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Economic cooperation is inherently dynamic, with agents adjusting the
frequency, mechanisms, and intensity of their interactions over time. When
scaling this behaviour to a large number of agents, we obtain a complex
cooperation network where interaction dynamics influence the system’s
macro-state. This study looks into how network topologies impact the survival
of economic cooperation. Specifically, we explore the effect of topologies in
sustaining cooperation through the survival of a “saving trait”, a feature that
promotes cooperative interactions among agents. In our model, similar to a Stag
Hunt (SH) game with memory, agents adapt their saving traits based on the
profitability of past interactions with others. We simulate the game on seven
distinct network structures sourced from the public repository Netzschleuder
and analyse the robustness of the saving trait under topological shocks. From the
seven studied networks, we recover the two equilibria dynamics from the SH
game for four of them. For the remaining three, we obtain stable mixed states.
These findings show that network topology affects the survival of the saving trait
and its vulnerability to widespread topological shocks (over 25% of edges shifted
or added). This work contributes to the interdisciplinary effort to understand
economic cooperation by integrating insights from network science, game
theory, and the social sciences.
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1 Introduction

The scale and magnitude of human cooperation—particularly compared with other
mammals—has contributed to our species being labelled as an “ultra-social” species
(Henrich and Muthukrishna, 2021; Turchin, 2013). Cooperating with someone does not
necessarily fall into the traditional idea of rationalism given its different origins (Henrich
and Muthukrishna, 2021). To help another human at a personal cost and without direct
personal benefit has been recorded in many cases (Curry et al., 2019). However, there exists
a trade-off between being and not being cooperative. In very cooperative groups, individuals
who decide not to cooperate can do better, while at a larger scale, more cooperative groups
do better than less cooperative groups (Efferson et al., 2024). This raises different questions:
why do we see cooperation at all? What are the mechanisms that regulate the presence of
cooperation?

A similar matter happens with economic cooperation. In this case, interactions tend to
be more rational, focusing on mutual economic profit for both parties. The scales of
economic interactions can also go from small groups (Read, 1954) to international trade (De
Domenico et al., 2015), where the cooperation’s mechanisms, beneficiaries and products
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can vary over time. This mutability of economic cooperation, widely
seen nowadays in the world (Liu et al., 2022) can be seen as a sign
that there are economic and behavioural mechanisms that regulate
the presence of cooperation.

Cooperation is thought of as a long-term relationship, where
connections between beneficiaries can intensify or fade but are
thought to last long (Hagen and Hammerstein, 2006). Although
this was studied for small-scale cooperation, it remains true as we
move towards a larger scale. Indeed, one only needs to think of the
time and processes that free trade agreements need in order to see
the light (Bank, 2008; Arthur, 2021; Krist, 2025).

In this study, we are interested in studying the presence of
cooperation between economic agents and the survival of
cooperation given different network structures. We take inspiration
from themodel presented in (Ernst, 2004), where the author considers a
“savings trait” which fosters and benefits the cooperation between two
savers while penalizing savers when interacting with non-savers.

We modify and simplify the model so (a) it resembles the Stag
Hunt game from Game Theory (Skyrms, 2001) and (b) it includes a
network structure. By doing the former, the conception of
cooperation also aligns with the one stemming from this kind of
game (Battalio et al., 2001; Belloc et al., 2019; Starnini et al., 2011).
We are interested in answering two principal questions: (i) Has the
structure (topology) of the network an effect on the overall survival
of the trait when we let the game evolve? and (ii) how much do
topological shocks (changes to the network structure) affect the
presence of the saving trait? In other words, how robust is the saving
trait to topological shocks?

Resilience and robustness are understood in this case from the
biology/evolutionary perspective, where resilience is seen as the
capacity of the system to absorb and mitigate shocks (Holling,
1973; Nisioti et al., 2023).

We use a set of networks from the Netzschleuder repository
(Peixoto, 2020) as the base topologies for our simulations. In this
sense, we use interaction structures of social systems from already
published studies.

This study contributes to the literature on economic cooperation
to better understand different mechanisms that could make
beneficial traits survive or disappear. Our research focuses on
how the topology of the interaction network affects the evolution
of economically beneficial traits.

In Section 2, we delve into the literature on collaboration and
resilience. We also present the original model that served as inspiration,
we outline our hypotheses and expand on the above research questions.
In Section 3 we present the technical details of our ownmodifications to
the original model. We describe the empirical design and the
simulations in Section 4, and we present and discuss our results in
Section 5 to finally conclude in Section 6.

2 Resilience and survival of
economically beneficial traits

2.1 Motivation

Although the neoclassical paradigm of economics has
dominated the landscapes of research and political institutions,
there is a longstanding open question on how to integrate other

schools of thought outside the “orthodoxy” (Wilson and Snower,
2024) into it. Other disciplines such as complex systems (Arthur,
2021) and evolutionary theory (Wilson and Gowdy, 2013) have
studied different paradigms and ideas covering various aspects of
economics and behavioural sciences. These two disciplines in
particular can shed light on how to integrate a more fallible
model of humans in opposition to the outdated super-rational
Homo Economicus.

In Henrich and Muthukrishna (2021), the authors look into the
sociological and anthropological rise of the cooperation between
humans and between groups of humans. The different aspects of
cooperation—sometimes falling out of the orthodox rational
scope—is what has led our species to be labelled an ultra-social
species (Turchin, 2013).

However, mutual collaboration between individuals or groups is
not homogeneous nor static over time, as the strength, the
mechanisms and the beneficiaries of collaboration are subject to
mutations. Individuals can choose to behave selfishly and not look
for the benefit of others. Nevertheless, the reason why cooperation
still exists despite selfish people sometimes doing better than
cooperative individuals, is that cooperative groups will do better
than selfish groups (groups with more selfish people than
cooperative people) (Efferson et al., 2024).

Furthermore, collaboration structures might not always have a
beneficial impact on the entirety of the population, as different
structures can have different effects, sometimes leading to an
increase in inequality (Melamed et al., 2022; Yu et al., 2024;
Musso and Helbing, 2024).

The study of beneficial economic collaboration thus helps us
understand how micro-interactions affect the macro-states of a
particular system. In this study, we research the survival of an
economic individual trait that fosters beneficial economic
collaboration in different scenarios, further understanding the
best conditions for the trait’s survival or disappearance.

