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Cyclostationary linear inverse models (CS-LIMs) are advanced data-driven
techniques for extracting first-order time-dependent dynamics and random
forcing information from cyclostationary observational data. This study
focuses on the mathematical perspective of CS-LIMs and presents two
variants, namely, e-CS-LIM and l-CS-LIM. The e-CS-LIM, improved from the
original CS-LIM, constructs the first-order dynamics through the interval-wise
application of the stationary LIM (ST-LIM), capturing the integrated effect of each
interval where similar cyclostationary dependencies are present. This approach
provides robustness against noise but is affected by the Nyquist issue, similar to
the ST-LIM. The l-CS-LIM, on the other hand, estimates the time-dependent
Jacobian of the underlying system. Althoughmore sensitive to noise, this method
is free from the Nyquist issue. Numerical experiments demonstrate that both CS-
LIM variants effectively capture the temporal structure of the underlying system
using synthetic observational data. Moreover, when applied to real-world ENSO
data, CS-LIMs yield consistent results that align well with the observations and
current El Niño–Southern Oscillation (ENSO) understanding.
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1 Introduction

The stochastic differential equation (SDE) is a mathematical framework employed to
study dynamical systems subjected to both deterministic and stochastic influences. It
combines the deterministic part expressed through ordinary differential equations with the
random forcing term formulated by Gaussian white noise, making itself invaluable across
diverse disciplines (Øksendal, 1987; Särkkä and Solin, 2019). For example, SDEs are used to
capture the unpredictable nature of stock prices in financial mathematics and describe the
erratic movement of particles in fluids, as studied in physics (Øksendal, 1987; Rüschendorf,
2023; Seifert, 2012). Furthermore, beyond modeling, SDEs also find applications in inverse
problems, including linear inverse models (LIMs) (Kwasniok, 2022; Penland, 1989; Penland
and Magorian, 1993; Penland and Matrosova, 1994).

LIMs serve as mathematical tools that extract the linear dynamics and random forcing
behavior of the underlying complex non-linear stochastic process based on finite sampling
data. This approach allows researchers to study the time evolution of deviations from a
stable equilibrium point, infer system dynamics, and quantify uncertainties that are difficult
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to measure directly (Penland and Magorian, 1993; Penland and
Matrosova, 1994; Penland and Sardeshmukh, 1995). More precisely,
consider a dynamical system of the following form:

d

dt
x � f x, t, ξ( ), (1)

where x(t) is the system state at time t, f is the unknown system,
and ξ represents the normalized Gaussian vector. The stationary
LIM (ST-LIM) approximates Equation 1 using a Markov system,
given by

d

dt
x � Ax + ���

2Q
√

ξ, (2)

where A and Q describe the constant first-order deterministic
dynamics and the covariance of noise, respectively (Penland,
1989; Penland and Matrosova, 1994). This is referred to as the
Markov approximation or assumption. In the stationary state, the
correlation function K of Equation 2 follows an exponential form,
where the exponent corresponds to A. The value of A can be
obtained if the values of K are known at the origin and at some
lag τ. Subsequently, the constant diffusion matrixQ can be obtained
through the fluctuation–dissipation relation (FDR). Therefore, for
stationary finite observations, first-order dynamics and diffusion for
the underlying stochastic process can be estimated with the Markov
approximation. Moreover, to verify the effectiveness of the linear
model, the tau-test has been widely applied (Penland and
Sardeshmukh, 1995; Penland, 2019). This test estimates the
dynamics over a range of lags τ and is considered successful if
the estimated dynamics remain independent of τ.

Due to its mathematical simplicity and applicability, the ST-LIM
has been widely applied to climate science to study large-scale
climate events, including El Niño–Southern Oscillation (ENSO)
(Alexander et al., 2008; Johnson et al., 2000a; Newman et al.,
2011b; Penland and Magorian, 1993; Penland and Matrosova,
1994; Penland and Matrosova, 2006; Perkins and Hakim 2020).
However, it can fail drastically in reconstructing the Markov system,
even if the observational dataset is sampled directly from the system
itself, due to the Nyquist issue (Johnson et al., 2000b; Penland and
Sardeshmukh, 1995; Penland, 2019). This occurs when the lag τ is
close to the multiples of the Nyquist lags, which are half the
imaginary parts of the eigenvalues of the first-order dynamics.
Moreover, its assumption of stationarity can lead to significant
limitations in practice. For example, ST-LIM cannot resolve the
periodic feature of cyclostationary observations or analyze the
seasonality of global-scale physical phenomena (Penland and
Sardeshmukh, 1995).

The interactions between seasonal cycles and climate modes have
been increasingly recognized as a central aspect of climate variability
research in recent years (Stuecker et al., 2015; Stuecker et al., 2013;
Zhao et al., 2024). Previous studies have addressed seasonality in
climate science through different strategies (Stuecker, 2023). One
approach imposes periodicity on the data analysis, including the
cyclostationary empirical orthogonal function, analyzing the time-
dependent physically meaningful modes (Hamlington et al., 2011;
Kim, 2002; Kim et al., 2015). Another example involves dividing
observational data by the calendar month and analyzing each segment
separately—for instance, by applying theMarkov approximation (Xue
et al., 2000). On the other hand, mathematical modeling with

periodicity offers an alternative, but the periodicity is often
simplified as a sinusoidal fluctuation to reduce parameter
estimation demands and overall model complexity (Johnson et al.,
2000b; OrtizBeviá, 1997). Meanwhile, some studies assume that
cyclostationary dependence is primarily driven by stochastic
random forcing rather than by deterministic dynamics (Alexander
et al., 2008; Newman et al., 2011a; Penland, 1996). However, none of
these approaches fully integrate deterministic dynamics with external
random forcing, motivating the development of cyclostationary LIMs
(CS-LIMs) (Shin et al., 2021).

The original CS-LIM, a variant of LIMs, was introduced recently
in the climate science community, bridging a critical gap in
analyzing and modeling the seasonal cycle of a climate
phenomenon (Shin et al., 2021). This method is designed to
capture the first-order temporal structure of the deterministic
and stochastic components of a cyclostationary process (i.e., the
unknown system f in Equation 1 is periodic), and it has been
applied to study the seasonal variation in ENSO using geophysical
fields such as monthly sea surface temperature (SST) time-series
data (Shin et al., 2021). Compared to the analyses based on the ST-
LIM framework, the original CS-LIM has shown an improved
forecast skill and a more accurate ENSO characterization (Kido
et al., 2023; Shin et al., 2021; Vimont et al., 2022). In recent years, CS-
LIM has been increasingly recognized as an important mathematical
tool in climate science. However, its mathematical basis is worth
further exploration. Enhancing the theoretical rigor of CS-LIM
would not only solidify its mathematical foundation but also
extend its applicability to broader areas in climate research or
other applied fields of science.

From a mathematical perspective, under the cyclostationary
condition, the original CS-LIM first approximates the complex
non-linear stochastic system with a periodic Markov system of
the following form:

d

dt
x � A t( )x + �����

2Q t( )√
ξ, (3)

where A(t) and Q(t) are periodic families of dynamical and
diffusion matrices, respectively. To estimate A(t) and Q(t), the
original CS-LIM divides the full period into several intervals, applies
the ST-LIM interval-wise to extract the first-order dynamics, and
then estimates diffusion by enforcing the cyclostationary version of
FDR (Shin et al., 2021). Therefore, unlike the ST-LIM, which
reconstructs the linear dynamics and diffusion of a Markov
system, the original CS-LIM does not reconstruct the periodic
linear dynamics and diffusion for a process satisfying Equation 3;
rather, it estimates them. Even so, this estimation is sufficient for
most applications. The detailed formulations of Equations 2, 3 will
be provided in the later sections.

In this article, we study CS-LIMs from a mathematical
perspective by providing a theoretical background and examining
the validity of approximation used in the models. In particular, we
refine the original CS-LIM to the e-CS-LIM by improving the finite
difference stencils to remove an artificial phase shift. However,
because of the interval-wise application of ST-LIM, it is still
vulnerable to the Nyquist issue. As an alternative, we present
l-CS-LIM, an analytic inverse model corresponding to Equation
3. The time-dependent dynamics are estimated using the first-order
right-derivative of the correlation function at 0-lag, and hence,
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l-CS-LIM is unaffected by the Nyquist issue. We also note that it
corresponds to the pointwise Markov approximation, in
contrast to the interval-wise version.

