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This study presents an approach to analyzing a simulation of birds flocking as
a thermodynamic system. The simulation of birds is produced using standard
agent-based modeling and the thermodynamic variables for the states of the
trajectory using statistical mechanics. The energy of the birds is defined, and
from the distribution function, the entropy, internal energy, temperature,
heat flux, and pressure are defined. The trajectory of the entropy decreases as
the flocks increase clustering among each other, becoming denser. As a
result, internal energy generally decreases (with minor oscillations), and an
overall steady decrease of the cumulative heat flux is also observed. Pressure
is observed to decrease as the simulation progresses with the increase of the
volume. Overall, the system displays consistency with the expected
trajectories of all the thermodynamics variables in a cooling process.
Thus, through this thermodynamic definition, a more in-depth
representation of the state space of the system is achieved. This
description offers information about both the microscopic and
macroscopic behaviors of the flocks and, importantly, an understanding
about the exchange of energy/information between the flock and the
external environment through the heat flux.
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1 Introduction

Bird flocking has been studied (Emlen, 1952) using non-computational and
computational approaches (Lee et al., 2009). There are many direct applications, such
as in Virágh et al. (2014), which looks to improve autonomous aerial vehicle collective
behaviors and is part of the general biomimetics effort to adopt biological behaviors into
robotics (Vincent et al., 2006). The effort presented here aims to use the observations of
flocking behavior models to improve the techniques and theory of “social physics” (Jusup
et al., 2022). An understanding of bird flocks comprised of social interactions (Wang and
Lu, 2019) can help our understand of human collective behaviors. The agent-based
modeling (ABM) paradigm (Helbing, 2012a) can be used to simulated various systems
such as bird flocks, pedestrians, and urban movements. Using a bird flocking system as a
case study provides a modeling paradigm that can apply across multiple continuous space
agent-based models. What is presented is a methodology for analyzing the simulation of
bird flocking as a thermodynamic system, calculating the values of the thermodynamic
variables over simulation time such as energy, entropy, internal energy, temperature,
volume, and pressure.
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As the aim of this work is not to provide the optimal algorithm
for a bird flocking mechanism but to provide a thermodynamic
description of the system, a simple flocking algorithm based on
known research from the literature has been used. This research
expands heavily on the description of the microscopic and
macroscopic aspects of bird flocks. Inspired by physics, the
building block of the system is the energy microstate, which is
defined based on the properties of a single bird. Using these
microstates, the probability distribution function and its
evolution across time is identified. Like other informational
systems, the entropy is defined, but in this study the traditional
methods from the kinetic theory of gases are augmented and applied
to the microstates of birds. As such, it is possible to reverse-engineer
the concept of temperature upon the distribution function and
define it on the given system. Having the temperature and the
entropy, the rest of the thermodynamic variables can be defined
(internal energy, free energy, etc.). In addition, by having this in-
depth understanding of the correlation of the microstates of the
system with the thermodynamic variables, it is possible to uniquely
define the volume and pressure in a self-consistent manner. It is
demonstrated that a full thermodynamic description can be
established for such a system, and furthermore the results of the
simulation are seen to be consistent with both thermodynamics and
real bird-flocking behaviors.

It is observed through the results that the stability a flocking
system reaches can be seen through different thermodynamic
variables, based on different aspects of the system. The lowering
entropy trace demonstrates that the system initiates from a
disordered state into a more ordered one, something that follows
the traditional spatial entropy trajectory of such systems. The
temperature is also seen to decrease to a steady value; based on
the temperature definition, this shows that the variance of the
distribution function stabilizes. Thence, from this thermodynamic
perspective, the interaction of such a system with its environment
can be derived a model. The heat flux is found through the first law
of thermodynamics, and it is shown to be negative with a decreasing

absolute value until it stabilizes at zero. This directly corresponds to
a cooling system in thermodynamics, demonstrating the correlation
between the heat flux and the temperature and entropy. Lastly, based
on the definition of the microstates, there is only a single way to
define the volume of the system while keeping the boundary
conditions of the laws of thermodynamics intact. When this
volume defined, it is seen that it also follows the expected
thermodynamic trajectory. With a derivation for the
thermodynamics of the system, the non-energy variables of
volume and pressure also have behaviors that correspond to a
cooling thermodynamic process. Even though the volume and
pressure are not correlated to the energy of the system in their
definition, the trajectories from the simulation show the
expected coupling.