2.2 The model

To study the survival of beneficial economic collaboration we
take the model first introduced in (Ernst, 2004). The model consists
of a game between economic agents which can have a “saving trait”.
This trait is made in such a way that benefits savers (those having the
trait) cooperating between them, by reducing the risk of losing
money and increasing their mutual profit. On the other hand, savers
are penalised when interacting with a non-saver, increasing the risk
of the interaction and making it more profitable (on average) for the
non-saver.

Given the disparity in outcomes depending on the nature of the
pairing of players, the original model considers the ability of agents
to change their current attitude towards saving (to change their
saving trait). In the original model, the shift of a saver to a non-saver,
or vice versa, happens when their profit is lower than the average
profit of the whole population. This however has two main issues:
first, this mechanism supposes that each agent will know the average
profit of the universe of agents. Although this assumption does not
require a complete information game, to assume that the average
profit is known to all agents every round is far from realistic. Second,
the fact that the agent considers only one round of games to change
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their trait makes the system very sensible to random fluctuations
(stochasticity). In the same way, the fact that agents compare their
profit with respect to the average profit makes agents respond
equally to risk. These two last elements are again not realistic as
the profile of risk-aversion in economic agents is not homogeneous
regarding losses and regarding times (Campbell and Cochrane,
1999; de Vries, 2022; Guidolin et al., 2025). Economic agents can
have higher or lower tolerances to losses and time periods for their
investments to pay out.

To sort out the problems delimited above, we change the
mechanism that agents use to update their saving trait. Agents
do not compare their profit with respect to the average profit, but
instead compare their own results with respect to their story of past
interactions. In that sense, we introduce amemory (a list of their last
wins and losses) and a memory sensitivity. The latter dictates the
attitude towards risk-aversion of the agents. The more sensible, the
fewer games need to be lost before the agent decides to shift
their trait.

To support the modification and make the change of trait an
individual decision, we turn our attention to the study in (Sjöberg,
2007) where the author states how risk perception, is—although
not only—correlated to the emotions experienced by the
individuals themselves. In that sense, risk perception is
correlated to both positive and negative emotions, as well as to
individual attitudes.1 Risk aversion and risk perception have been
also studied as varying in time (de Vries, 2022; Guidolin et al.,
2025) but also as part of a habit creation (Campbell and Cochrane,
1999). Different studies studying cooperation games in networks
have used memory to take into account risk on their models (Dong
et al., 2019; Shu et al., 2019).

Encounters in the original model are made uniformly at random
by defining an encounter probability between two agents. However,
interactions and collaborations have been studied and thought of as
long-term relationships between two collaborating agents (Hagen
and Hammerstein, 2006; Efferson et al., 2024). This kind of more
static, less volatile interaction between agents is the main argument
to change the random encounter from the original model for a
network structure in which the agents interact with their neighbours.
The study of social and interaction networks in economy and game
theory is fairly extended, allowing us to research the survival of
beneficial economic traits at different scales (del Rio-Chanona et al.,
2020a; Aguirre-López, 2024). The authors in Henrich and
Muthukrishna (2021) expose how cooperation in societies can
specialise over time, span different domains, or simply disappear
(Curry et al., 2019; De Domenico et al., 2015). This myriad of
specialisations and scales makes us turn to study particular
networks. In that sense, the Netzschleuder repository of networks
(Peixoto, 2020) is of immense help for our endeavour, as many
examples of economic and social studies using networks can be
found, from cooperation of students in university (Fire et al., 2012)
to the total FAO trade network (De Domenico et al., 2015).

2.3 Cooperation games

Cooperation is often studied through two key models from Game
Theory: the Prisoner’s Dilemma (PD) (Axelrod andHamilton, 1981) and
the Stag Hunt (SH) game (Skyrms, 2001). In the PD, mutual cooperation
is beneficial, but each agent has a strong incentive to defect, leading to a
dominant strategy where both defect. In contrast, the SH game presents
two stable equilibria: one where both agents cooperate (hunt the stag) and
another where both defect (hunt the hare), making coordination essential.
Our savers model aligns with the Stag Hunt framework, as it exhibits two
stable equilibria: one where all agents save (cooperate) and another where
none do (defect). The saving trait represents delayed gratification (Mischel
and Ebbesen, 1970), reinforcing long-term benefits over short-term gains,
much like the trust-based cooperation seen in SH (Battalio et al., 2001;
Starnini et al., 2011; Belloc et al., 2019). Unlike PD, where defection
dominates, in our model, risk arises from failing to align with the other
players. The SH game has been extensively studied in network structures
(Starnini et al., 2011; Dong et al., 2019; Luo et al., 2021; Madeo and
Mocenni, 2021) and memory-based adaptations (Dong et al., 2019),
similar to the research on PD in evolving networks (Hatzopoulos and
Jensen, 2008; Tanimoto, 2014; Stewart and Plotkin, 2014).

2.4 Resilience and robustness

Although the interactions between economic agents can be thought
of as a long-term relationship, giving rise to a social network structure of
interactions, this does not mean that structures stay static over time. As
cooperation links can vanish and disappear, the social network of agents
changes. However, is the survival of the saving trait sensitive to these
changes over time?

In this sense, we are also interested in understanding the global
resilience of the system and the robustness of the saving trait.

The study and definition of resilience vary from discipline to
discipline (Nisioti et al., 2023). In our case, we take the evolutionary/
biological approach in which resilience is seen as the capacity of the
system to absorb andmitigate shocks (Holling, 1973). Given how the
model is constructed, we are only considering shocks as a change in
the network structure, which we call topological shocks. Such studies
considering a network structure have already been done in economic
literature (Del Rio-Chanona et al., 2020b).

As such, we distance ourselves from the definition of resilience
in economics, where the system is expected to “bounce back”
towards the previous state (Nisioti et al., 2023). Although we are
interested in looking for stable or stationary states that the system
tends to, we do not expect the system to recover to a prior state, but
rather to absorb and move (or not) towards a new stable state.

While we are interested in the system’s resilience, we are also interested
in the robustness and evolution of the saving trait. Robustness is defined in
this context as the persistence of the trait (Waddington, 1942) to the
topological shocks. In other words, a high robustness of the saving trait can
be thought of as the difficulty, or “stubbornness”, of the trait to disappear.

2.5 Hypotheses and research questions

From (Melamed et al., 2022; Yu et al., 2024; Musso and Helbing,
2024), the network structure where economic interactions between

1 The author in (Sjöberg, 2007) describes an attitude as an evaluation of a

given object. In our case, this would translate as the attitude towards

cooperation being correlated to the perceived risk of initiating it.
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agents take place can lead to different macro states of the system.
Given the different kinds of reported cooperation and their
evolution (Curry et al., 2019), we formulate the following hypothesis:

Hypothesis 1. The topology of the network affects the survival of
the saving trait.