Notably, the e-CS-LIM and l-CS-LIM are closely related. In
practical implementation, the former utilizes an exponential fitting,
while the latter uses a linear fitting to the observed correlation function
to estimate the first-order dynamics of the underlying system using
finite cyclostationary data. The exponential fitting approaches the linear
fitting when the sampling intervalΔt and the lag τ are sufficiently small
and the number of intervals and the sampling size are sufficiently large.
Therefore, in such a limit, e-CS-LIM converges to l-CS-LIM, in the
sense that the difference between their estimated results can be
arbitrarily small. On the other hand, for τ >Δt, they can be
designed to serve different purposes. The e-CS-LIM constructs
dynamical matrices, each of which best represents the integrated
effect of the underlying dynamics within each interval, leading to its
robustness against noise. In addition, the tau-test provides a
quantitative measure of the validity of the linearity assumption
within each interval. On the other hand, as a derivative-based
method, the l-CS-LIM estimates the Jacobian of the underlying
system, representing the instantaneous dynamical information.

The remainder of this study is structured as follows: in Section 2,
we review the mathematical background of the ST-LIM and discuss
the Nyquist issue based on Penland (2019), extending the analysis by
examining it from the perspective of perturbation theory. In Section
3, we present the formulation of CS-LIMs, including the original CS-
LIM by Shin et al. (2021), e-CS-LIM, and l-CS-LIM, along with their
numerical issues and the relationships among various LIMs. The
proofs of the key equations are presented in the Supplementary
Material. Then, the numerical experiments are presented in Section
4 to demonstrate the effectiveness of e-CS-LIM and l-CS-LIM.
Finally, in Section 5, we apply the CS-LIMs to real-world
cyclostationary data to discuss the ENSO mechanism.

Before proceeding to the next section, we briefly explain the
convention of our notation. Vectors are assumed to be column
vectors unless stated otherwise. We use bold font for continuous-
time forward formulations and regular font for inverse problems.
Moreover, true values are denoted in bold, while model outputs are
in regular font in the numerical experiments or applications. When
referring to time-series data, we mean a discrete-time sequence of
n-dimensional vectors indexed by k with an equal sampling interval
represented by Δt (i.e., {x(t)| t � kΔt} ⊂ Rn). Furthermore, we
assume either stationarity or cyclostationarity throughout this article.

2 Review of the ST-LIM

To represent the underlying unknown system from finite
observations, the ST-LIM framework constructs a best-fit linear
system within the class of Ornstein–Uhlenbeck (OU) processes
given by the following equation:

d

dt
x � Ax + ���

2Q
√

ξ, (4)

where A is the real-valued dynamical matrix and Q is the positive
definite diffusion matrix (Penland, 1989; Penland and Magorian,
1993). The noise term ξ is a normalized Gaussian random vector
with zero mean, and

〈ξ(· + τ)ξT(·)〉 � δ(τ)I,
where the bracket and δ denote the expectation and Dirac delta
function, respectively. Given this setup, the evolution of probability
distribution P is described by the well-known Fokker–Planck
equation as follows:

∂

∂t
P x, t( ) � −∑

j,k

Ajk
∂

∂xj
xkP x, t( ) +∑

j,k

Qjk

∂2

∂xj∂xk
P x, t( )

� LFPP x, t( ),
(5)

where LFP is the Fokker–Planck operator (Øksendal, 1987; Särkkä
and Solin, 2019). To ensure a stationary distribution, each
eigenvalue of A must have a negative real part, thereby making it
a damping operator. The balance between the dissipative dynamics
and the external excitation random forcing is given by the
fluctuation-dissipation relation (FDR) as follows:

AC + CAT + 2Q � 0. (6)
Here, C denotes covariance. The correlation function K(τ): �
〈x(· + τ)xT(·)〉 admits an explicit form for τ ≥ 0,

K τ( ) � eτAC, (7)
allowing us to formally express the dynamical matrix in terms of the
matrix logarithm of the Green function G, given by
G(τ) � K(τ)C−1; thus, for any lag τ > 0, we obtain

A � 1
τ
log G τ( )( ). (8)

In practical applications, given a finite set of observational data
{x(t)} ⊂ Rn, where x(t) follows a continuous distribution and is
governed by an unknown complex system, the ST-LIM uses the
observed correlation function Kobs, computed as

Kobs τ( ) � ∑ N−k( )Δt
t�0 x t + τ( )x t( )T

N − k + 1
,

and Equations 6, 8 to determine the estimated first-order dynamics
AST and diffusion matrix QST. Consequently, it yields the
approximate system of the form

d

dt
x � ASTx + ����

2QST
√

ξ

to represent the underlying system. This approach is referred to as
the Markov assumption or Markov approximation.

Though the ST-LIM algorithm appears straightforward, the
choice of τ is critical. It cannot be arbitrary due to the multi-
valued nature of the matrix logarithm and the potential numerical
instabilities arising from the eigenstructure of the Green function at
multiples of Nyquist lags. This issue becomes especially critical for
larger τ values, particularly in the tau-test, where τ is varied over a
broader range (Penland, 2019).

2.1 Multi-valued logarithm

In theory, to ensure that the logarithm (Equation 8) correctly
estimates A, it is essential to select the appropriate branch cut rather
than always using the principal logarithm. LetU andV, respectively,
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be the matrices consisting of the left eigenvectors uj and right
eigenvectors vj corresponding to the eigenvalue γj of A such that
UVT � UTV � I (Penland and Matrosova, 1994; Risken, 1989). As
G(τ) � eτA, we have the spectral decomposition as follows:

G � ∑
j

ujgj τ( )vTj , (9a)

and

A � ∑
j

ujγjv
T
j , (9b)

where gj(τ) � eτγj . Suppose that A has a conjugate eigenpair
γ± � α ± βi; for clarity, we drop the subscript j. Then, the
computation of the matrix logarithm reduces to the complex
logarithm of eigenvalues log(eτγ± )/τ, which can take values from
the set {α + i(± β + 2kπ/τ)| k = 0, 1, 2,...}.

If the principal logarithm, whose branch cut is the negative real
line, is used, a jump discontinuity will appear when τ first crosses
τ0 � π/β, and Equations 9a, b will not return the correct phase
argument for τ > τ0. Furthermore, as the eigenpair g± � eτγ± ofG(τ)
merges into repeated eigenvalues at τ0, an ambiguity arises in
choosing and numbering the eigenvectors. This critical value τ0
is known as the Nyquist lag (Penland, 2019). To ensure that
Equations 9a, b hold for all τ > 0, with an initial τ < τ0, one must
track the phase of each eigenvalue log(g±) and the corresponding
eigenvectors. This is particularly important when τ approaches kτ0,
where k > 0, as the discontinuities in the logarithm or repeated
eigenvalues may occur. In such cases, it is necessary to adjust the
branch cut or appropriately select the eigenvectors. With an
appropriate eigen-adjustment, Equations 9a, b hold for each
τ > 0, allowing A to be consistently constructed from G(τ). The
number of Nyquist lags corresponds to the number of complex
eigenpairs, so the initial point should be selected to be less than the
smallest Nyquist lag.