These results help clarify how more ABMs can be modeled with
their thermodynamic state trajectory. This is vital for the field of
social physics, which aims to find physical analogs of social processes
in order to improve predictions. The science of thermodynamics is
mature and provided a robust set of tools to analyze systems. Section
1.1 will show the consistency between this system and the expected
quantities of the simulation trajectory. As a result, more ABMs
which are on a two-dimensional spatial system of continuous
coordinates can adopt this approach and analyze the system
thermodynamically.

1.1 Related work

A brief overview of the related literature is here presented and
how this current study fits into the overall body of research. In
general, our research extends the efforts of social physics, which
aims to incorporate methods and theories of physics into social
sciences, such as group behaviors like flocks/swarms. Jusup et al.
(2022) review the field of social physics, covering many of the
methods that analyze and model social systems using the
developments in physics. This is in line with some of the original

FIGURE 1
State of the simulated birds across the spatial positions allowed at three different time points of the simulation (iterations 0/5/95). The first subfigure
shows iteration 0, where the birds are randomly distributed in the 2D space and are spread out without much flocking. The middle subfigure shows
iteration 5, where multiple flock formations have begun appearing and larger empty spaces appear. In the last subfigure, it is seen that all the flocks
converge to a single flock at a late stage iteration of the simulation (iteration 95).
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goals of this field and can be traced as far back as James C. Maxwell
(a key figure in developing statistical mechanics and
thermodynamics—Porter, 1981), who proposed the idea that
societal dynamics resemble the dynamics within a gas. The field
can be said to have received more attention with the establishment of
cybernetics (Wiener, 1948), which overlaps with social physics, and
produced one of the first articulations of social physics in Stewart
(1950), who discussesWiener (1948) as a wider view of the challenge
and the need to cut across academic boundaries and put social
processes within a quantitative paradigm akin to that developed
in physics.

Quang et al. (2018) discussed ABMs for social physics (and
econophysics) in a general setting where the dynamics of agents can
be defined within the context of physical analogs withmany application
areas. Sornette (2014) also reinforced the perspective of research of these
complex systems using ABMs with a particular emphasis on Ising
models which have been used in various social analogs. All these studies
do emphasize the ability to translate the equation forms for unit
dynamics from physics to social systems. Epstein (1999) is a seminal
work which speaks generally about ABMs for social systems modeling
without specifically taking a physical analog, but it is fundamental to the
historic progression and exploration of ABMs as a modeling paradigm.
The paradigm covers both the analysis and generative aspects, showing
how experimenters can investigate dynamics which replicate observed
phenomena and attempt to replicate behaviors. Helbing (2012b)
focused on the key aspect of the social processes of the above

studies—emergent behaviors. The group dynamics which produce
emergent behaviors are not immediately evident and typically
require exploration (Ouellette, 2022; Wardil and Hauert, 2014). The
decentralization of decisionmaking (Reina et al., 2015) and the complex
interconnectivity (Christakis and Fowler, 2009) between agents adds
complexity to the field (An et al., 2021).