Risk aversion can vary over time given the changing attitudes and
emotions of agents (Campbell and Cochrane, 1999; Sjöberg, 2001;
Sjöberg, 2007; de Vries, 2022; Guidolin et al., 2025). This literature
allows us to formulate a correlation between risk aversion and
cooperation. Given that our objective is to study the survival and
robustness of the saving trait, we formulate a hypothesis for risk aversion:

Hypothesis 2. The risk aversion of agents affects the robustness of
the saving trait.

The literature has shown a trade-off between cooperation and
selfishness between humans, keeping cooperation existing among us,
even if it is not always the most rational or beneficial of traits.
Nevertheless, we are interested in researching if, given a mutual
benefit of cooperating. Hence, there are other, more hidden
mechanisms or network structures that allow a beneficial trait to
survive or be eliminated. As such.

1. Is the survival of beneficial traits that promote collaboration
determined by the structure of interactions (the topology of the
network) and the sensitivity to loss (risk aversion)?

The literature has also shown how cooperation between individuals
or groups changes over time. If a small number of agents change their
neighbours, deleting existing links or adding new linkswith other agents,
the system overall might be resilient by absorbing the changes. However,
if a large enough number of links is changed,modifying considerably the
structure of the social network, the new exposures can bring important
changes to the global state of the system. In that sense,

2. How resilient is the system to shocks in the structure of the
social network? What is the robustness of the trait to
these shocks?

3 Methods

In the first step, we consider the emergence of a ‘saving’ trait
which helps agents in a population to plan and save for the future.
The system is modelled as an undirected network where nodes
represent agents and interactions take place along the edges between
them. We are mainly interested in analysing the survival of the
‘saving’ trait in different particular setups where the population faces
different economic shocks.

3.1 Segmentation and selection

3.1.1 Distribution of traits and encounter
probabilities

We consider that an agent can have a saving trait to plan for
future horizons. Whenever an individual i makes a planning effort,
they save a certain amount of their current income si preparing for

future contingencies. In a population of N individuals, Ts � ∑N
i�1si

represents the available amount of savings in the entire population.
The frequency with which the “saving” trait appears in the
population is denoted by ps � ns/N, where ns is the number of
savers (agents with the saving trait) in the game.

The possibility of an interaction between two agents is
represented by an edge in the network. We suppose that an
agent can only interact with another agent at a time, thus
making the probability of an agent i interacting with a neighbour
equal to 1/ki, where ki is the degree of node i.

Given these definitions, the payoffs can be constructed using the
following considerations.

3.1.2 Technological selection
Each agent disposes of income A and consumes a minimum

survival quantity 0< a< 1 after which they can save the remnant and
invest it into a range of technologies that vary by the specialisation
profile, η ∈ [0, 1] with minimum specialisation α ∈ (0, 1) to
deliver output:

A α + η( )ε, (1)
with ε ~ Lognormal(μ, σ), where Lognormal is the log-normal
distribution with E(log ε) � μ and Var(log ε) � σ.

By denoting Var(ε) � σ2ε , we impose ∂σε/∂η> 0, i.e., the variance
increases with the degree of specialisation, η. To maximise their
expected profit, the investor chooses a technology specialisation η

such that

max
η

A α + η( )∫∞

a
ε · dF ε, η( ) � max

η
A α + η( ) 1 − CDF a, σ η( )( )[ ].

(2)
In the case where a saver interacts with a non-saver agent,

we assume the interaction as non-optimal to the saver, thus
making the optimal individual investment, η̂, inefficient,
meaning that the expected rate of return is inferior to
simply keeping the initial endowment, regardless of the
minimum consumption level:

A α + η̂( )∫∞

0
ε · dF ε, η( )≤A 0 α + η̂≤ 1. (3)

On the other hand, when one or more additional agents with
the same trait are present, a saver i can diversify their portfolio,
investing a share of si of his endowment into an alternative
investment j. We assume that savers have access to at least one
alternative investment j that displays negative covariance in its
returns to their assets. In this case, the joint distribution function
G(ηi, ηj) will have a smaller variance than either F(ηi) or F(ηj),
with i ≠ j. The profit maximization scheme then becomes:

max
ηi

A 1 − si( ) αi + ηi( ) + si αj + η̂j( )[ ]∫∞

a
εi + εj( )dG εi + εj, ηi, η̂j( ).

(4)
Note that saver i invests in the alternative investment

opportunity assuming that they face an optimal technological
choice by the other saver j. In equilibrium, we will have ηi � ηj �̂̂η and si � sj � s. Importantly, we treat the portfolio diversification s
as a parameter that will be chosen such that.
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A 1 − s( ) αi + ̂̂η( ) + s αj + ̂̂η( )[ ]∫∞

0
εi + εj( )dG εi + εj, ̂̂η( )>A (5)

0 ̂̂η + αi 1 − s( ) + αjs[ ]> 1∀αi, αj. (6)

In other words, diversification is efficient and yields higher
returns than simply keeping the initial endowment. In our case,
we will also assume that the minimum specialisation αi � α ∀i,
which thus makes Equation 6 to simplify to

̂̂η + α> 1. (7)

Given that the return of non-savers does not depend on the
strategy of other players, it will simply be the initial endowment.
Therefore, the final strategic payoffs π result as:

πNN � A (8)
πNS � A (9)

πSN � E max A α + η̂( )∫∞

0
ε · dF ε, η̂( ), a[ ]{ } � A α + η̂( ) (10)

πSS � E max⎡⎢⎢⎢⎢⎣A 1 − s( ) αi + ̂̂η( ) + s αj + ̂̂η( )[ ]∫∞

0
εi + εj( )dG εi + εj, ̂̂η( ), a⎤⎥⎥⎥⎥⎦⎧⎪⎨⎪⎩

⎫⎪⎬⎪⎭
(11)

� A ̂̂η + αi 1 − s( ) + αjs[ ] (12)
� A α + ̂̂η( ), (13)

where subscript SN refers to the interaction between a saver and a
non-saver. Given our assumptions above, we then have:

πSN ≤ πNN � πNS < πSS. (14)

Hence, the non-saver agent is indifferent to the strategy of
their opponent. In contrast, the opponent’s strategy does make a
difference whenever a saver is investing in a specialized
technology.

