURE 6
Average (from 10,000 simulations) fraction of infected nodes (cities) over time on the five layers of the two partial-multiplex networks, i.e., without
[cases (A)] and with [cases (B)] intra-urban linkages, for varying values of k and RR, from all seed-layers. The curves shown in this Figure correspond to the
dotted (red) curve of Figure 2A. The peak and the width of each curve relate to the intensity and duration of the infection (crisis).
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layer with respect to the seed-layer, an effect that is more prominent
when KIS is the seed-layer. Once the intra-urban connections are
included, the seed-layer effect is significantly diminished, and the
crisis propagation is roughly the same for all seed-layers. Moreover,
both the average number of affected cities and duration of the crisis
diffusion appear to be markedly enhanced with the inclusion of
intra-urban connections, an effect that is greater in cases of large RR
and small k values. These results complement those of Table 4;
Figures 3, 4 as the intensity and the duration of the diffusion are
closely connected to the average infected mass <M>.

4 Discussion

Our findings indicate that the Knowledge Intensive Services
(KIS) layer is the most prominent layer in this network, structurally,
as it was found to be the most populous and densest of all five, with
strongly connected, mutually interacting nodes, arranged in
intertwined communities. Additionally, our results imply that
KIS firms are more likely to be owners while LKIS firms are
more likely to be subsidiaries. Moreover, our analysis on the
highest ranking cities, according to eight centrality indices (in/
out-degree, in/out-weighted-degree, in/out-closeness, betweenness
and weighted-betweenness), suggests that Paris is rather more likely
to attract owner firms than London. Additionally, it was found that
Tokyo tends to harbour more owner firms than subsidiaries, while
for Milan, Madrid and Moscow the opposite is more likely. New
York appears to be equally balanced between the two types of firms,
while all these cities along with Amsterdam play a crucial role in
maintaining connections between many other cities in the network.
As we previously suggested (Rozenblat, 2021), cities around the
world have varying roles and positions in the global networks.
Rather than a clear division between global and non-global cities,
there exist different levels and types of involvement that cities have
in these global networks.

Furthermore, by employing a simple stochastic SIR model, we
simulated the propagation of a crisis in both networks to compare
the vulnerability of each layer, with respect to the layer on which the
crisis originates and to assess the influence of the intra-urban
connections on the magnitude of the “infection”. This is a major
concern as, if an economic crisis arises in a city or a country, this
crisis will have a widespread impact on other cities as well (and
likewise in the case of economic growth or knowledge spillovers).

Our results reveal that in the absence of intra-urban connections
and under conditions that hinder the spreading (small inter-layer
connectivity and large recovery rate), the crisis is most assuredly
suppressed very fast, affecting only a small portion of the network.
This behaviour can largely be attributed to the structure of the
network’s layers, and most notably their corresponding degree
distributions. Specifically, the vast majority of the nodes have
very low degree, and therefore most nodes have only one (or
very few) neighbours to which they can spread the crisis.
Additionally, the network is directed, which means that nodes
cannot always transmit the crisis to their neighbouring nodes.
This directional constraint can result in occasional “trapping” of
the infection within specific areas of the network. Moreover, if the
crisis does not originate from a node in the Largest Connected
Component (LCC), it will remain confined within a smaller network

component. As the conditions become more favourable to the
spreading of the crisis (higher inter-layer connectivity and lower
recovery rate), it affects larger portions of the network and
eventually only two outcomes are possible: either - and most
likely - the spreading dies out very fast, or, it covers a very large
portion of the network. Furthermore, the crisis impact on each layer
partly depends on the layer on which the crisis originates.
Specifically, the effect of the crisis is highest on all layers when it
originates from layer KIS and lowest when it starts from layer LT.
Also, layer KIS is typically the most affected layer, although when the
conditions particularly favour crisis propagation, differences in
impact levels across layers become insignificant.

With the addition of the intra-urban connections, the effect of
the crisis diffusion is substantially enhanced, resulting in a greater
likelihood that a large portion of the network will be impacted
(Figure 3; Table 4). The enhancement becomes greater as the
conditions for crisis spreading become more adverse.
Furthermore, the disparities in impact levels attributed to the
layer of origin are markedly reduced (Figure 4). In terms of
overall damage, for the most part the differences across layers are
rather minimal, except in case of adverse diffusion conditions.