2.2 Nyquist issue

The Nyquist issue arises from the multivalued nature of the
complex logarithm and the instability of eigenvectors of G at the
Nyquist lag (Penland, 2019; Penland and Sardeshmukh, 1995). Let
Gobs denote an observed Green function computed from finite
observations {x(t)} of a Markov system, and let uobs, vobs, and
gobs
± , be defined in the same manner as before. We can express this

as follows:

Gobs τ( ) � G τ( ) + r τ( ), (10)
where r denotes the residual matrix. As the eigenvalue varies
continuously with respect to r, the repeated eigenvalues g± �
−eατ0 can split into two distinct real eigenvalues gobs

± , at a
Nyquist lag τ0 whenever 0< ‖r‖≪ 1. This typically does not
create significant issues if ‖r‖ is sufficiently small, which is
expected when the observation time is sufficiently long. In such
cases, we can track the eigenvalues of Gobs as a function of discrete-
valued τ and number them so that each eigenvalue is “numerically”
continuous in τ. However, at the Nyquist lag, the eigenvectors
become discontinuous at r � 0 due to the repeated eigenvalues
and undergo a drastic change once perturbed. In particular, the

eigenvectors u±, v±, uobs(τ < τ0), and vobs(τ < τ0) may have complex
entries, while uobs(τ0) is real-valued. Therefore, Equations 9a, b are not
stable at the Nyquist lags and their multiples, where repeated eigenvalues
should ideally be present. More concerningly, at odd multiples of the
Nyquist lags, the perturbation r further introduces complex entries into
log(Gobs), contradicting the real-valued observations (Culver, 1966). In
practice, Gobs is inevitably noisy due to finite observation, causing
potential failures in the tau-test whenever τ approaches one of the
multiples of the Nyquist lags. This issue becomes increasingly
unavoidable as n increases (Penland, 2019).

To demonstrate the Nyquist issue, we consider the linear system
(Equation 4), where

A �
−10 −100/28 · 2π 0 0

100/28 · 2π −10 0 0
0 0 −10 −100/20 · 2π
0 0 +100/20 · 2π −10

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,
(11)

C � I, and Q � −(A + AT). This linear system, similar to example
1 in Penland (2019), consists of two non-interacting rotation
submatrices, with the corresponding Nyquist lags being 0.1 and
0.14. We compute the dynamical matrices over different values of τ
using Equations 9a, b under four different conditions: whether the
Green function is subjected to residual noise or not and whether the
eigen-adjustment is applied or not. Then, the resulting output
matrices Aoutput are compared with the ground truth matrix A
using the relative error measured by the L2-norm, defined as follows:

eA � Aoutput − A‖ ‖2
A‖ ‖2 . (12)

Figure 1 shows the relative errors as a function of τ. Without
eigen-adjustment, the relative errors of the estimated dynamical
matrices diverge after the smallest Nyquist lag of 0.1, regardless of
the presence of residual noise, and do not recover as τ increases.
With eigen-adjustment, the ground truth can be estimated if the
Green function is free from noise, which is equivalent to an ideal

FIGURE 1
Nyquist issue of the ST-LIM. The plot shows the relative errors eA
of the estimated dynamical matrices as a function of lag τ, calculated
under four different conditions. G denotes the theoretical Green
function (assumed to be noise-free), and Gobs represents the
noisy Green function. In particular, the residual term is set as
r(τ) � 0.01 × e−10τN, where N is a randommatrix with entries sampled
from the standard Gaussian distribution. The adjusted and non-
adjusted conditions show how eigen-adjustment impacts the stability
of the estimated dynamics, with peaks indicating instability at the
multiples of Nyquist lags.
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scenario of flawless and infinite observations. On the other hand,
when the noisy Green function is noisy, the Nyquist issue persists at
multiples of the Nyquist lags.

3 CS-LIM

Although the ST-LIM is effective for stationary observational
data, its stationary assumption renders it incapable of capturing the
periodic characteristics of cyclostationary data. In the CS-LIM

framework, we model the underlying unknown periodic system
using the periodic OU process as follows:

d

dt
x � A t( )x + �����

2Q t( )√
ξ, (13)

where A and Q are periodic dynamical and (positive definite)
diffusion matrices, respectively, with the same period. Without
loss of generality, we may assume that the period equals 1. The
time evolution of the probability distribution is given by Equation 5,
with A and Q being time-dependent. To achieve a cyclostationary
steady state, all Floquet multipliers (i.e., the eigenvalues of the
monodromy matrix M) of Equation 13 must have modulus less
than 1 (Chicone, 2006; OrtizBeviá, 1997). In the cyclostationary
steady state, the covariance function C can be viewed as a function
on the circle S of perimeter 1, called the phase space, which is
parametrized by θ. By naturally identifying A and Q with functions
on S through the projection map ω: R → S, the balance equation is
now described by the cyclostationary FDR (CS-FDR) as follows:

d

dθ
C � A θ( )C θ( ) + C θ( )AT θ( ) + 2Q θ( ). (14)

For convenience, we identify the phase variable θ with the time
variable t via θ � ω(t) without explicitly stating it when there is
no confusion.

In general, since A(t)A(s) ≠ A(s)A(t) for some t and s, the
monodromy matrix M and the correlation function K(τ, θ) �
〈x(t + τ)xT(t)〉 do not admit an explicit expression. To better
understand the periodic system, as a heuristic example, let us consider
A(t) � (1 + f(t))�A, where �A is the mean state and f(t) satisfying∫1

0
f(t)dt � 0 describes the variation. In this special case, the

monodromy matrix can be explicitly written as M � e�A, meaning that

FIGURE 3
Phase shift analysis in the original CS-LIM. The upper two subplots show the covariance C and its derivative d

dtC of Equation 19. The remaining
subplots show the dynamics A and diffusion Q (gray) of Equation 19, and the model results obtained using the original CS-LIM (blue) and e-CS-LIM
(orange) forM ∈ {10, 100}with different lags τ ∈ {0.1,0.2,0.3}. The double-headed arrow in each subplot is the phase difference between the original CS-
LIM result and the ground truth, computed by sine wave curve fitting.

FIGURE 2
Schematic illustration for the e-CS-LIM and the original CS-LIM.
The circles mark the sampling time of the observational data {x(t)} and
phase coordinates for covariance Cobs and the dynamical matrices
Ao−CS for the original CS-LIM and Ae−CS for the e-CS-LIM. The
blue shaded areas represent the intervals Ij in the phase space, and the
yellow block specifies the sampling used for x(t + τ) in Equation 15.
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stability requires all eigenvalues of �A to have negative real parts and that
temporary instability is possible as f(t) may take values less than −1 at
certain times. Moreover, the correlation function can be expressed as

K(τ, θ) � e∫t+τ
t

A(τ′) dτ′
C(t), implying that the integrated effect of the

dynamical matrices over the current time t and its τ-lag later is
considered.

Following the workflow of the ST-LIM, our goal is to express A
in terms of the correlation function K. However, K is, in general,
mathematically intractable, making it difficult to derive a
logarithmic-like equation similar to Equation 8. Therefore, an
alternative approach is necessary.

3.1 e-CS-LIM

To determine the first-order dynamics, Shin et al. (2021)
proposed what we now call the interval-wise Markov
approximation, forming the basis of the original CS-LIM and the
proposed e-CS-LIM. For clarity, we briefly outline this method using
an example. Consider a set of observations {x(t)} of a physical
phenomenon with a diurnal period (1 day), with a sampling interval
Δt of 15 min over L days. First, by equi-partitioning the phase space
into M � 24 intervals Ij (j � 1, . . . , 24), the data are divided into
24 subsets given by Sj: � {x(t)| ω(t) ∈ Ij}, where the jth subset
contains data sampled during the jth hour of a day. Each Sj presents
a similar stage of cyclostationary dependence. For each j, we
compute the observed correlation function Kobs

j (τ) for τ � 0 and
τ � mΔt using data sampled in the j-th hour of a day and τ minutes
later; that is, we compute

Kobs
j τ( ) � ∑x t( )∈Sjx t + τ( )x t( )T

Sj
∣∣∣∣ ∣∣∣∣ , (15)

where |Sj| denotes the number of observations in Sj.
The interval-wise Markov approximation plays a crucial role in

estimating the dynamics. The e-CS-LIM makes the stationary
assumption for each hour and attempts to apply Equation 8 to
estimate the dynamics. This extends the Markov approximation
across all hours, justifying the term interval-wise Markov
approximation. However, in contrast to ST-LIM, which uses all
available observations to estimate a single dynamical matrix, the
e-CS-LIM approach may suffer from insufficient sampling due to
equi-partitioning. This may further result in noisy Kobs in the phase
direction j, potentially requiring a filter to smooth Kobs in j before
solving the dynamics. This procedure is known as phase averaging
(Shin et al., 2021). Once a suitable Kobs is obtained, Equation 8 is
applied for each j to compute the estimated dynamics Ae−CS

j ,
followed by the CS-FDR (Equation 14) to compute the estimated
diffusion matrix Qe−CS

j for the jth hour. As a result, e-CS-LIM
formally produces an approximate system of the following form:

TABLE 1 Intercomparison of linear inverse models.