3.2 Set-up for the log-normal distribution

Given that the individual payoffs of savers are determined by
Equation 1, thus depending on a random variable, we turn our
attention to the random variable ε from Equation 1 so savers are
not biased to change their saving trait from the randomdistribution of ε.
To do so, we impose median(ε) � 1 with ε ~ logN (μ, σ), which
implies that μ � 0. This in turns means
that. E(ε) � exp(μ + 1

2σ
2) � exp(12σ2)

By taking from the properties of the log-normal distribution,
we have that Var(ε) � σ2ε � exp(2μ + σ2)[exp(σ2) − 1] �
exp(σ2)[exp(σ2) − 1], which implies that

exp 2σ2( ) − exp σ2( ) − σε � 0. (15)

By taking x � exp(σ2), we need to solve the quadratic equation
in Equation 15 to obtain.

exp σ2( ) � 1
2

1 +
������
1 − 4σ2ε

√( ) (16)

0 σ2 � ln 1 +
������
1 − 4σ2ε

√( ) − ln 2. (17)

Thus, from Equation 1, ε ~ logN is such that:

median ε � 1,

Var ε( ) � σ2ε , Var log ε( ) � ln 1 + ������
1 − 4σ2ε

√( ) − ln 2,

E ε( ) � 1�
2

√ 1 +
������
1 − 4σ2ε

√( )1/2

, E log ε( ) � 0.

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(18)

3.2.1 Bias on inefficient games
Supposing a game between a saver and a non-saver, the total

gains after a round, following Equations 8–13 is

T � A α + η̂( )ε + A. (19)

Although in the original model, savers are more prone to lose
when interacting with a non-saver, in our case we want to have an
even probability for the saver to earn more than the non-saver
after an undetermined number of games. This is to ensure again
that we capture the effect of the topology and the memory
sensibility in the game. We thus need the probability
p((α + η̂)ε≥ 1) � 0.5. Given that we imposed that the
median(ε) = 1, we then obtain that

α + η̂ � 1. (20)

3.2.2 Link with the stag hunt game
We summarise the modifications to the game in the

following way:

• If two non-savers interact, both will have a pay-off of A units.
• If two savers interact, both will have a pay-off of A(α + ̂̂η)ε
units with (α + ̂̂η)> 1.

• If a saver and a non-saver interact, the non-saver will have as
payoff A units and the saver will earn Aε, with the probability
that Aε≥A being p(ε≥ 1) � 0.5.

Given that we are only interested in the outcome of the game
(agent 1 earns more than agent 2 or not), we thus obtain a game
analogous to the Stag Hunt Game (Skyrms, 2001).

The Stag Hunt Game was originally imagined by Rousseau in the
18th century but was then formalised in Game Theory. In it, two players
are supposed to be out on a hunt. If and only if they both collaborate, they
could hunt a stag and earn a big reward. However, there is also the
opportunity to individually hunt a hare, thus earning a smaller reward
without collaborating.

In the same way, our saving agents obtain a greater reward if
they both collaborate because they are able to invest in a more
specialised technology, with a higher payoff. Non-savers do not
collaborate, thus earning a smaller reward.

Collaboration in the Stag Hunt is seen as the capacity for players
to coordinate their work in order to obtain higher rewards. The idea
of coordination and collaboration is different to, e. g., the Prisoner’s
Dilemma game in which agents tend to defer (betray) their
opponent, given that non-collaboration is a stable pure Nash
equilibrium. In the case of the Stag Hunt game, we obtain two
stable pure Nash equilibria: one where both agents cooperate and
another where both do not cooperate.
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3.3 Memory rules

We expand the model in (Ernst, 2004) to equip individuals
with memory, each recording the outcomes of their last m
interactions. The outcome of an interaction is saved as a
Boolean variable such that if an agent earns equal or more
than the other agent after a game round, then a positive/true
value is recorded. This feature has already been studied in other
Stag Hunt games in networks with similar results than ours
(Dong et al., 2019; Shu et al., 2019)

Afterm rounds and thereafter, each agent has the opportunity to
swap their saving trait depending on the recorded outcomes in their
memory following a simple rule: agents swap their trait if they have
lost more than a given fraction f ∈ [0, 1] over the last m rounds.

If, for example, f � 0.5, agents swap traits if they have lost more
than half of the past m games.

3.4 Shocks

Studying the resilience of our model in a given network means
creating a perturbation in any of the model’s parameters and
observing how the system adapts to it.

Changes in the topology of the network could lead to different
trajectories in the evolution of the game, as the interactions that were
possible between a set of agents could be disturbed. Also, by
potentially changing the degree distribution and/or other network
metrics, like the local and global clustering index, the system could
evolve differently. To try all the different topologies of networks
would be an impossible task, so instead we take a set of networks as
our baseline (see Section 4.1) and we impose changes to the
network’s topology as shocks.

We perform two different kinds of shock by following the
condition to always keep a single connected component. The
applied shocks into the system are:

• Random Edge Swap: Choosing a random agent, we disconnect
them from one of their neighbours at random and then we
draw an edge to a new agent that was not part of their
neighbourhood before.

• Random Edge Addition: Choosing a random pair of not-
connected agents in the network, we add a link between them.

There is a natural third topological shock that we do not apply:
random edge deletion. We apply shocks as an ensemble of a given
number of individual disturbances. Given that we want to keep a
single connected component at all times, the number of deleted
edges in a network has a “best-case scenario” limit of E − (N − 1),
where E is the number of edges and N is the number of nodes but
most networks would become disconnected long before this limit is
attained, leading to uninteresting dynamics (since interactions occur
along the edges).

4 Empirical design

Having described the original model, we turn our attention to
the design of our experiments. We discuss the real-world networks

that were used in our study, and we describe how we simplify the
parameter space to focus only on two parameters.

4.1 Used networks: the Netzschleuder
repository

We study the resilience of our model in real-world networks
from Social Sciences. To do so, we compile a set of networks from
the database in Netzschleuder (Peixoto, 2020). The networks were
collected by filtering the database with the ‘Social’, ‘Economic’ and
‘Transportation’ tags. Because of computational power restrictions,
networks with less than 104 (ten thousand) edges were collected.
Also, given our model, directed graphs are made undirected and
unweighted. Undirected networks make the most sense because we
take edges to be reciprocal links between agents (if I can play a game
against you, you can play a game against me). We find it easier for
the time being to work with unweighted networks (we select an
opponent from a node’s neighbourhood uniformly at random), but
it would be easy to generalise this in the future and take into account
edge weights.

The chosen networks are presented in Table 1 along with their
general description and properties2.