One of the most popular models of physics used in social
physics has been the Ising model of ferromagnetism (Cipra, 1987;
Brush, 1967). The Ising model is based on a two dimensional
lattice where cells are occupied by a magnetic unit which has a
spin state that is affected by the aggregate of the spins from its
immediate neighbors (special boundary conditions aside). These
aggregates change the states, allowing for clusters of similarly
orientated cells (same spin) to appear. It has been adopted by
researchers to model segregation patterns in urban areas. The
Schelling model of segregation is a classic segregation model
(Schelling, 1969; Schelling, 1971) which also uses a lattice;
Stauffer and Solomon (2007) highlight the similarities between
the Ising model and the social model of Schelling. Although the
models may appear to be simple, they can display non-linear
phase transitions (Gauvin et al., 2009) which is one of the reasons
why social process are difficult to predict, as can be seen from
Tsarev et al. (2019). Another relevant model for simulating flocks
of birds is the Vicsek model, which offers the flexibility of
simulating various types of swarming and flocking behaviors;
however, it not used in this study. The algorithm we apply is more

FIGURE 2
Probability density histogram of the energies displayed in two different iterations (iteration 5 on the left and iteration 25 on the right). The energies
are calculated through Equations 8 and 9. In the early stages of the evolution of the system, the distribution of the energies is more extended (with values
over a greater domain). In later stages of the simulation (right subfigure), the system converges to a distribution over a smaller domain.
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generic, allowing for future users to insert various conditionals
which permit a wide range of flocking behavior modeling. It is
expected that future practitioners will apply discrete rule sets
which are not easy to incorporate into an equation-based model.

There has been recent interest from researchers in investigating
the thermodynamic aspects of social simulations. Mantzaris et al.
(2018) investigated the Schelling model by producing an equation-
based model of the system and showing how a micro- and macro-
state definition of the system can be defined and sampled along the
trajectory. This allows for an entropic analysis of the trajectory
beyond cluster density/size. Mantzaris (2020) built upon those
results, with Mantzaris et al. (2018) showing a decreasing
entropy trend due to the segregation organization which violates
the principle of the arrow of time (Parrondo et al., 2009) —the
second law of thermodynamics (Atkins, 2010). Mantzaris et al.
(2018) showed that an increasing entropy trend is produced by
incorporating a dual dynamic into the Schelling model based upon
monetary exchange, along lines inspired by Hatna and Benenson
(2012). Domenikos and Mantzaris (2022) explored the entropy
traces of a basic voter model to examine how external system
injections can affect collective decision making.

More along the lines of the investigation presented here is
Pomorski and Kotula (2023) and Domenikos and Mantzaris
(2024). In Pomorski and Kotula (2023), the thermodynamics
for the Conway Game of Life is developed by defining a
temperature T for each position and time point in the
simulation (Equation 5 here). As can be seen from that paper’s
definition and what will be evident in our methodology, the
internal energy of the system is ignored by assuming that
the energy is the same as the internal energy when calculating
the temperature. Domenikos and Mantzaris (2024) showed how
thermodynamic variables of the voter model simulation of
Domenikos and Mantzaris (2022) can be defined (T,V,P).
Consequently, a thermodynamic cycle can be observed for the
evolution of the system that resembles an Otto cycle (Lior and
Rudy, 1988).

Specifically related to the entropic analysis of bird flocks,
Castellana et al. (2016) investigated the probabilistic aspects and
densities of the distributions to a great depth but did not seek a
thermodynamic analog, as is done here. In Bialek et al. (2012), a
maximum entropy analysis for the flocks of birds is produced
which is of great value in assessing flock stability and consistency
with the distributional changes (with prior work in Cavagna et al.
(2014) which reinforces the likelihood estimations). In Brown
et al. (2020), information flow in bird flocks is investigated
without the entropic estimation. From a more general
perspective of swarm intelligence, Folino and Forestiero
(2010) discussed the trajectory of bird flocks as spatial
distributions which can be used for entropic investigations.