ST-LIM e-CS-LIM l-CS-LIM

Assumption on {x(t)} Stationarity Cyclostationarity Cyclostationarity

Underlying mathematical framework Green function and FDR Interval-wise application of the ST-LIM and CS-FDR Right derivative of Kobs and
CS-FDR

Method’s relationship with the Markov
system

MAa Interval-wise MA Pointwise MA

Method for estimating dynamics Exponential fitting Exponential fitting Linear fitting

Output dynamical
matrix(s)

Close to mean state Approximate first-order dynamical matrix in each
subinterval

Jacobian at each phase

Capturing the periodic
feature of the system

No Yes Yes

Nyquist issue Yes Yes No

Sensitivity to noise Least Mediocre Yes

Filtering on Kobs No Optional Optional

Under the condition of the same sampling data {x(t)}.
aMA, Markov approximation.

FIGURE 4
Nyquist issue for the e-CS-LIM. The relative errors of the output
dynamical matrices calculated using Equations 9a, b as a function of
the lag variable for distinctM. In each subplot, the upper left shows the
phase coordinate tAj assigned to Ae−CS

j . The orange circles specify
the multiples of Nyquist lags of the mean dynamics.
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d

dt
x � Ae−CS t( )x + ��������

2Qe−CS t( )√
ξ, (16)

whose cyclostationary probability distribution Pe−CS
st is Gaussian at

each t. The original CS-LIM follows the same procedure but differs
in the numerical implementation, with its output matrices denoted
by Ao−CS and Qo−CS.

Although the interval-wise Markov approximation works in
practice, its validity requires further clarification. Though K does
not have an explicit form in general, its first-order right derivative
with respect to the lag variable τ at the origin satisfies the
following equation:

∂

∂τ

∣∣∣∣∣∣∣τ�0K τ, θ( ) � A θ( )K 0, θ( ) � A θ( )C θ( ). (17)

Therefore, by integrating with respect to τ, we obtain

K τ, θ( ) � eτA θ( )C θ( ) + o τ( ) as τ → 0, (18)
which indicates that for each phase θ, the correlation function
behaves approximately as an exponential function in the lag
variable τ. As a result, applying Equation 8 to each j in e-CS-
LIM provides a reasonable approximation of the underlying
deterministic dynamics as long as there are no abrupt phase-
dependent variations in the dynamics of the sampling data {x(t)}
used in Equation 15. This suggests that e-CS-LIM is a hybrid-type
model: the dynamics are approximated, while the diffusion process

FIGURE 6
Performance of e-CS-LIM. (a) Each subplot shows the errors with
respect to τ under a fixed M=10 and different values of Δt and Tf . (b)
Each panel shows the errors with respect to τ under a fixed Δt = 0.01
and different values of M and Tf .

FIGURE 5
Examples of CS-LIMs applied to synthetic observational data with
Tf � 1000, Δt � 0.01, and τ � 0.1. (a) Upper panels of each subfigure
show true (gray) and numerical (color) covariance and its derivative
used in the computation of e-CS-LIM for a distinct number of
intervals M ∈ {10,20,50, 100}. The true A and Q (gray) and the model
outputs Ae−CS andQe−CS (color) are shown in the lower panels. (b) This
is analogous to (a) but shows the l-CS-LIM result under distinct
sampling interval Δt and window length w.
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follows an analytic formula. Consequently, it does not analytically
reconstruct the periodic linear dynamics and diffusion of the linear
stochastic process (Equation 3), as mentioned in Section 1.

From a numerical aspect, the scheme of computing the
derivative of observed covariance dCobs and the assignment of
time coordinates for Cobs

j � Kobs
j (0), Ae−CS

j , and Qe−CS
j remain

unspecified at this point. For instance, it is unclear whether jth
covariance Cobs

j corresponds to j o’clock, j:30 or another
reference time.

In the e-CS-LIM framework, the time coordinate tCj for Cobs
j is

assigned to the midpoint of the jth interval. In contrast, the time
coordinate tAj for Ae−CS

j is shifted by half the lag, i.e., tAj � tCj + 0.5τ,
since the data at 0-lag and τ-lag are used to compute Kobs

j in
Equation 15. In general, after sorting, the distance between tCj
and tAj and the distance between tAj and tCj+1 can differ. In this
case, the computation of Qe−CS requires careful treatment. To
address this, for simplicity, we assume τ to be a multiple of 1/M
whenever discussing diffusion. This ensures that the time
coordinates tC � {tCj } and tA � {tAj } (after appropriate
rearrangement) either coincide or alternate at uniform intervals
of distance 1/2M. Then, we assign the time coordinate tQj for Qe−CS

j

as tQj � tAj , and we use the center difference scheme to compute
dCobs when tC and tA coincide and the forward difference scheme
when they alternate.

Contrary to the e-CS-LIM, the original CS-LIM framework
always adopts centered differencing to compute dCobs and a

common jth time coordinate tj at the midpoint of the jth
interval for Cobs

j , Ao−CS
j , and Qo−CS

j . This stencil configuration,
however, introduces an artificial phase shift in the estimated
dynamics. A schematic illustration and the pseudocode for the
original CS-LIM and e-CS-LIM are presented in Figure 2 and
Algorithm 1, respectively.

3.1.1 Phase shift of the original CS-LIM
To demonstrate the phase shift, we consider an ideal case in

which the observational data {x(t)} are sampled using the
following equation:

d

dt
x � − 1 + f t( )( )�Ax + �������������

2 · 1 + g t( )( )�Q√
ξ, (19)

where f(t) � 0.5 sin(2πt), g(t) � 0.3 sin(2πt), �A � −1, and �Q � 1,
over an infinitely long window with a sampling interval Δt � 0.01.
We apply the original CS-LIM and e-CS-LIM with M � 100
(i.e., Kobs � K on the sample points) and M � 10. The results are
shown in Figure 3.

Regardless ofM, the dynamics Ao−CS from the original CS-LIM
exhibit a notable phase shift of approximately 0.5Δτ, which further
compromises the accuracy of Qo−CS. In contrast, e-CS-LIM
significantly mitigates the phase shift, even when {x(t)} is
partitioned into 10 subsets. However, it is worth noting that for a
larger τ value, variations in the dynamics are smoothed out as a
consequence of interval-wise Markov approximation and

FIGURE 7
Relative errors of the l-CS-LIM. Each panel shows the errors with respect to the window size w for filtering under different values of Δt and Tf .
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Equation 18. In addition, the Nyquist issue does not arise in the one-
dimensional case.

1:Input

2: {x(t)| t � kΔt} (a set of cyclostationary time-

series data)

3: Δt (sampling timestep)

4: L (number of periods)

5: M (number of intervals)

6: τ � mΔt (time lag)

7:Output

8: Ae−CS (or Ao−CS) (estimated linear dynamics)

9: Qe−CS (or Qo−CS) (estimated diffusion)

10: tA (phase coordinate for dynamics)

11: tQ (phase coordinate for diffusion)

12: Subdivide the phase space into M subintervals {Ij}
13:Compute Cobs

j � Kobs
j (0) and Kobs

j (τ) using Equation 15

14:Set tC
j � midpoint of Ij

FIGURE 8
Box plots of the relative errors between CS-LIM outputs and the ground truth. Each subplot shows the distribution of relative errors across different
dimensions n and observation time spans Tf . The box plots show the maximum, minimum, median, and quantiles of the relative errors, with outliers
removed. The left half of each subplot corresponds to the relative errors in dynamics while the right half is in diffusion.