Moreover, while HT is generally the layer with the lowest overall
impact, KIS gradually appears to shift from being the most affected
layer to eventually falling below HT in terms of impact and
becoming the least affected layer, as conditions become more
favourable for crisis propagation. The comparison of the average
infected mass <M> between cases 5a and 5b in Figure 4 reveals a
small but noticeable decrease (~1.6%) in the average impact levels on
KIS and a marginal one (~0.2%) on HT, with the addition of the
intra-urban links. Also, the levels of <M> on KIS between cases 3a
and 3b are roughly the same, with a minor decrease of ~0.1%. At first
glance, these findings appear to be counterintuitive and to contradict
the results shown in Table 4.

This reduction occurs because the inclusion of the intra-urban
links has two opposing effects on the diffusion. On one hand, it
increases the likelihood that the crisis will survive through the initial
steps of the simulation and infect a large portion of the network,
resulting in a higher incidence of large-M cases (as shown in
Table 4). On the other hand, in large-M cases the levels of M are
relatively lower than that in the absence of intra-urban links. In
other words, the addition of the intra-urban links increases the
height of the second peak in the bimodal distribution of M, but it
also slightly shifts it to the left.

To gain a deeper understanding of this result we need to
examine the stochastic SIR model used and specifically how it
maps the integration of the intra-urban links onto the process of
crisis diffusion. According to the model, the addition of these links
has both positive and negative effects on the process. On one hand,
the added links create new pathways for the crisis to spread.
Furthermore, the intra-urban connections often stem from very
dense sub-graphs of intra-urban firms’ connections. In these cases,
the resulting inter-urban links become inter-layer links of
exceptionally high weights with very high probability of
propagating the crisis to the layer of the opposite side, thus
acting as “diffusion-highways” which greatly enhance the
spreading across layers. On the other hand, each added link
increases the total degree of both adjacent nodes by one, making
them more resilient and hindering the spreading of the crisis. These
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opposing forces act to amplify or impede the diffusion, by
respectively increasing either the numerator or the denominator
of the stochastic model. The combined effect of these clashing forces
leads to the increase in the count of large-M cases and the decrease of
the overall average infected mass <M>, across all layers and cases
examined. Therefore, the inclusion of intra-urban links results in a
complex interplay, which ultimately affects the diffusion outcomes
in nuanced ways.

This context offers some insight on previous findings regarding
the impact of the intra-urban-links on <M> levels and the seed-layer
effect. First, it was found that HT exhibits a significantly lower
increase in the number of incoming links compared to other layers,
with an enhancement that is 50% lower than the layer with the
highest growth rate. This suggests that HT gains much fewer
pathways through which the crisis can reach it. Consequently,
the combined impact of the aforementioned factors affecting
diffusion appears to be less positive for HT than for all other
layers, resulting in generally lower <M> levels on HT.

As previously noted, KIS exhibits the lowest increase in both
large-M incidence and <M> levels among all layers. Additionally,
when KIS is the seed-layer, the increment in <M> levels is the
lowest across all layers. In fact, under favourable conditions for
crisis spreading, there is even a slight decrease in <M> levels for
KIS, with HT experiencing a marginal decrease as well (Figure 4,
cases 3b and 5b). However, KIS stands out as the densest layer
with the most intra and inter-layer connections, which tend to
have very high weights. This leads to a very high large-M
incidence for KIS, making it the only layer for which the
distribution of M is always bimodal, even in the absence of
intra-urban links, for every value of RR and in all cases of
seed-layer. Therefore, while the increment for KIS in both
incoming and outgoing links is quite high in absolute
numbers, the percentage increase is by far the lowest for the
outgoing links and the second lowest for the incoming links.
Moreover, the distribution of weights of the intra-urban links
shows that the relative enhancement of “diffusion-highways’’ for
KIS is exceptionally low compared to those of the other layers.

Furthermore, the addition of the new links results in an upsurge of
the total degrees in the other layers, while the difference in the degrees of
KIS nodes is not very high. This means that, on one hand, there is no
significant increase in pathways through which KIS can propagate the
infection to other layers and, conversely, get infected by other layers. On
the other hand, the upsurge in the total degree of the other nodesmakes
them more resilient, impeding the transmission of the infection from
KIS to the other layers that would in turn feed the infection back to KIS.
Consequently, it appears that the complex interplay of all these factors
results in KIS exhibiting progressively lower <M> levels than the other
layers and in exerting lower influence than one might expect on the
other layers.