2 Methodology

The birds are modeled as agents within an agent-based model
(ABM) using the Julia Lang package, Agents. jl (Datseris et al.,
2022). This package provides convenient functions for the
definition of agents and their dynamics within a simulation.
The algorithm used for the dynamics of bird flocking is shown

in Algorithm 1. Each bird (agent) has a set of properties
governing their movement behavior as well as a property
termed “ensemble” which will be used to calculate the energy
of each bird and for the various thermodynamic variables of the
system. The ensemble here refers to the number of birds that
approximately point in the same direction (flocking) and are
within the field of view. In order to smooth out this trajectory, the
median of the past eight iterations is taken.

Key parameters for the flocking algorithm.

• dvis: visual distance—defines the radius within which each
bird can detect neighbors.

• dsep: separation distance—the minimum allowed distance
between birds.

• θthresh � 120°: angle threshold—the maximum angle for
considering neighbors as part of the flock.

• wc: cohesion factor.
• ws: separation factor.
• wm: Velocity matching factor.

1: function AGENT_STEP (bird,model)!

2: neighbor_ids ← nearby_ids

(bird,model, bird.visual_distance)
3: match ← separate ← cohere ← (0.0,0.0)
4: angle_threshold ← 120 × ( π

180)
5: bird_speed ← norm(bird.vel)
6: ensemble_count ← 0

7: for id in neighbor_ids do

8: neighbor ← model[id].pos
9: heading ← neighbor − bird.pos

10: cohere ← cohere + heading

11: if euclidean_distance(bird.pos,
neighbor,model)<bird.separation then

12: separate ← separate − heading

13: end if

14: match ← match + model[id].vel
15: neighbor_speed ← norm(model[id].speed)
16: angle_between ← acos( dot(bird.vel,model[id].vel)

bird_speed × neighbor_speed+1e−9)
17: speed_difference ←

|bird_speed− neighbor_speed|/(bird_speed + 1e − 9)
18: if angle_between <angle_threshold then

19: ensemble_count ← ensemble_count + 1

20: end if

21: end for

22: N ← max(length(collect(neighbor_ids)),1)
23: push!(bird.ensemble_history,

length (collect(neighbor_ids)))
24: bird.ensemble ← 1

1+median(bird.ensemble_history)
25: cohere ← cohere

N × bird.cohere_factor

26: separate ← separate
N × bird.separate_factor

27: match ← match
N × bird.match_factor

28: bird.vel ← bird.vel+cohere+separate+match
2

29: bird.vel ← bird.vel
norm(bird.vel)

30: move_agent!(bird,model,bird.speed)
31: end function

Algorithm 1. Agent step function for a bird.
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The flocking behavior is determined by three primary vectors,
each representing a different aspect of flocking behavior. The
cohesion vector �C attracts birds toward the center of their
local flock:

�C � wc

N
∑N
i�1

�pi − �pb( ) (1)

where �pi is the position of neighbor i, �pb is the position of the current
bird, and N is the number of neighbors. The separation vector �S
prevents crowding:

�S � −ws

N
∑N
i�1

�pi − �pb( ) for ‖ �pi − �pb‖< dsep. (2)

The velocity matching vector �V aligns bird velocities:

�V � wm

N
∑N
i�1

�vi (3)

where �vi is the velocity of neighbor i. The final velocity update
combines all three behaviors:

�vnew � �vcurrent + �C + �S + �V

2
. (4)

The velocity is then normalized to maintain constant speed:

�vfinal � �vnew
‖ �vnew‖. (5)

The ensemble metric E measures flock cohesion:

E � 1
1 +median h( ) (6)

where h is the history of neighbor counts. The angle between
velocities is calculated as follows:

θ � arccos
�vb · �vi

‖ �vb‖‖ �vi‖ + ϵ( ) (7)

where ϵ � 10−9 prevents division by zero. The birds (agents) begin at
randomly allocated positions in a 2D space, and the steps taken
proceed deterministically.