4.2 Dimensionality reduction

Given a network withN nodes (and thusN agents in the game),
the model presented in Section 3 has different free parameters
presented in Table 2.

To study the resilience of the system to perturbations to any of
the parameters in Table 2 is equal to studying the evolution of the
system over time with respect to each free parameter. In this
subsection, we refer to the different free parameters that we can
ignore given their lack of interest in the scope of this work and
discuss those that, in return, are the most interesting to study.

We use the length of the gameT as a free parameter to determine
how long each one of our experiments last, in that sense, it is not
particularly interesting for this particular section.

We are ultimately interested in the survival of the saving trait by
studying the relative outcomes of the interactions between agents.
This means, that rather than the absolute profit each one of them
earns after any interaction, we are interested in knowing who earned
more or if they earned the same. This recording of outcomes is
crucial to keep track of the evolution of the number of savers, and
thus to keep track of the survival of the saving trait. As such, given
how the model is constructed and how we tuned it in Section 3.2, we
can discard the analysis of the parameters related to the interactions.
Namely, we can ignore the inefficient specialisation η̂, the efficient

2 the “F.A.O. trade network” in Table 1 is a multiplex network in the original

study (De Domenico et al., 2015). However, when obtained from the

Netzschleuder API, the network is only a single layer. We keep this

collapsed form of the network, as our model does not envision

different network layers. For more information, refer to the

documentation of the Netzschleuder repository.
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specialisation ̂̂η and the variance σ2ε , and simply set them to
constants and to a linear function σ2ε � η. Also, given that the
interactions between agents do not depend on their income per
iteration, we can set it to A � 1.

Regarding the memory parameters, no matter the memory
length m, the memory sensitivity f gives the same information
by setting the share of games an agent needs to lose to change their
strategy. In that sense, the larger the memory length m, the more
resolution we will have with respect to the number of games that
need to be lost. We can thus select m in such a way that we have a
desired resolution to study f.

We are thus left with only two free parameters to study: the share
of savers ps and the memory sensitivity f. The former allows us to

study the evolution of the game given an initial share of savers, while
the latter allows us to study the same evolution with respect to the
risk aversion of agents.

4.3 Application of shocks

As seen in Section 3.4, we focus on two types of topological shocks
to the network: random edge addition and random edge swap. Since the
networks under study differ in size and density, applying the same
number of shocks to different networks may not produce comparable
effects. An easier way to compare across networks, we quantify shocks
relative to the original proportions of edges.

TABLE 1 General properties of the networks compiled from Netzschleuder (Peixoto, 2020) and used in this study. The number of edges does not match
those on the website because multiplex networks were flattened to a simple undirected network.

Name Description Nodes Edges Markov
Time

Average Cluster
Coefficient

European Roads Network of roads connecting cities in Europe (Šubelj
and Bajec, 2011)

1,172 1,417 1862.38 0.017

F.A.O. trade network Multiplex network representing the trade between the
different countries of the Food and Agricultural
Organization of the U.N. Different types of edges
represent different types of products. The multiplex
was collapsed into a network where edges represent
the existence of trade between two countries
[De Domenico et al., 2015]

214 9,441 0.64 0.812

Primary school dynamic
contacts

A collapsed temporal network of contacts between
primary school students and teachers in Lyon, France,
in October 2009 (Stehlé et al., 2011)

242 8,317 1.86 0.526

Student cooperation A student cooperation network during a course in the
Ben-Gurion University in 2012 (Fire et al., 2012)

185 311 129.04 0.636

Dolphins social network An undirected network of frequent social interactions
between a community of 62 dolphins in New Zealand,
between 1994 and 2001 (Lusseau et al., 2003)

62 159 24.80 0.259

C.S. department A multiplex network corresponding to different types
of relationships between employees of the Computer
Science department at Aarhus University (Magnani
et al., 2013)

61 353 3.37 0.592

New Guinea Tribes Friendship and enmity network between tribes of
Gahuku-Gama, New Guinea in 1954 (Read, 1954)

16 58 1.47 0.539

TABLE 2 Table of the free parameters that can be controlled when studying the evolution of the model.

Name Description Support interval

Length of game T Length of game T ∈ N, T≫ 1

Share of savers ps The share of agents that have the saver trait in the game. The number of agents can change over time ps ∈ [0, 1]

Income per iteration A Income that every agent receives per iteration A> 0

Inefficient specialisation η̂ Technological specialisation that every saver picks when interacting with a non-saver η̂ ∈ [0, 1) such that α + η̂ � 1

Efficient specialisation ̂̂η Technological specialisation that any two savers pick when interacting with each other ̂̂η> 1 − α

Variance σ2ε Variance of the log-normal distribution from where ε is drawn from σ2ε > 0

Memory length m Number of previous outcomes that all agents save in their memory m ∈ N

Memory sensitivity f The share that any agent needs to lose (relative to the interacting agent) in order for them to change strategy f ∈ [0, 1]
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To isolate and distinguish the effect of shocks in the network, we
apply an ensemble of simultaneous shocks to the system at a given
time. This allows us to measure the shocks’ impact while controlling
the overall magnitude of the shocks acting as a whole.

For both random additions and random swaps of edges, the size
of the ensemble is determined as a percentage of the network’s initial
number of edges. For instance, in a network with 100 edges, a batch
size of 40% corresponds to adding 40 random edges.

5 Results

As stated in Section 2, we aim not only to understand what is the
effect of the structure of the network in the development of the game,
but also to know how much the structure plays a role in the system’s
resilience to topological shocks.

Given a “stable” behaviour of the game over time (fixed points,
oscillatory state or stationary states), we understand resilience to a
topological shock as the capacity of the game to come back or not
move from its observed state, or move to a different stable state.
However, before studying the game’s resilience, we need to
understand if such “stable” behaviours exist and which
form they take.

In that sense, this section is divided into 3 parts. In Section 5.1
we perform different experiments to understand the effect of the
topologies in the share of savers by fixing the memory effects and
excluding shocks. By knowing the different behaviours that
topologies can lead agents to have, we then vary the memory
sensitivity in Section 5.2 to understand the role of risk adversity
in the game. Finally, with the results in Section 5.3 we study the
resilience of the game by controlling the known behaviour of the
agents in a given set-up and introducing random topological shocks.

5.1 Effect of the topologies in the game

Our first experiment will help us understand the effect of the
structure of the networks in the game. To do so, we set the memory
length to 20, the memory sensitivity to 0.5 (change of strategy when
half of the games are lost), and we do not introduce any shocks.
Given an initial random distribution of agents with a fixed number
of agents, we let the game evolve in the networks obtained from the
Netzschleuder repository and described in Section 4.1.