FIGURE 9
Impact of the Nyquist issue on the numerical computation. Each
subplot shows the statistics of the relative errors for dynamics under
two different sampling intervals Δt. The synthetic sampling datasets
are generated with Tf � 1000. The e-CS-LIM estimates dynamics
usingM � 10 and τ � 0.1, while the l-CS-LIM computes dynamics with
w � 10 for Δt � 0.01 and w � 50 for Δt � 0.002. Outliers have
been removed.
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15:Smooth Cobs
j and Kobs

j (τ) in j if necessary

16:(Compute the dynamics)

17:Compute Ae−CS
j (orAo−CS

j ) � 1
τ log(Kobs

j (τ)Cobs−1
j )

18:if e-CS-LIM then

19: Set tA
j � tC

j + 0.5τ

20: Shift and update the index j of Ae−CS
j and tC

j such

that tC
j ≤tA

j <tC
j+1

21:else if the original CS-LIM then

22: Set tA
j � tC

j

23:end if

24:(Compute the diffusion)

25:if e-CS-LIM then

26: if tC
j <tA

j then

27: Qe−CS
j � 1

2 (
Cobs
j+1−Cobs

j

(1/M) − Ae−CS
j Cobs

j − Cobs
j (Ae−CS

j )T)
28: else if tC

j � tA
j then

29: Qe−CS
j � 1

2 (
Cobs
j+1−Cobs

j−1
2·(1/M) − Ae−CS

j Cobs
j − Cobs

j (Ae−CS
j )T)

30: end if

31:else if the original CS-LIM then

32: Qo−CS
j � 1

2 (
Cobs
j+1−Cobs

j−1
2·(1/M) − Ao−CS

j Cobs
j − Cobs

j (Ao−CS
j )T)

33:end if

34:Set tQ
j � tA

j

Algorithm 1. e-CS-LIM (and the original CS-LIM).

3.1.2 Nyquist issue for the e-CS-LIM
Due to the interval-wise application of the ST-LIM, the CS-

LIM is also subject to the Nyquist issue. Contrary to the ST-
LIM, in which the Nyquist issue does not appear in the
theoretical computation when the eigen-adjustment is
applied (i.e., G (adjusted) in Figure 1), the small-o term in
Equation 18 introduces a non-trivial residual in Equation 10,
causing the Nyquist issue even if flawless infinite observation
is possible.

To demonstrate the Nyquist issue, we suppose that the data are
sampled infinitely from the periodic linear system (Equation 19),
where f(t) � g(t) � 0.5 sin(2πt), �A is given by Equation 11, and
�Q � −(�A + �AT). To examine the dependence on the partitioning of
the phase space, we considerM ∈ {10, 100} and apply the e-CS-LIM
over different values of τ.

Figure 4 shows the relative errors between Ae−CS
j and A(tAj )

for certain values of j as a function of τ. Since the dynamical
matrix varies in time, the Nyquist issue does not necessarily
appear at the multiples of the Nyquist lags of the mean state �A,
but rather near them. In addition, even outside the Nyquist lags,
the relative error remains non-zero, which again indicates that
the e-CS-LIM is not an analytic inverse model for Equation 13.
Nevertheless, the relative error is acceptable for application
purposes, provided that τ is not overly large.

3.2 l-CS-LIM

As the e-CS-LIM interval-wise approximates the underlying
stochastic process using a Markov system and applies Equation 8,
we aim to build an (analytic) inverse model for the periodic Markov
system (Equation 3). Instead of using the global information of K as in
the ST-LIM, the l-CS-LIM extracts the dynamics by applying Equation

17, the local information of K, followed by computing the diffusion
matrix using CS-FDR. This suggests that given the observational data,
the l-CS-LIM outputs the best-fit periodic Markov system for the
unknown complex periodic system, provided that the sampling
interval Δt≪ 1 and the observation window L≫ 1. In practice, the
observed correlation function Kobs is obtained using the
following equation:

Kobs τ, θ( ) � ∑ω t( )�θx t + τ( )x t( )T
L

, (20)

and the partial derivatives of correlation function ∂τKobs and ∂θKobs are
estimated by forward finite difference. The corresponding time
coordinates for the estimated time-dependent dynamics Al−CS and
diffusion Ql−CS are shifted to the right by 0.5Δt. In other words,
tA � tQ � tC + 0.5Δt, where tA, tQ, and tC denote the general reference
of the time coordinates for Al−CS, Ql−CS, and Cobs, respectively, as
previously stated. As a result, the l-CS-LIM formally determines a
periodic linear system as follows:

d

dt
x � Al−CS t( )x +

��������
2Ql−CS t( )

√
ξ, (21)

whose cyclostationary distribution Pl−CS
st is also Gaussian for

each t. The algorithm of l-CS-LIM is summarized in
Algorithm 2.

This derivative-based method avoids the multi-valued matrix
logarithm and is, therefore, not affected by the Nyquist issue.
However, it is more sensitive to noise, and phase averaging is
applied to Kobs whenever necessary.

3.3 Relationship among LIMs

All LIMs discussed in this article are related. First, we note
that the l-CS-LIM is indeed an extension of the ST-LIM. If the
linear dynamics and diffusion matrix are constant in time, the
correlation function is independent of phase variable θ, and
Equation 17 can be written in the following form.

FIGURE 10
Observed SST and D20 anomalies in the z-score. The left panels
show the time-series of SSTs andD20 from 1979 to 2021, and the right
panels show the corresponding probability density functions using
histograms.
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1:Input

2: {x(t)| t � kΔt} (a set of cyclostationary time-

series data)

3: Δt (sampling timestep)

4: L (number of periods)

5:Output

6: Al−CS (estimated linear dynamics)

7: Ql−CS (estimated diffusion)

8: tA (time coordinate for Al−CS)
9: tQ (time coordinate for Ql−CS)
10:Compute Cobs

k � Cobs(kΔt) � Kobs(0,kΔt) and Kobs(Δt,kΔt)
using Equation 20

11:Smooth Cobs and Kobs in the phase variable

whenever necessary

12:Compute Al−CS
k � Kobs(Δt,kΔt)−Kobs(0,kΔt)

Δt (Cobs
k )−1

13:Compute Ql−CS
k � 1

2(Cobs
k+1−Cobs

k
Δt − Al−CS

k Cobs
k − Cobs

k (Al−CS
k )T)

14:Set tA
k � tQ

k � (k + 0.5)k + 1Δt

Algorithm 2. l-CS-LIM.

d

dτ

∣∣∣∣∣∣∣τ�0K τ( ) � AC, (22)

FIGURE 11
l-CS-LIM result on the normalized coordinate. The x-and y-axes represent the z-scores of SST and D20 anomalies, respectively. The cyclostationary
distribution Pl−CS

st is represented by the black contour lines, with the black arrows indicating the eigenvectors of the covariancematrix scaled by the square
root of the corresponding eigenvalues. The quiver plot shows the vector fields of the estimated first-order dynamics, while the thick orange arrows are
the eigenvectors of the diffusion matrix scaled by the square root of the corresponding eigenvalues. The filled contours show the difference
between the theoretical Pl−CS

st and the observed Pobs
st , with colors ranging from −0.10 to 0.10.
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which is equivalent to the right derivative of Equation 7. At the same
time, for a general periodic stochastic process, we can view l-CS-LIM
as approximating the underlying system using a Markov system at
each instant as Equations 17, 22 share the same form. Therefore, we
may say that l-CS-LIM utilizes the pointwise Markov approximation
contrary to the interval-wise version adopted in the e-CS-LIM.

A natural question is whether the ST-LIM accurately
estimates the mean state �A � ∫1

0
A(t) dt from the infinite

cyclostationary observational data sampled from the periodic
Markov system (Equation 3). As the correlation function used
in the ST-LIM is the integral of K(τ, θ) over θ, it is clear that it
does not equal eτ �A�C, where �C � ∫1

0
C(t) dt is the mean

covariance. Nevertheless, if A does not vary drastically, the
estimated linear dynamics from ST-LIM remain close to the
mean state, preserving the dynamics-relevant information of
the underlying system.

From a numerical viewpoint, at a given phase θ, the l-CS-LIM
applies the forward difference method to the observed correlation
function Kobs at two consecutive points τ � 0,Δt, which amounts to
a linear fit of these two points. On the other hand, the e-CS-LIM
calculates Kobs at the origin and the point at mΔt and applies
Equation 8, which corresponds to an exponential curve fitting
whenever the Nyquist issue does not persist. This justifies the
prefixes e-CS-LIM and l-CS-LIM. As a result of Equation 18, the
e-CS-LIM converges to the l-CS-LIM under the conditions ofm � 1,
M � 1

Δt, Δt≪ 1, and L≫ 1. Consequently, the l-CS-LIM can be
viewed as an instantaneous version of the e-CS-LIM.