Figure 1 presents the state of the birds at three different time
points of a simulation governed by the dynamics of Alg 1. The first
plot is from iteration 0, which is a representative image of the state of

FIGURE 3
Traces of four thermodynamic variables: energy, entropy, temperature, and heat flux (dQ). The first subfigure displays the energy trace over
simulation time in the top left. As seen through Equations 8 and 9, as more birds come closer, the energy of each bird falls. The entropy decreases in the
top right, as expected, since the birds form a flock with energy level distributions outside the largest mode. Considering the temperature trace in the
bottom left, the temperature of this system, as per its definition in Equation 13, is related to the variance of the distribution of the energies. Therefore,
as expected, it demonstrates high values in the beginning of the evolution of the system (wider distribution function) compared with the latter stages. In
the last subfigure (bottom right), it is seen that the graph predominantly displays negative values, although it oscillates greatly. The key outcome of this
graph is that most of the values of the heat flux are negative, with the positive ones appearing to be circumstantial.
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the birds at initialization where the positions are sampled uniformly
across the 2D spatial coordinates. Then the middle plot is from
iteration 5, and it can be seen how after a few iterations, the birds

display clustering (flocking formations) with different sizes. The last
plot shows the complete set of birds grouped into a single dense
region. Overall, the birds can be expected to flock in such a manner

FIGURE 4
Traces of internal energy (left) and cumulative heat flux (right). In the internal energy subfigure, the trace is seen to initiate from high values, leading to
a lower value. In the beginning of the simulation, the number of birds in each flock is highly varied, leading to a wider distribution function, while in later
stages, the distribution of these energies is narrower. Cumulative heat flux of the system, with the key point being that it is negative. In any system of
decreasing energy in accordance with the first law of thermodynamics, it is expected that there will be an outflux of energy of the system. This
outflux is exactly what is observed through these negative values of the subfigure.

FIGURE 5
Traces of volume (left plot) and pressure (right plot). The (specific) volume, being related to the inverse Euclidean of the birds, starts from lower
values when the birds are further apart and increases with flocking. The pressure is expected to have an inverse relation to the volume based on its
definition (Equation 16), as well as a total overall thermodynamic understanding of variable relationships. It is observed that the traces initiate from their
extreme values and lead up to more stable values as the flocks form.
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as to increase their cohesion over iterations. As a group, their
positions keep changing as their speeds remain aligned with their
neighbors, but the direction does change, allowing the flock to cover
(explore) the space while the dynamic maintaining cohesion
is applied.

To achieve a thermodynamic definition of such a system, the
microstate first needs defining. In this case, it is defined similarly to
microscopic energy, or the energy of the birds. The basic principles
of statistical thermodynamics as used in the kinetic theory of gases
(Sears and Salinger, 1975) are followed and applied to the given
system. Given that in the algorithm used, the key variable is the
bird’s trajectory with the aim of maintaining in the flock cohesion,
the condition that is checked for every bird is the number of others
in its vicinity (view) which point in approximately the same
direction. This is similar to how in a gravitational system in
physics, all the particles tend to be closer to each other over
time. In a gravitational system, the energy states are defined by
the gravitational potential energy. Analogously here, energy is
defined as the attribute that leads to the birds to flock. Two birds
that are far from each other do not form a flock, and therefore they
are considered as high energy potential, while when they are close (in
the same flock), they have a small energy potential. Thus, the energy
of each bird is defined as the inverse of the number of birds in a given
fixed radius.

Ei � 1/N (8)
whereN is the number of birds with distance ‖ri − rj‖< r0, r0 being
the threshold, as well as ‖θi − θj‖< θ0 with θ0 being an angle
threshold between birds i, j. Based on this definition, the
distribution of the energies of the birds is found through the
probabilities

p Ei( ) � n Ei( )
n

, (9)

with n(Ei) being the number of birds with energy Ei and n being the
total number of distinct energies. Since the energy as defined is
continuous while the probability definition is discrete, the energies
are binned at each iteration. Given these probabilities, the entropy of
the system can be found through the Shannon definition as:

S � −∑n
i�1

p Ei( )ln p Ei( )( ). (10)

Although the entropy provides a basic understanding of the system,
in order to quantify its full behavior, a definition of the rest of the
thermodynamic variables for a total thermodynamic definition will
be established. The bin sizes do not change the results as long as a
distribution that does not collapse is produced.