For each studied network, we set a given initial share of savers p0
s

and let the game evolve by its original rules as explained in Section
3.2. A heatmap of the average final share of agents attracted to one or
both of the found fixed points is observed in Figure 1. In this case, we
run a set of M � 50 simulations, each one lasting T � 500 steps.
Standard deviations are not shown given the uniformity or results
we obtained. We only address the variability of results when it is big
enough to be mentioned (as in Figure 3C).

Figure 1 shows two stable fixed points observed in most of the
studied networks. The first one, depicted in the left heatmap of
Figure 1, represents the disappearance of the saving trait, meaning
that all agents in the network become non-savers. The attraction to
the “zero” stable fixed point can be seen for a low initial share of
savers, being interpreted as an insufficient number of saver agents
for the trait to survive. In opposition to this, in the middle heatmap

of Figure 1 we observe the second stable fixed point where every
agent in the network becomes a saver. This fixed point is mostly
observed where there is a high initial share of savers.

Finally, the right heatmap of Figure 1 is the sum of the two
proportions shown in the left and centre heatmaps.We note four key
elements from this latter heatmap: (i) for most of the networks, no
matter the initial share of savers, agents tend to one of the two fixed
points; (ii) the transition between one fixed point and the other is
different for each one of these networks (“FAO trade”, “New Guinea
Tribes”, “CS Department” and “SP Primary School”); (iii) only three
networks do not follow the same pattern as the others. These are
“Dolphins”, “Student Cooperation” and “Euroroad”. The latter two
seem to have a similar behaviour where agents do not reach any of
the two fixed points for any of the initial shares of savers, (iv) the
“Dolphins” network seems to tend to each of the fixed points when
there is a low or high initial share of savers. It is only for values of
p0
s ∈ [0.4, 0.8] that not all agents are attracted to the fixed points.
Transitions between the two fixed points are studied in two

different ways. First, in Figure 2 we observe how long it takes agents
to stabilise in any of two fixed points. Time in this case is normalised
by the number of nodes in the network thus being able to compare it
between networks. As can be seen, the “CS department” network is
the one taking more time. We take this network in particular and, in
addition to the “Dolphins”, the “Student Cooperation” and the
“Euroroad” networks, we show the box plots on the final share
of savers by the initial share of savers in Figure 3.

Figure 3 shows the transitions between one fixed point and the
other with respect to the initial share of savers. In Figure 3A we
observe the case of the CS department network. We note how even if
in this case the mean normalized time and its variance are the
highest (Figure 2), the spread of final states in Figure 3A does not
show any particular complex behaviour, showing us a divide
between the fixed points for any p0

s —as shown in Figure 1.
This is in contrast with the “Dolphins” network, observed in

Figure 3B. The network breaks the dichotomy between the two fixed
points and we observe final shares of savers outside the two
boundaries (0 or 1). For values of 0.2<ps < 0.6 and 0.7<ps < 1,
we obtain a collection of mixed outlier final states (diamond shaped
points in Figure 3B). This collection of mixed states increases for
ps � {0.6, 0.7}, leading to circa 40% of our simulations according to
the results in Figure 1. However, the fact that the mean values
(orange horizontal lines in Figure 3B) for p0

s ∉ [0.6, 0.7] fall in any of
the two fixed points hints to us that the “Dolphins” structure has
some similarities to the “CS department” structure3, but diverges
enough from the networks to break the dichotomy between the two
fixed points thus allowing the existence of stationary mixed states in
which both kinds of agents survive. In a similar fashion, the fact that
the spread of mixed final states is relatively equal for 0.4≤ps ≤ 0.6
and for 0.7≤ps ≤ 0.8 respectively might hint to a substructure in the
network where the totality of agents do not converge to any of the
two fixed points unless the initial share of savers is too small or too
large. This hypothesis about the existence of a substructure is left for
future work.

3 And all other structures not shown here which the reader can review in

Supplementary Figure S1 of the Supplementary Material S.1.
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The “Student Cooperation” (Figure 3C) and “Euroroad”
(Figure 3D) show a completely different behaviour with respect
to the other networks, observing mixed states for any initial share of
savers other than 0 and 1. For both cases, we see a “softer” sub-linear
transition from one fixed point to the other. The “Euroroad”
network structure drowns the final share of savers to the 0 fixed
point, thus making the presence of the saving trait more prone to
diminish with respect to the “Student Cooperation” structure.

The topology of the network affects how the game develops. For
the topologies of “FAO trade”, “New Guinea Tribes” and “SP
Primary School” networks (Supplementary Material S.1) we
observe similar behaviours, agents tending to one of both found
fixed points at a similar normalized time. The stability of the two
fixed points reveals how the game is supported on the Stag Hunt
game where there are two stable equilibria. The “CS department”
topology diverges from the latter set as the time it takes for the game
to stabilize increases considerably, but still keeping the tendency to
one of the two fixed points. In the same way, the “Dolphins”

topology diverges in a different way, breaking with the
dichotomy between the two fixed points, allowing mixed states.
Finally, the “Student Cooperation” and “Euroroads” networks
present a completely different behaviour than the rest, avoiding
the two fixed points showing stable mixed states for any given initial
share of savers p0

s ∈ (0, 1).

5.2 Effect of risk aversion in the game

To study the effect of memory on the game, we fix the initial
share of savers at a value where we know what to expect following
results from Section 5.1. Following Figure 1, we fix the initial share of
savers to p0

s � 0.2, p0
s � 0.5 and p0

s � 0.9. For the former value, we
expect that for all networks—except for the “Student Cooperation”
and “Euroroad” ones—the agents would tend to the 0 fixed point.
For the latter value, on the other hand, we expect agents to go to the
maximum-savers fixed point. Similar heatmaps showing the
proportion of experiments where the agents tend to one or both
fixed points with respect to the memory threshold are shown
in Figure 4.

In this case, the lower the memory threshold, the higher the risk
aversion. This means that by setting the memory length to 20, a
memory sensitivity of 0.05 represents the case where if 1 of the
20 past games is lost, this is enough for an agent to change its
strategy from saver (non-saver) to non-saver (saver).

