
Spectrum optimization of
dynamic networks for reduction
of vulnerability against adversarial
resonance attacks

Alp Sahin1, Nicolas Kozachuk2, Rick S. Blum2 and
Subhrajit Bhattacharya1*
1Department ofMechanical Engineering andMechanics, Lehigh University, Bethlehem, PA, United States,
2Department of Electrical and Computer Engineering, Lehigh University, Bethlehem, PA, United States

Resonance is a well-known phenomenon that happens in systems with second
order dynamics. In this paper, we address the fundamental question of making a
network robust to signal being periodically pumped into it at or near a resonant
frequency by an adversarial agent with the aim of saturating the network with the
signal. Toward this goal, we develop the notion of network vulnerability, which is
measured by the expected resonance amplitude on the network under a
stochastically modeled adversarial attack. Assuming a second order dynamics
model based on the network graph Laplacian and a known stochastic model for
the adversarial attack, we propose two methods for minimizing the network
vulnerability–one through direct optimization of the spectrum of the network
graph, and another through optimization of an auxiliary network graph attached
to the main network. We provide theoretical foundations for these methods as
well as extensive numerical results analyzing the effectiveness of bothmethods in
reducing the network vulnerability.
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1 Introduction

In this paper we consider the phenomenon of runaway amplification of signal in a
network due to resonance, which has implications on security of the network. This is possible
if an adversarial agent pumps signal into one or more vertices of the network in a periodic
manner at a frequency that matches or is very close to one of the natural frequencies of the
network. This phenomenon is observed in networks with a second order signal dynamics.

While second order dynamics over networks has been studied in the past van der Schaft
and Maschke (2013), Chow and Kokotovic (1985), Romeres et al. (2013), Cheng et al.
(2017), especially in context of power grids (since power transmission using alternating
currents are described naturally using second-order dynamics), existing literature does not
focus on controlling network parameters and topology for the purpose of mitigation
of resonance.

The contributions of this paper are as follows.

• We develop a second-order dynamics model (represented by a system of second order
differential equations) for signal transmission over a network under external forcing
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(source of the adversarial signal), that is consistent with the
network topology (Section 3).

• We develop the notion of network vulnerability, measured by
the expected resonance amplitude under stochastically
modeled adversarial forcing (Section 3).

• We propose two methods, namely, Network Graph
Optimization and Auxiliary Graph Optimization, for
optimizing the network graph’s edge weights (representing
the connection strength between two network nodes) to
reduce expected resonance under the following conditions
respectively: (i) the main network can be altered by modifying
its edge weights, (ii) edge weights of the main network cannot
be modified directly, but an auxiliary network can be attached
to it. We develop theoretical foundationd for the respective
optimization problems that can be solved via centralized
solvers (Sections 4 and 5).

• We analyze the performance of both methods through extenive
numerical experiments and numerical analysis of the effect of
the hyper-parameters involved in the problems (Section 6).

2 Related work

The Laplacian dynamics on a graph, _x � −Lx, as a linear signal
transmissionmodel is amodel for transmission that represents diffusion
across the network and occurs in applications frequently (Mirzaev and
Gunawardena, 2013; Pan et al., 2016). In particular, if xi is the signal
value on i-th vertex, then this dynamics corresponds to its rate of change
as a sum of the influx of the signals from its neighbors (scaled with the
corresponding edge weights), minus the outflux to its neighbors.

While first-order signal dynamics is most well-studied in context
of networks (Mirzaev and Gunawardena, 2013; Olfati-Saber and
Murray, 2004; Ren et al., 2005), higher-order dynamics has also
been studied. A second-order dynamics over a network is relevant,
for example, in context of distributed power grids, electrical circuits
and consensus in such networks (Romeres et al., 2013; Dorfler et al.,
2018; Nagpal et al., 2023), where the dynamics of alternating electrical
current and voltage are naturally second order. The motion dynamics
of mobile agents (e.g., robots) is often governed by Newtonian
dynamics, which gives rise to second-order dynamics over a
network of such agents Olfati-Saber (2006). Second order
dynamics can also be used to model transmission of information
on social networks where the transmissibility of a signal depends both
on its amount (how widespread it is) and its rate of change (how
“viral” it is). The properties of second-order dynamics over networks
have been well-studied in the literature (see van der Schaft and
Maschke (2013); Chow and Kokotovic (1985) for example,), and
model reduction in the context of such dynamics has been
investigated (Romeres et al., 2013; Cheng et al., 2017). However,
existing literature does not focus on active control of network
parameters and topology for the purpose of prevention of resonance.