In practical applications, the difference between the l-CS-LIM
and e-CS-LIM goes beyond the estimation of dynamics. The l-CS-
LIM, as a derivative-basedmethod, pointwise estimates the Jacobian,
which is the first-order approximation of the unknown dynamics.
As the state variable moves away from the steady state or as time
marches, the higher-order terms in the function’s expansion may
become more significant, and the accuracy of linear approximation
decreases, lowering the effectiveness of approximating the unknown
system using Equation 13. Nevertheless, the Jacobian can still be
important in certain practical applications. The e-CS-LIM, on the
other hand, finds the best-fit linear system within each subinterval in
the phase space. Though the e-CS-LIM is not an analytic inverse
model for a general periodic OU process, it remains effective because
for each phase, more sampling can be used in Equation 15 than in
Equation 20, and the lag τ can exceed Δt. As a result, the e-CS-LIM is
more robust to noise than l-CS-LIM. The intercomparison among
LIMs is summarized in Table 1.

4 Numerical experiments

As the CS-LIMs compute the dynamical and diffusion matrices
using the observed correlation functionKobs, they can be regarded as
functions that take Kobs as input and produce the estimated
dynamics and diffusion. As an inverse method, the accuracy of
these estimates depends on the quality of Kobs (Lien et al., 2024). If
Kobs computed from observations accurately captures the true
correlation function, then both CS-LIMs are expected to
effectively estimate both dynamics and diffusion. However, due
to the finite number of observations, Kobs is inevitably affected
by noise, raising concerns about the stability of the algorithms as

numerical derivatives are required. Therefore, in this section, we
evaluate the performance and sensitivity of both e-CS-LIM and
l-CS-LIM using the synthetic time-series data {x(t)} of Equation 3
under various conditions. For notational convenience, we write ACS

and QCS as general references for Ae−CS and Al−CS as well as Qe−CS

and Ql−CS, respectively.
More precisely, for the given A(t) and Q(t), we use the Euler

approach with a timestep of dt � 0.002 from T0 � 0 to Tf � L to
generate auxiliary time-series data; we then subsample it with a
sampling step of Δt to obtain the observational data {x(t)}, and we
use CS-LIMs to obtain the estimatesACS andQCS. As the accuracy of
models depends on the stochastic nature of the dataset, the
abovementioned process will be repeated 128 times in each
scenario, and the resulting statistics (e.g., median) of relative
errors, defined similarly to Equation 12, will be used to evaluate
the models. This evaluation process will be applied to each case
presented in this section.

4.1 One-dimensional case

To visualize the CS-LIM results, we start with a one-
dimensional case represented by Equation 19, where
f(t) � 0.3π sin(2πt) + 0.1π cos(4πt), g(t) � 0.1π sin(2πt),
�A � −1, and �Q � 1. For the e-CS-LIM, no filter is applied to the
observed correlation function Kobs, while for the l-CS-LIM, a
sliding average with a window of length w is applied to Kobs

and Cobs.
Figure 5a shows an example of the e-CS-LIM results for

Tf � 1000, τ � 0.1, and Δt � 0.01 under a distinct number of
intervals M ∈ {10, 20, 50, 100}. Although a smaller M reduces the
resolution of the reconstruction, it does not significantly affect the
reconstructed dynamics Ae−CS as long as the variation can be
effectively captured by tA. Moreover, a smaller M enhances
robustness against noise, leading to a more stable estimate of
Qe−CS. For M � 100, the stochastic influences in estimated
dynamics Ae−CS remain limited since the lag τ � 10Δt � 0.1 can
be chosen to be larger than Δt, thereby mitigating numerical
instability associated with dividing noisy data by a small number.
This is consistent with the theoretical case illustrated in Figure 3.
However, in the computation ofQe−CS, the numerical differentiation
of noisy Cobs results in unfavorable noise amplification in Qe−CS.
Although phase averaging of Cobs could mitigate this issue, we do
not pursue this further for e-CS-LIM in our analysis.

Figure 5b shows an example of the l-CS-LIM results for Tf �
1000 under different parameter settings: sampling intervals
Δt ∈ {0.01, 0.02} and a window width of moving averaging
w ∈ {1, 10}. Without phase averaging (w � 1), noisy Kobs causes
amplified noisy variations in Al−CS, especially for the small sampling
interval Δt � 0.01, raising concerns over whether Al−CS contains
excessive stochastic influences. This issue can be effectively
addressed by applying phase averaging to Kobs; when w � 10, the
estimated Al−CS provides a clean representation of the
underlying dynamics.

In contrast, the estimated Ql−CS for w � 1 appears more
robust to the noisy numerical derivatives, though this may be
attributed to the idealized nature of synthetic data and the
choice of finite difference schemes. To further examine the
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sensitivity, we introduce artificial perturbations to Kobs by adding a
small noisematrix r and apply the resulting correlation function to lines
12 and 13 in Algorithm 2. The corresponding estimated diffusion then
exhibits noisy variation, confirming the sensitivity of Ql−CS to noisy
Kobs. Nevertheless, applying phase averaging to the noisy correlation
function again effectively removes the undesired noisy variations in the
estimates. Finally, it is noted that the CS-FDR is maintained since the
filtering is applied to Kobs rather than Al−CS or Ql−CS.

Next, we examine the sensitivity of CS-LIMs to various
parameters. Figure 6a shows the results of the e-CS-LIM for a
fixed M � 10. As the observation time Tf increases, Kobs more
accurately reflects the underlying system, and hence, the
performance consistently improves. However, the accuracy
decreases with increasing τ due to its smoothing effect on Ae−CS,
which is consistent with the analytic case shown in Figure 3. In
addition, reducing Δt leads to a modest performance enhancement

for the e-CS-LIM since more data points are used in Equation 15, but
the improvement is limited.

In addition, although the numbers of the observational data for
cases (Δt, Tf) � (0.01, 500) and (0.1, 5000) are the same, their
performance differs. This discrepancy arises because in the former
case, all observational data corresponding to the subinterval Ij
contribute to the computation of Kobs

j and Cobs
j , which is equivalent

to capturing the integrated effect near tAj and tCj . In contrast, Kobs
j and

Cobs
j in the latter are directly at tAj and tCj since M � 1/Δt.
Figure 6b shows the results for a fixed Δt � 0.01 with varying

M ∈ {10, 20, 50, 100}. As previously discussed, the noisy
variations in Ae−CS associated with larger M are limited due
to a suitable τ. However, the Qe−CS remains more sensitive to
the noisy numerical derivative of covariance, implying the
need for phase averaging. As a result, to optimize the
performance of the e-CS-LIM, a balance must be struck: M

FIGURE 12
e-CS-LIM result on the normalized coordinate plane. This figure is analogous to Figure 11, but the results are based on the e-CS-LIM. See Figure 11
for a detailed description of the elements displayed.
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should be kept as small as possible to minimize noise
amplification in Qe−CS, while τ, optimally chosen as 1/M,
should remain small enough to prevent excessive smoothing
or insufficient resolution that could obscure meaningful
variations in Ae−CS and Qe−CS.

Moreover, we analyze the impact of sampling interval and
filtering on the l-CS-LIM, as shown in Figure 7. First, we see that
if no filter is applied, a larger Δt in the calculation of the numerical
derivative, though less accurate in the finite difference
approximation, is less sensitive to noise, leading to a lower
relative error in the noise-dominant cases. Then, we observe that
applying phase averaging to Kobs effectively reduces the noisy
variations in Al−CS, stabilizing the dynamics estimation,
particularly at small Tf or small Δt, with a clear decrease as
window size w increases. However, in cases with limited noisy
variations, particularly at large Tf and larger Δt, excessive
filtering can lead to additional error by overly dampening
meaningful fluctuations, which is noticeable in the case of Tf �
5000 and Δt � 0.02. Thus, optimal phase averaging requires
balancing noise reduction and the preservation of essential
variations to prevent over-smoothing, particularly when the noise
level is low.