It is interesting to notice how there is a critical value of the
memory sensitivity at f � 0.15 (meaning three in twenty games
played are lost to change strategy) that appears in all studied
topologies. Once that threshold is crossed, the expected
behaviour towards the fixed points is relatively conserved.
Although we observe changes in the proportion of simulations
going to one or the other fixed point, like in the case of the
“New Guinea Tribes” network, we note that the aggregated
behaviour, seen in both right heatmaps of Figures 4A,C, does not
change. This only suggests that once the critical threshold is passed,
memory only introduces noise on the final fixed point where a game
can tend to, but does not change the aggregated behaviour of the
game tending to any of the two fixed points.

In Figure 4B we observe the heatmaps when the initial share of
savers is 0.5 as a mid-step between Figures 4A, C. The transition

FIGURE 1
Heatmaps of the proportion of simulations where agents are attracted to one or both of the found fixed points for the studied Netzschleuder
networks with respect to different initial share of savers p0

s . For most of them, two fixed points were detected: all savers disappear (left heatmap), or all
agents become savers (centre heatmap). The right heatmap is the sum of the other two. Only for the “Dolphins”, “Student Cooperation” and “Euroroad”
networks we observe a different behaviour.

FIGURE 2
Normalised time that agents take to arrive at one of the fixed
points. The “Dolphins” and “student cooperation” networks are not
included as there are values of initial share of savers where agents do
not converge.
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between one fixed point and the other is not homogeneous for all
structures, observing pockets where the “0” fixed point seems to
resist, like for the memory thresholds 0.15 and 0.2 in the “Dolphins”
structure, or where the Max fixed point appears sooner for other
structures like the “New Guinea Tribes”.

We are interested in better understanding the critical point
observed in Figure 4. To do so, we repeat the experiments with an
updatedmemory length of 32 games.We show in Figure 5 the results
for the initial share of savers p0

s � 0.9. The full set of Figures for
p0
s � 0.2, 0.5 are shown in Supplementary Figures S2, S3 in the

Supplementary Material S.2.
Comparing the results obtained in Figures 4C, 5A, we do not

observe any particular qualitative change, observing a critical value
of between f � 0.15 (4.8 games lost) and f � 0.20 (6.4 games lost).
This also holds true for the initial share of savers p0

s � 0.2, 0.5 (please
see Supplementary Figures S2, S3 in the Supplementary Material
S.2). In Figure 5B we zoom into the results of Figure 5A to
understand if the critical value is at 5 lost games (and then
f5 � 5/32 � 0.1563) or 6 lost games (f6 � 6/32 � 0.1875).

As more clearly seen in the right heatmap of Figure 5B, the critical
value for the “Dolphins”, “CS Department” and “NewGuinea Tribes” is
at f5 � 5/32. However, when analysing the remaining heatmaps in
Figure 5B we observe a more complex behaviour in which the latter

three networks show mixed states between f5 and f6 in which we
observe a fraction of the systems tending to one fixed point and the
remaining fraction tending to the other one. Furthermore, we observe
how for the “FAOTrade” and “SPPrimary School”networks, the critical
value is different than f5 and f6.

We can then say that not only the risk aversion has an effect on
how the game evolves, but also that the topology of the network
affects the consequences of risk aversion. Criticality can appear
depending on the topology (no appearing in “Student Cooperation”
and “SP Primary School”), and a system can accept one or more
critical values depending on the initial share of savers
(Supplementary Figures S2b, c in the Supplementary Material S.2).

5.3 Effect of topological shocks in the game

Shocks are introduced into the system as an addition of random
links between two unconnected nodes or as a swap of links pivoting
from a random node.

Two questions are intended to be answered by the study of these
topological shocks: (i) How do fixed points react to them? and (ii)
does the system tend to a fixed point after the application of shocks
in case it was not already in one?

FIGURE 3
Boxplots of three different networks showing the distribution of the final share of savers with respect to the initial share of savers in the game. (a) CS
department (b) Dolphins (c) Student Cooperation (d) Euroroad.
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The first question can be answered in two parts, one for each
fixed point. On the one hand, the “0” fixed point where the
saving trait disappears is stable to topological shocks. This is
because the payoffs between two non-savers are equal, as seen
in Equation 1. On the other hand, the same thing happens for
the “Max” fixed point, where the saving trait is present in all
agents in the network. The payoff for an interaction between
two savers is stochastic, but remains the same for both players.
Given how the model and the individual payoffs are structured,
topological shocks do not affect the fixed points and are thus
stable to these.

To answer the second question, we turn our attention to the
“Student Cooperation” system, the latter being one of the two
systems that do not tend to any of the two fixed points for any
initial share of savers p0

s ∈ (0, 1) and any memory sensitivity
f ∈ (0, 1). Results are presented in Figure 6. In this case, we are
only adding random links as a shock. The swapping of random
links has analogous results and these are presented in the
Supplementary Material S.3. We do not include these in the
main manuscript as they are similar enough so we can draw a
general conclusion from both.

We apply shocks of different magnitudes, measured as a
percentage of the edges in the original network. The shocks are
introduced at time t � 1000, and Figure 6A presents the distribution
of savers that the system has immediately before the shock (steps
900–999), and long after the shock (times 2,900–2,999). Before the
shock, the share of savers is uniformly distributed between the
different percentages of shocks as expected.

We move to analyse the post-shock distributions. First, when no
shock is applied, the mean share of savers has compacted and
decreased with respect to the pre-shock status. We interpret this
as the system stabilising around a stationary state. This idea is
supported by the fact that when shocks are applied, the mean share
of savers decreases in the post-shock analysis, arriving at the “0”
fixed point when the spread of the shock is 40%. Figure 6A shows
how the application of a larger spread of shocks makes the system
tend towards different states, finally arriving at the “0”fixed point. In
this sense, we can observe how a large enough spread of shocks
makes the saving trait disappear. At a spread of 10% of added edges,
we observe random realisations hitting the “0” fixed point as seen for
the error bars. At 25%, the lower quartile of the distribution goes to
0. Finally, at 40% we see a total disappearance of the saving trait.

FIGURE 4
Heatmaps showing the fraction of simulations where agents go to one or both fixed points when memory is introduced for different memory
thresholds and different initial share of savers. In all cases, the memory length is 20, thus a memory threshold of 0.05 means that an agent needs to lose
1 game to shift its strategy. In that sense, the lower thememory threshold, themore risk-averse agents are. (A) heatmaps when the initial share of savers is
0.2; (B) heatmaps when the initial share of savers is 0.5; (C) heatmaps when the initial share of savers is 0.9.
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The standard deviation (calculated as a rolling average with
window size 100) skyrockets when the shocks are applied (t =
1,000 in Figure 6B). The cooling down after the shock is
different depending on the spread of the shock. The higher the
shock percentage, the quicker the cooling down. This implies two
things: on the one hand, the standard deviation will decrease as the
spread of the shock increases, making the system to tend to a more
stable final state. This result complements the one from Figure 6A,
where the “0” fixed point is reached as the shock spread increases.
On the other hand, the larger the spread of shocks, the quicker the
system stabilises. This is demonstrated in Figure 6C where we
observe the numerical integral underneath the curves in 6b, after
the shock, which we standardised by dividing the values by the total
sum. The larger the spread of the shock, the more pronounced the
integral curve indicating that the system stabilises faster, with the
standard deviation settling to values closer to zero.