Based on the definition in statistical mechanics, the internal
energy is defined as:

U � ∑n
i�1

Ei p Ei( ). (11)

Having the entropy and the internal energy in such a system, one
could contemplate the existence of a temperature. A temperature is
not typically defined in such statistical systems, but based on the
given thermodynamic definition, is it possible to robustly define it in

this case. The temperature will be defined based on the entropy and
internal energy through the 1st law of thermodynamics,

1
T
� dS

dU
. (12)

We apply the definitions of Equations 10–12. The integral forms
are used for the purposes of establishing the temperature, but at a
later stage they can be interchanged for the discrete summations
given sufficient datapoints.

1
T
� −∂∫

Emax

Emin
p E( )ln p E( )( )dE

∂∫Emax

Emin
Ep E( ))dE

.

Solving the above, temperature can be defined directly upon the
distribution function as:

T � − c∫Emax

Emin

∂p E( )
∂E

ln p E( )( )dE + c1( )
−1
, (13)

with c � 1
Emaxp(Emax)−Eminp(Emin) and c1 � − p(Emax)−p(Emin)

Emaxp(Emax)−Eminp(Emin).
Temperature is closely related to entropy, considering the fact
that they are both based on the distribution function, but
temperature withholds additional information of the system.
Specifically, temperature in this context is a measure of the
sensitivity of the system’s entropy to changes in energy
distribution, reflecting the degree of disorder and variability in
the microstates of the system.

Having defined the temperature of the system, it is possible to
calculate the heat flux toward and out of the system based on the
conservation of energy

ΔQ � T ΔS, (14)
with Δ signifying the difference between two iterations t and t + 1.

The basic energy variables of the system have been defined so far,
but for a system to be fully thermodynamically described, variables
(volume and pressure) also need to be defined. The key variable in
this case is the specific volume. Care must be taken when defining
this, as at first the definition given might seem counter-intuitive, but
it is the only consistent definition of this system. In the system
described, the birds are equivalent to the particles of a physical
system, but their microstates are their energies. In a typical physical
system like a gas, the particles when left alone in a vacuum will be
pushed apart due to the Coulomb forces, whilst in this case the
particle was pulled together. We thus need to make our system
consistent with the traditional laws of thermodynamics. Therefore,
the only logical conclusion for the definition of the volume is that
since the particles are attracted, the specific volume of the systemwill
be the inverse of the average Euclidean distance between them. As
such, a system where all the birds are together and the energy is
minimized is equivalent to a gas that is fully dispersed.

v � 1
< ‖xj − xi‖> i≠j

(15)

where xj is the given bird and xi is the rest of the birds. Given this
definition, it is seen that the energy boundary conditions for infinite
and zero volumes are now consistent between this system and a
traditional gas. Having defined the energy variables and the volume,

Frontiers in Complex Systems frontiersin.org07

Mantzaris and Domenikos 10.3389/fcpxs.2024.1516812

https://www.frontiersin.org/journals/complex-systems
https://www.frontiersin.org
https://doi.org/10.3389/fcpxs.2024.1516812


the final variable that needs to be defined in this system for a full
thermodynamic description is pressure. Based on the given variables
and the first law of thermodynamics, pressure can be defined as:

dP � TdS − dU

dv
. (16)

The thermodynamic equations are independently applied in
each iteration which is considered to be in equilibrium. In order to
define thermodynamic processes across iterations, the non-
equilibrium metrics would have to be used, but the goal of this
study is to use thermodynamic variables as metrics and observe their
evolution across time.