Nonetheless, KIS still is highly influential, having minimal
differences from the most influential layer LKIS, and even being
the most influential in very favourable conditions for spreading
(Figure 4, 5b). However, the seed-layer effect is considerably
reduced, resulting in layers having a rather uniform effect on
propagation. It is possible to argue that on the basis of the
particular diffusion model used, the partial-multiplex, directed
network of economic relations between cities has a finite “crisis
capacity”. Thus, KIS, which exhibits binomial <M> distribution,

even before the addition of the intra-urban links, has reached a
state of “saturation”, where further addition of links has little
effect on propagation. In fact, under favourable conditions for
diffusion, the addition of links can have a negative impact. It is
important to note that the results are strongly related to the
specific model that was used to simulate the spreading of an
economic crisis, which includes a resistance factor that protects
from the infection. A different model would likely produce
different results, as in (Battiston et al., 2018), in which the
denominator of the model used for the simulation process was
taken to be the total weighted degree of the node instead of the
total degree. In that case, the more intense a connection is, the
stronger the protection against infection becomes. This led to an
overestimation of the protective factor, especially in the case of
intra-urban connections which typically have high weights, as
they represent very strong interactions. Thus, this model resulted
in findings that were inconsistent with real-world events such as
the one witnessed in London, in 2008, when a single crisis
brought on cascading failures that put thousands of people out
of job. On the contrary, the model employed in the present study
yields more intuitive results, which support real-world context
such as the snowball effect seen in London.

In general, the addition of the intra-urban links for the most part
enhances the overall crisis impact, particularly when the event
originates in a layer that is not very dense or connected, or when
the conditions hinder the diffusion. However, when the crisis starts
from a dense and well-connected layer like KIS, the impact of the
intra-urban links is less prominent, and could even have a protective
effect when the conditions are highly favourable for spreading. In
essence, the layers become significantly more uniform regarding the
crisis impact with respect to the layer it originates from, i.e., the
intra-urban connections level-out the seed-layer effect considerably.

This effect of the intra-urban linkages provides a valuable insight
into the “agglomeration economies” that stem from the impact of
local networks on the global one (Rozenblat, 2010; Rozenblat, 2021).
The resulting spreading equalization across activity sectors
highlights the role of cities in the connections between activities
that share numerous services and cities’ properties, through which
they engage in mutual learning and efficiency reinforcement
activities (Duranton and Puga, 2004).

Future work could extend this empirical study to include recent
data and also to investigate the networks of cities on the lower level
of the micro-networks of firms that will enable us to incorporate
intra-urban interactions of the same activity sector type (the intra-
urban/intra-layer networks of cities), which are inevitably left out on
the higher level of cities. Also, the inclusion of more recent data
would enable us to explore the repercussions that we are inclined to
believe that the recent COVID-19 pandemic and the sanctions on
the Russian economy have had on the system. The pandemic’s
economic strain has affected various industries, potentially altering
their vulnerability to subsequent crises. While the ownership
structures of many large, diversified firms may have remained
stable during the pandemic’s initial phases, the long-term
economic repercussions could lead to mergers, acquisitions, or
even bankruptcies. Such shifts, over an extended period, have the
potential to reconfigure the network, even if these changes are not
immediately evident. Moreover, the sanctions on the Russian
economy have directly influenced ownership structures, with
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Moscow-based firms adjusting their foreign stakes due to financial
and regulatory pressures. Simultaneously, foreign entities have
exhibited a tendency to pull back from Russian investments. This
has likely reduced Moscow’s global network centrality. However, as
foreign investments decline, Moscow might see strengthened
internal linkages and a shift in economic partners, e.g., in Asia,
further modifying the network dynamics. In the context of the
contemporary rapid change in this international geopolitical
reconciliations and boycotts, the pandemic aftermath and also
perhaps considering the possible urban economic transformations
due to climate warming, the gained insights of such analyses could
help cities to better monitor and plan their future sustainable
development.

5 Conclusion

The goal of this study was to investigate the characteristics of
firms’ interactions within and across the activity sectors and the role
of the intra-urban connections in case of crisis propagation. The
partial-multiplex, directed network of cities of multinational firms,
constructed through ownership relations and divided in layers by
activity sector was examined in two states: one with the intra-urban
links excluded and another with these link included. The difference
between the two states outlined the strong role of intra-cities’
processes of networking in the global economy.

Through the use of a simple stochastic model that accounts
for both positive and negative factors, i.e., influential ownership
relations and stamina of the city, respectively, we simulated a
crisis diffusion on a network of cities, and provided insight into
the inner workings of urban economic networks. These networks
that operate within cities but have far-reaching effects on inter-
city dynamics, have remained a “black box” for many scholars.
Our analysis sheds light on these complex processes, contributing
to a better understanding of urban economic systems.
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