It is a common practice to rely on heuristic indicators to develop
strategies for controlling network performance. Optimization of the
spectrum of the Laplacian matrix in order to affect the connectivity
of a network has been studied De Gennaro and Jadbabaie (2006);
Sun et al. (2018); Saif et al. (2024). In Zhang et al. (2021), authors aim
to limit the transmission of a signal across a network by identifying
and reducing the weights of critical edges that connect clusters within

the network. Authors consider the spectral radius, algebraic
connectivity, effective resistance and other spectral measures to
quantify the robustness of graphs, and develop an algorithmic
approach to degree-preserving rewiring to optimize robustness in
Chan and Akoglu (2016). External attacks that eliminate parts of the
network (nodes and edges) are considered in Sheng et al. (2022),
where the node degree variance and spectral radius of the graph is
minimized and the connectivity is maximized by jointly optimizing
graph topology and edge weights. A multi-agent system is considered
in Griparic et al. (2022) and a distributed approach based on feedback
control is developed to estimate and optimize the connectivity of the
communication network between the agents. A similar problem is
addressed in Mox et al. (2022), which leverages convolutional neural
networks to learn how communication agents should be positioned
from an optimization-based solution to the problem. The method is
shown to scale to large networks of agents. Readers may refer to
Freitas et al. (2023) for amore detailed survey on robustnessmeasures,
attack and defense strategies for networks. Although the research in
this category is extensive, researchers have relied on spectral measures
as heuristic indicators of network performance in general, without
explicitly addressing performance of a second-order signal dynamics
over the network as we do in this paper.

Graph sparsification methods aim to approximate a given graph
with a sparse one Spielman and Srivastava (2008), with the purpose of
simplifying analysis or improving computational efficiency Chen et al.
(2023); Hashemi et al. (2024). These methods could potentially be
leveraged to sever the signal transmission along a network, however,
to the best of our knowledge, it is not explored whether such a
modification of the network would result in resonance reduction or if
the network performance could be maintained afterwards.

In this paper we consider a general second-order dynamics over
a network with external forcing. We particularly focus on developing
methods for mitigating resonance attacks inflicted by an adversarial
agent pumping oscillatory signal in a periodic manner at one or
more vertices while trying to match a natural frequency of the
network. To our knowledge, there has been no prior work on control
of resonance in a general graphical network with a focus on
increasing robustness of the network to adversarial attacks.

3 Motivation & background

We consider a network (referred to as the main network)
represented by a weighted undirected graph G � (V,E,w) where V
is the vertex set, E ⊆ V×symV is the edge set, and w is a set of real
weights on the edges. The vertices are indexed by natural numbers,
1, 2, . . . , n (where n is the number of vertices), and the set of neighbors
of the k-th vertex is denoted N k � {j | (k, j) ∈ E}. The weight on
an edge (j, k) ∈ E is denoted by wjk. We also assign a natural number
indexing to the edges, 1, 2, . . . ,m (wherem is the number of edges), and
with a little abuse of notation,wl will refer to the weight on the l-th edge
(see Table 1 for a complete list of notations).

The signal on the k-th vertex is modeled as a complex number,
xk ∈ C (while in practice the signal may be real, in which case the
real part of the signal and dynamics equations are of relevance, the
equations and their general solutions are compactly represented by a
complex dynamics), which follows a second order linear dynamics
coupled with the signals on the neighbors of the k-th vertex in G.
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TABLE 1 List of notations.