We further analyse the effect of shocks in our system by studying
the behaviour of the standard deviation once the shock has occurred.
To do so, we take the time series of the standard deviation shown in
Figure 6B at time t � 1000 and we offset them so we canmore clearly
observe its behaviour with respect to the magnitude of the shock.
Results can be seen in Figure 7A.

We can observe two clear regimes for the standard deviation
with respect to the magnitude of the shock. First, for shock
magnitudes ≤30%, we observe how the standard deviation
asymptotically drops over time, tending to a non-zero value.
However, for magnitudes ≥35%, the standard deviation seems to
follow an exponential decrease to 0.

The transition between these two regimes is further investigated
in Figure 7B, where we observed the time series of the standard
deviation for shock magnitudes between 30% and 35%. While for a

magnitude ≤33% and ≥35% we observe the two respective regimes
described above, for a shock magnitude 34% we can observe a
standard deviation with a greater variance but that does not
suddenly drop to −∞ as for larger magnitudes. Although not
conclusive, this seems to point to a soft transition between the
two regimes rather than a hard one.

In summary, shocks can change the system’s overall behaviour
depending on its magnitude. In the case of the “Student
Cooperation” network, where we observe mixed states, if the
magnitude is below a certain threshold (≤34% in our case), the
system will keep tending to a mixed state with non-zero standard
deviation. However, if the magnitude is above the said threshold
(≥35%), then the system will tend to the 0 fixed point, completely
changing the behaviour of the system.

6 Conclusion

In the present work, we study the effect of the structure of an
interaction network on the survival and robustness of an
economically beneficial trait.

We modify the model presented in (Ernst, 2004) where agents
can have a saving trait which fosters and benefits the interactions
between those having the trait. We modify the model so it is
analogous to the Stag Hunt game (Skyrms, 2001) from Game
Theory. We also modify it by superposing it on a network
structure where nodes represent agents and links represent
possible interactions. Agents can activate or deactivate the saving
trait by assessing the outcome of their last games. We suppose a risk
aversion profile that makes agents more or less sensitive to
negative outcomes.

FIGURE 5
Heatmaps showing the fraction of simulations where agents go to one or both fixed points when memory is introduced for different memory
thresholds and different initial share of savers. In this case, the memory length is 21. (A) heatmaps when the initial share of savers is 0.9; (B) Zoom
of Figure 5A.
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FIGURE 6
Shock study for the “Student Cooperation” network. For every subplot, the shock percentage means the number of edges added, measured as the
percentage of original edges in the network. In the case of “student cooperation”, the original number of edges is 360. (A) the mean share of savers in the
previous 100 steps before the shock and in the last 100 steps of the studied time frame (1900 steps after the shock). (B) temporal evolution of the standard
deviation of the share of savers. The shock is applied at the time step = 1,000. (C) The standardised area under the curve of the time series in (B) after
the shock.

FIGURE 7
Shock study for the “Student Cooperation” network. For every subplot, the shock percentage refers to the number of edges added, measured as the
percentage of original edges in the network. In the case of “student cooperation”, the original number of edges is 360. (A) The standard deviation of the
share of savers for the different magnitudes of shocks. The time series are offset so they start at the value and are easier to compare. (B) A zoom on Figure
7A to better understand the transition from one regime to another.
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Games are played over networks obtained from the
Netzschleuder repository (Peixoto, 2020), making sure that the
topologies used come from studied social systems. We then apply
topological shocks (changes in the structure of the network) and see
how the saving trait evolves in the system.

Our objectives are triple: (i) to know if the topology of
the network has a direct effect on the survival and evolution of
the saving trait in the game; (ii) to know if given a topology,
the risk aversion profile of agents also affects the presence of
the saving trait; (iii) and finally, if the modification of the
network via topological shocks has an effect on the survival
of the trait. In other words, how robust is the trait to
topological shocks?

Based on our experiments, we can conclude that, regardless of
the network’s scale, differences in the network’s topologies affect
the evolution of the saving trait (and thus the presence of
cooperation). Of the 7 different studied topologies, 54 make
the saving trait universally present or disappear completely,
recovering the two stable equilibria from the Stag Hunt game.
These two limits are stable fixed points that are not altered by
topological shocks or risk aversion. The other 23 topologies
(“Dolphins”, “Student Cooperation” and “Euroroad”). Present
stable mixed states in which both kinds of agents coexist. The
evolution of the trait is thus affected by topological shocks. We
also find that, in the case of the “Student Cooperation” system,
the larger the magnitude of the shock, the quicker the trait
disappears completely. This latter result is particularly
interesting because, given a stationary survival of the saving
trait, and thus a stationary presence of cooperation, its survival is
partially robust to changes in the network structure. If a rewiring
of the network of at least 34% of the edges happens, the
cooperation completely disappears.

The evolution of the trait is also affected by the risk aversion
profile. We find that for certain topologies, a critical threshold (or
several) can appear, thus making the risk aversion of the system
sensible to the network structure.

There is a clear follow-up question concerning the results above:
Which particularities of the “Student Cooperation” and “Euroroad”
networks make the saving trait not become universal or disappear
completely? What is the particularity of “Dolphins” to allow mixed
states for a particular set of initial shares of savers? What makes the
“CS department” system stabilize later than the others? These
questions are treated from our side as a cornerstone for future
work, thus delving in the measures and parameters of a network that
influence the elements mentioned above.

With this work, we contribute to the multidisciplinary
endeavour to better understand economics and economic
cooperation in particular using ideas from psychology
(Henrich and Muthukrishna, 2021) and evolutionary theory
(Wilson and Gowdy, 2013; Wilson and Snower, 2024). In this
sense, the evolution and survival of beneficial economic traits
are not secured by the simple fact that they are rationally
profitable when every agent secures them. Far from that, the
structure of the interaction network plays an important role in
how the trait survives or not, being able to tend to stationary
states that are sensitive to changes in the topology of the
interaction network.
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