4.2 Higher-dimensional cases

From the previous section, we observed that the lag variable τ
and the number of divisionM of the phase space play critical roles in
the e-CS-LIM performance, and filtering with the optimal window

size w effectively removes the noisy component and retains the
meaningful fluctuation in the l-CS-LIM. In this section, we extend
the analysis to multi-dimensional cases, setting τ � 0.1 and M � 10
for the e-CS-LIM and w � 10 for the l-CS-LIM with a sampling
interval Δt � 0.01. The underlying equation is still represented by
Equation 19, with f(t) and g(t) being the same as in the previous
section. Each entry of �A and �Q is initially drawn from the standard
normal distribution and then adjusted so that �A is a damping
operator and �Q is positive definite. The Nyquist lag in this setup
is significantly larger than τ � 0.1, eliminating concerns about the
Nyquist issue.

The performance of CS-LIMs across dimension n from 1 to 10 is
summarized in Figure 8. In general, if the observation timespan Tf is
sufficiently long so that Kobs well-estimates the underlying true
correlation function K, both CS-LIMs can effectively capture
dynamics and diffusion. Otherwise, the estimation can fail
drastically, especially for QCS in higher-dimensional cases, since it
is the sum of multiple noisy time series. It should be noted that this
study does not aim to compare the two CS-LIM variants directly
because the accuracy of CS-LIMs is influenced by numerous factors.
For example, the e-CS-LIM may struggle to capture fine variations
or locate peaks due to its relatively sparse resolution on the phase
space, while the l-CS-LIM depends on the choice of filtering, and the
optimal support or window size of filteringmay vary by applications.

Finally, we revisit the Nyquist issue. We keep the underlying
system the same (i.e., f and g remains unchanged) but with �A given
by Equation 11 and �Q � −(�A + �AT). Figure 9 shows the relative
errors in the dynamics for an observation time Tf � 1000, with
parametersM � 10 and τ � 0.1 for the e-CS-LIM and w � 10 when

FIGURE 13
CS-LIM results for the ENSO study. (A, B) The unfiltered observed SST covariance (black), the median (solid), and the 90% confidence levels (shaded
area) in the z-score determined by the CS-LIM ensembles. (C) Real (circle) and imaginary (star) parts of the seasonal-dependent eigenvalues of ACS. (D)
Two positive seasonal-dependent eigenvalues of QCS. The x-ticks represent the 15th of each calendar month. Notably, in (C, D), the markers and
x-ticks alternate.
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Δt � 0.01 and w � 50 when Δt � 0.002 for the l-CS-LIM. The
window size w is chosen such that the sliding average filter has a
support of 0.1, which is equal to the lag τ in thed e-CS-LIM. At a
timestep of Δt � 0.01, e-CS-LIM performance appears stable and
reliable, but closer examination reveals that extreme spikes in the
estimated dynamics occur randomly but frequently. Unlike the case
of the stationary LIM, this error is relatively limited, as only certain
points are affected by the Nyquist issue, while others remain
accurate. The l-CS-LIM result, in contrast, exhibits a narrower
error range but overall higher relative errors. When Δt is reduced
to 0.002, the sensitivity of the e-CS-LIM to the Nyquist issue
increases, with relative errors now ranging from 8% to 81%, even
exceeding the error range in Figure 8 forTf � 1000 and n � 4, where
�A and �Q are randomly generated. Meanwhile, the l-CS-LIM exhibits
a stable and narrow error range with significant improvement,
implying that the large relative error for the l-CS-LIM with Δt �
0.01 mainly arises from the finite difference scheme used in the
computation.

5 Real-world example: the ENSO
recharge oscillator

The El Niño-Southern Oscillation is a dominant interannual
climate mode driven by interactions between the ocean and the
atmosphere over the tropical Pacific Ocean (Di Lorenzo et al.,
2015). The ENSO oscillates between two primary phases, namely, El
Niño and La Niña, characterized by unusual warming and cooling of
SSTs in the central and eastern Pacific, respectively (Capotondi et al.,
2015; Okumura et al., 2011). The Niño 3.4 SST index, defined as the
anomaly of the average SST over the region 5S–5N and 170W–120W,
serves as a widely used indicator to monitor and predict El Niño and La
Niña events (Capotondi et al., 2015; Okumura, 2019).

In climate modeling, the variability in oceanic variables can be
viewed as the superposition of atmospheric variability and
subsurface processes, modeled by external stochastic forcing and
deterministic dynamics, respectively (Deser et al., 2010; Lou et al.,
2020). Consequently, ENSO can be viewed as a periodically driven
stochastic process. Previous studies have emphasized the seasonal
variations in the ENSO (Cane et al., 1986; Chen and Jin, 2021; Chen
and Jin, 2022; Levine andMcPhaden 2015; Shin et al., 2021; Webster
and Yang 1992), but only a few have quantified the relative roles of
the seasonal variations in the predictable SST dynamics and
unpredictable stochastic forcing (Shin et al., 2021).

In this study, we revisit one of the simplest low-dimensional
linear models of the ENSO, which represents the system using the
anomalies of area-averaged SSTs and the depth of the 20°C isotherm
(D20) over the equatorial Pacific (Burgers et al., 2005; Jin et al.,
2007). Under the stationary assumption, previous research has
interpreted the ENSO mechanism as a recharge oscillator, where
the SST anomaly and D20 anomaly play the roles of momentum and
position, respectively (Burgers et al., 2005).

For our analysis, we obtained monthly SST and D20 data from
ORAS5 reanalysis for the period 1979–2021 (Zuo et al., 2019). These
data were then averaged over 5S–5N and 170W–120W for SSTs and
5S–5N and 120E–80W for D20. Given that the data may exhibit
quasi-stationary behavior due to low-frequency signals such as
Pacific decadal variability, we applied a linear detrending

procedure as a preprocessing step (Kuo et al., 2023). To study
the seasonal dependence of the ENSO, we utilized the l-CS-LIM
and e-CS-LIM, applying them to the z-scores of the preprocessed
averaged SST and D20 anomalies.

To reduce sampling uncertainties, we also applied a three-
month sliding average to Kobs for both CS-LIMs rather than
directly smoothing the input data. This approach follows the
methodology proposed by Shin et al. (2021). The input data and
their distributions are shown in Figure 10.

Using the CS-LIMs, we obtain the time-dependent dynamics
ACS and diffusion matrices QCS. As they are defined at discrete
points, we apply linear interpolation entry-wise to construct the
approximate systems, as described in Equations 16, 21. The
covariance matrices reconstructed by the CS-LIM are calculated
from the synthetic data generated from the approximate systems
over 5,500 years and are used to estimate the cyclostationary
distributions Pl−CS

st and Pe−CS
st (collectively referred to as PCS

st ).
To compare PCS

st with observations, we apply the bivariate
Gaussian kernel density estimator to calculate the observed joint
probability density function (PDF) Pobs

st for each calendar month.
Figures 11, 12 show the cyclostationary distributions PCS

st , the vector
fields associated with the dynamics ACS, and eigenvectors of QCS

scaled by the square root of the corresponding eigenvalues to
represent the approximate periodic Markov systems.

The results reveal that the estimated dynamics exhibit a
clockwise spiral sink for most calendar months, contributing to a
rotational pattern in the cyclostationary distribution, except in late
August and September. In addition, the principal direction of the
diffusion matrices consistently remains in the first quadrant
throughout the year, indicating that atmospheric stochastic
forcing mainly acts to warm or cool both the surface and
sublayer at the same time. The discrepancy ΔP: � Pobs

st − PCS
st ,

shown by the filled contours in Figures 11, 12, predominantly
appears negative on the upper plane but positive on the lower
plane throughout the year. This tendency can bemainly attributed to
the negative skewness in the z-score of the D20 anomaly shown in
Figure 10 as the approximate systems yield a time-dependent
Gaussian distribution PCS

st .
Figure 13 shows the seasonal variation in the eigenvalues of ACS

and QCS. The results for the deterministic dynamics from both CS-
LIMs are consistent, showing a notable seasonal dependence;
although the dynamics overall act as a damping force, they
become temporarily unstable in boreal fall. The imaginary part is
especially prominent in boreal late spring and summer, contributing
to a phase transition in the SST–D20 correlation that shifts from
negative to positive. However, in boreal autumn, the dynamics slow
down significantly, and two real eigenvalues even appear in October,
indicating a non-rotating regime. The Floquet exponents (i.e., the
principal logarithms of the Floquet multipliers) of the approximate
system determined by the l-CS-LIM and e-CS-LIM reveal decay
rates of 2.01 and 2.41 years with periods of 4.05 and 3.83 years,
respectively. These are slightly different from, but consistent with,
the ST-LIM result with a decay rate of 2.00 years and a period of
3.08 years (Burgers et al., 2005).