3 Results

The microstates that define the system are the energy states of
the birds. In order to provide an overall statistical description of the
system, an understanding of the distribution function is needed. In
Figure 2, the histograms of the probability densities are plotted for
two different time points of the simulation using energy bins.
Comparing the two histograms of time points 5 (first plot) and
25 (second plot) respectively, it is seen that the step=5 system has a
broader distribution of energies with a lesser number of energy bins,
while after the system has evolved, the distribution is narrower, with
most of the values concentrated in the lower energy bins. These
distributions are to be used for the definitions of the
thermodynamic variables.

Having formulated the distribution of the energy states of the
system based on the derivations of the Methodology section, the
different thermodynamic variables are calculated (Figure 3). First,
the evolution of energy is observed to follow a decreasing trend
shown in the first plot. This is expected based on the dynamics of the
system, as the more the birds flock together, the lesser energy they
have, leading to a converged steady minimum value when all the
birds are in one flock. This behavior is also followed by the entropy
trace plot, which is seen to start from a higher value and converge to
stability. This behavior of the entropy comes to an agreement with
the shape of the distributions (Figure 2), where in the beginning of
the simulation shown in the first plot, wider distributions are
observed, leading to higher entropies compared to the later
iteration in the right plot. At this point, it is important to note
that this decreasing energy-defined entropy trace of the system
follows a behavior similar to what we would expect from a
spatial entropy trace. In a traditional description of a flocking
model, the entropy would be defined based on the dispersion of
the bird positions, leading to higher values in the initial randomized
steps and lower values when the flock is formed. It is thus
demonstrated that even with an energy description of the system,
the thermodynamic entropy follows the same trajectory.

Based on the distribution function and the first law, the
temperature is also defined in Equations 12 and 13 in the
Methods. In Figure 3, the temperature trace plot is seen to
initiate from larger values and converge to lower values with the
evolution of the system. The temperature trace exhibits oscillations
around a steady lower final value. This artifact can be attributed to
the fact that the temperature definition requires numerical
differentiations and integrations based on its definition, and also

the final result is averaged across 300 simulations. The converged
values of these simulations depend heavily on the final distributions
of the energies of the birds, which are not necessarily the same in
value but only in behavior. Therefore, the final temperature of this
graph is seen to oscillate, but each system reaches relative stability.

Having defined the temperature and entropy of the system, the
heat flux plot can now be defined based on the first law of
thermodynamics. This energy flux provides key information for
describing such systems as it quantifies the energy losses over time.
When the flux reaches zero, the system is not exchanging energy
with its environment, and therefore stability is reached. In addition,
the sign of the heat flux is also of importance, since it provides a clear
understanding of whether the system loses or gains energy over time.
In the dQ plot of Figure 3, it is seen that the heat flux initiates from
highly negative values and converges to zero. Therefore, as expected,
the system is seen to radiate energy to its environment. The point
when this radiation is stopped (dQ � 0) is also the point where the
entropy is seen to converge to a steady state, so the system has
reached its final stability.

In parallel to the previous thermodynamic values that are more
specific to the behavior of the system per iteration, two more
variables can be defined which help in understanding the total
state of the system up to this point. First, the internal energy of
the system contains information about the energy that exists in the
system. In the beginning of the simulation, the system lost no energy,
so it is expected to have its maximum value (Figure 4). As the system
evolves, the internal energy lessens until it reaches a stable point.
Again, similar to the temperature, this internal energy is seen to
exhibit some oscillations, but this is attributed to the different initial
internal energies and evolutions of the distributions based on the
randomized initial states. In the second plot of this graph, the
cumulative heat flux is displayed. This flux is seen to accumulate
in the negative values, something that is expected given the
decreasing nature of the energy in a radiating system. It is also
seen that because this is a per iteration difference, there are minimal
oscillations. This is because despite the different total values, the
differences between the iterations follow a much more
concise pattern.