The diffusion terms reveal distinct seasonal patterns between the
two methods. The e-CS-LIM shows a minimal seasonal variation in
diffusion, whereas the l-CS-LIM suggests that the random forcing
intensifies in two main periods, namely, April to June and October
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to November. These contrasting seasonal patterns in diffusion may
lead to different interpretations of the ENSO mechanism.

The l-CS-LIM result suggests a recurring annual cycle in both
oceanic deterministic dynamics and atmospheric stochastic forcing. In
March and April, while the background oceanic system pulls the SST
and D20 back to equilibrium, the unpredictable atmospheric system
intends to determine the ENSO phase (either positive, negative, or
neutral) of the upcoming year. Once the phase is established in boreal
summer, the oceanic system then acts as a driving force to build up the
SST anomaly from August to late October. As the atmospheric forcing
intensifies in the followingmonths, the SST anomaly can reach extreme
levels—either high or low—from November to January, potentially
causing the El Niño and LaNiña events. As the cycle progresses, weaker
atmospheric excitation and stronger oceanic damping from February
and April work help store the SST anomaly, gradually returning the
system to its equilibrium state.

It is also noteworthy that the time-dependent stochastic forcing
also affects the transition of the SST–D20 correlation. Compared with
the case where Ql−CS is replaced by the time-independent Ql−CS, the
seasonality further speeds up the rotation in Pl−CS

st from April to June
since the principal direction of the covariance matrix rotates toward
that of the diffusion matrix, whose intensity reaches the maximum
over these months. Though the dynamics play a major role in the
transition, the seasonal feature of diffusion is not negligible.

Overall, this recurring annual pattern demonstrates how
random forcing drives the system away from its mean state,
contributing to the inter-annual variability observed in the
ENSO. The combination of lower SST anomalies in March and
April, along with stronger atmospheric forcing, makes it challenging
to predict whether SST anomalies will increase or decrease in the
subsequent months, which is a factor potentially linked to the well-
known ENSO prediction barrier (Cane et al., 1986; Levine and
McPhaden, 2015; Webster and Yang, 1992). Moreover, the unstable
deterministic dynamics and enhanced random forcing in boreal
autumn may help explain the increased SST variability in boreal
winter, contributing to the observed ENSO phase locking (Chen and
Jin, 2021; Chen and Jin, 2022).

In contrast, the nearly constant random forcing in the e-CS-LIM
results may imply that the seasonal variability of the SST anomaly is
mainly driven by the seasonal variation in deterministic oceanic
dynamics rather than that in the atmospheric excitation force.
Compared with the l-CS-LIM, we can say that the seasonal
feature of Qe−CS (if any) is transferred to that of Ae−CS because
the CS-FDR holds in both the methods.

For each model, we generate a 128-member ensemble of 43 years
for SST and D20 anomalies by numerically integrating the system
(Equation 13) determined by CS-LIMs with a timestep of dt � 0.001
years. The 90% confidence interval levels of the SST covariance derived
from the ensembles are shown in Figure 13. The l-CS-LIM result shows
wider confidence intervals than the e-CS-LIM results fromApril to June
and October to November due to stronger random forcing during these
periods. Despite different interpretations of the seasonality of stochastic
forcing, both models capture the seasonal variation in observed SST
covariance (without smoothing). Moreover, the reconstructed monthly
SST–D20 cross-covariances, D20–D20 auto-covariances, and annual
correlation functions, shown in Supplementary Material, are consistent
with observations, demonstrating their effectiveness in capturing the
dominant modes of a non-linear system. Although this is a simplified

model for ENSO studies, we emphasize that CS-LIMs can be applied to
higher-dimensional climate variables, offering spatial–temporal
coherence in complex systems (Kido et al., 2023; Shin et al., 2021).

6 Conclusion

In this article, we examine the mathematical background of CS-
LIMs, a class of data-driven methods that construct periodic OU
processes from finite cyclostationary data and present the e-CS-LIM
and l-CS-LIM. The e-CS-LIM is developed based on interval-wise
approximation, dividing the phase space into intervals where data
exhibit similar cyclostationary dependencies. This approach enables
the ST-LIM to estimate the linear dynamics by capturing the
integrated effect over each interval, making it effective for most
applications. In addition, the improved stencil design in the e-CS-
LIM eliminates the phase shift observed in the original CS-LIM.
However, despite these improvements, it remains vulnerable to the
Nyquist issue, which also affects the ST-LIM. In contrast, the l-CS-
LIM serves as an analytic inverse model to the periodic OU process
and estimates the time-dependent Jacobian of a complex system in
general. As a derivative-based method, it inherently avoids the
Nyquist issue, offering an alternative for studying periodic systems.

Numerical experiments on synthetic data show that both CS-
LIM variants effectively capture the temporal structure of the
underlying periodic systems. With an optimally chosen interval
division, the e-CS-LIM uses a relatively sufficient amount of data to
estimate the dynamics and preserves meaningful variations without
amplifying noise or excessive smoothing. On the other hand,
although the l-CS-LIM is sensitive to noise, its performance
significantly improves when optimal phase averaging is applied
to the observed correlation function. In cases where the Nyquist
lag of the mean dynamics is close to the optimal range of τ, the e-CS-
LIM estimation may fail at certain intervals, leading to significant
and abrupt derivations from the underlying system. In contrast, the
l-CS-LIM remains robust, provided that the sampling interval is
sufficiently small to ensure accurate finite difference calculations.

We have applied the CS-LIMs to the real-world Niño SST
3.4 index and the area-averaged depth of 20°C isotherm, two
oceanic variables commonly used to study the ENSO. Our
findings show that in the boreal spring, the strong damping
dynamics and stochastic forcing associated with the ENSO make
deterministic forecasting challenging, which is related to the ENSO
prediction barrier. In autumn, the unstable dynamics amplify the
SST anomaly established in summer, increasing the SST variability
and covariance in winter and potentially contributing to ENSO
phase locking. Moreover, the estimated decay rates and periods
obtained by both methods align with the current understanding of
the ENSO, and the reproduced SST covariance captures observed
seasonal dependency. This ENSO study demonstrates the
capabilities of CS-LIMs and highlights their potential to provide
a deeper insight into complex climate systems.

In addition to time-series analysis, CS-LIMs can also serve as
predictive tools for periodic systems (Shin et al., 2021; Vimont et al.,
2022). While the ST-LIM has been used for forecasting, particularly
in climate science, recent studies have recognized the importance of
accounting for seasonality in predictive models (Alexander et al.,
2008; Vimont et al., 2022; Zhao et al., 2024). A valuable direction for

Frontiers in Complex Systems frontiersin.org16

Lien et al. 10.3389/fcpxs.2025.1563687

https://www.frontiersin.org/journals/complex-systems
https://www.frontiersin.org
https://doi.org/10.3389/fcpxs.2025.1563687


future research would be a comparative study evaluating how
different assumptions in LIMs affect model prediction skills and
how they perform relative to AI-based forecasting methods and full
dynamical models. Such a comparison would provide key insights
into the strengths and limitations of CS-LIMs and help identify the
fundamental elements of model predictability.

Moreover, the CS-LIM framework has broad applicability beyond
analysis and prediction. Dynamical mode decomposition, the
deterministic counterpart of the ST-LIM, has been widely applied to
study chaotic and quasi-cyclostationary systems, integrated with
wavelet decomposition, and applied to enhance machine learning
techniques (Donge et al., 2023; Hou et al., 2025; Krishnan et al.,
2023; Kutz et al., 2016; Naderi et al., 2019; Tu et al., 2014). By
building on these ideas, CS-LIMs, as periodic extensions of the ST-
LIM, have the potential to improve these applications by explicitly
incorporating periodic features into system dynamics. We believe that
both e-CS-LIM and l-CS-LIM will offer new perspectives and
advancements in climate sciences and other fields of study.
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