In order for a system to be fully thermodynamically defined, the
spatial variables are also needed in addition to the energy variables.
In this case, the specific volume and pressure are defined (see
Methods section). The specific volume is seen to increase with
the passage of time (Figure 5). This comes to an agreement with
the energy behavior of the system, since an increase in volume leads
to a cooling of the system. Conversely, the pressure is seen to initiate
from a high value and drop to lower values, converging around the
same time point that the entropy and temperature converge. The
oscillatory behavior of the pressure is directly attributed to the
behavior of the temperature, given the pressure definition (Equation
16). In accordance with a typical cooling process, the pressure is also
seen to drop with the increase of volume and the decrease of
temperature.

Figure 3 presents the behavior of the energy variables of the
system. All these variables are seen to be heavily interconnected with
the overall trend, such that the system initiates from a disordered
high energy state and leads to a more ordered low energy state. This
is a behavior that conforms fully to the laws of thermodynamics
applied to a non-isolated system. The system reaches an overall
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lower and more stable energy state, and it is also seen to radiate the
excess energy to the environment (heat flux Figures 3D, 4). It is also
seen that the trace of the thermodynamic entropy of the system
resembles the entropy trace that a spatial definition of the entropy
would provide.

In addition, the traces of the volume and the pressure are seen to
behave as expected for such a system (Figure 5). The volume is small
in the beginning where the energy is at a high level, and as the system
cools down the volume increases. Thus, this is the equivalent of an
expansion cooling of the system. Consequently, the pressure is seen
to drop rapidly as the volume increases and the energy of the
system decreases.

Overall, the system appears to fully obey the expected
thermodynamic behaviors as well as the laws of thermodynamics
(first: conservation of energy, observed through the definition
(Equation 12) and heat flux; second: decreasing entropy in the
system but overall increasing entropy; third: temperature and the
entropy converge as they reach 0), showing that bird flocking can be
fully described as a thermodynamic process.

4 Discussion

This study presents a methodology for computing the key
thermodynamic variable values along the trajectory of a
simulation of birds flocking. Emphasis is not placed on
producing an accurate model of birds during the process of
flocking but rather on how the state space can be analyzed in
terms of a thermodynamic system. This is in line with the scope
of the field of social physics and develops the theory of producing
physical analogs of social processes. This application
demonstrates that with careful definitions of the microstates
and following the standard principles of statistical physics, a
full and highly self-consistent thermodynamic description of the
system can be devised. Specifically, the traces of the
thermodynamic variables that define the stability of the system
(entropy and temperature) produce converged values as the
system reaches single flock cases. In addition, this stable
behavior can also be observed through the values of the
energy and the heat flux of the system. The system initializes
in a high energy state, losing energy as the birds flock together.
This energy trajectory is in accordance with the heat flux, which
shows negative values (meaning that heat is radiated away) until
it reaches zero, when a stable condition is reached. Lastly, the
pressure and volume variables are also seen to conform with the
findings. The volume itself can be used as a measure of stability,
as given its definition, its maximum value signifies a single flock.
The volume is indeed seen to maximize when the energy variables
reach stability, corroborating that when energy stability is
reached, a single flock is also formed. Furthermore, the
thermodynamic behavior of the volume and pressure is valid
as they behave in accordance with a cooling process (with the
volume increasing and the pressure decreasing). Overall, it is seen
through this description that with the additional thermodynamic
variables, a more in-depth perception of the system is obtained,
while these variables themselves remain consistent with one
another throughout the simulation of different system sizes.

The approach formulated here can be applied to other
continuous 2D spatial domains, and the choice of the application
of birds can be substituted with other types of agents. The choice of
the variable for energy can also be substituted with the domain value
which defines the energy of the agent at each time step. Future
developments can incorporate more information into the energy
function and more intricate agent dynamics. Another aspect to
investigate is how the group movements are affected by different
degrees of noise.
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