List of Notations

x, ~x Signal vector on main network, auxiliary network

_x, _̃x time derivatives of signal vectors

€x, €̃x second derivatives of signal vectors w.r.t. time

xi , _xi , €xi signal value on i-th vertex and its first and second derivatives w.r.t. time

G, ~G weighted undirected graphs for the main network, auxiliary network

V vertex set of graph G

E edge set of graph G

w, ~w vectors of edge weights on main, auxiliary network graphs

A weighted adjacency matrix

D weighted degree matrix

L, ~L weighted graph Laplacian matrices for main, auxiliary networks

n number of vertices on graph G

ne number of edges on graph G

N k set of neighbors of the kth vertex

wjk weight on edge (j, k)

wl weight on the l-th edge

K, ~K stiffness matrices for the main, auxiliary networks

Γ, ~Γ damping matrices for the main, auxiliary networks

γ, ~γ damping multipliers on the main, auxiliary networks

Ω, ~Ω matrices for notational convenience in main, auxiliary network analysis

ωk , ω̃k k-th eigenvalues of Ω and ~Ω

f adversarial forcing vector

ε stiffness constant

] adversarial forcing frequency

xs , x̃s steady-state solutions for the main, auxiliary signal vectors

E],f(‖xs‖22) expected value of 2-norm-squared of xs w.r.t. the random variables ] and f

ρ(]) p.d.f. for the random variable ]

h spread of a Cauchy distribution

J, ~J objective functions for NGO, AGO

wtot sum of weights on the graph

wmin lower bound on edge weights

c inter-graph edge weights between main and auxiliary networks

rm weight resource multiplier for AGO

w*, ~w* optimal edge weights for main (via NGO), auxiliary (via AGO) networks

c* optimal inter-graph edge weight

~G* optimal auxiliary graph weight configuration

wp weight perturbation in generating random graphs

%dJ , %d~J percentage reduction in NGO, AGO objectives
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In it is simplest form, such a dynamics can be constructed as a
natural extension of the first-order Laplacian dynamics, such that
the second derivative of the signal on the k-th vertex is equal to the
rate of influx of signal from the neighbors of the vertex minus the
rate of outflux of signal to the neighbors, with the influx and outflux
being proportional to the signal on the respective vertices. With the
edge weights identified as the proportionality constants, this simple
dynamics can be written as €xk � ∑j∈N k

wjkxj −∑j∈N k
wjkxk.

This dynamics can be compactly written as €x + Lx � 0, where
x ∈ Cn is the signal vector (the k-th element of which is xk) and
L � D − A is the weighted graph Laplacian matrix (A is the weighted
adjacency matrix and D the weighted degree matrix).

The Laplacian matrix satisfies the property that its (j, k)-th
element is zero if there does not exists an edge connecting vertices k
and j. This property of the Laplacian matrix ensures that the
dynamics of signal at a vertex depends on the signals on the
neighboring vertices only, and will be referred to as the property
of being consistent with the network topology.

In this paper we consider a more general form of second-order
linear dynamics for signals following second order differential
equation Meirovitch (2010):

€x + Γ _x + K x � f ei]t

where, K and Γ are the stiffness and damping matrices respectively
that are consistent with the network topology (i.e., their (k, j)-th
element is nonzero only if there exists an edge between the k-th and
j-th vertices in the graph). The network is subject to an adversarial
forcing vector f (with its k-th element, fk, being the amplitude of
adversarial signal forced on the k-th vertex) and forcing frequency ]
(see Figure 1).

The solution to (1), when there is no external forcing (i.e., f � 0),
exhibits oscillatory nature when the damping matrix is positive
definite and the damping is small Meirovitch (2010). In line with the
dynamics of a signal at a vertex being the signed sum of influx and
outflux of signals weighed by edge weights, we choose the stiffness
matrix to beK � L + εI. The role of the εI term, for a small ε> 0, is to
ensure that K is positive definite (all eigenvalue of K are strictly
greater than zero), which in turn prevents drift in the dynamics,
since it is well-known that the weighted graph Laplacian, L, has a
non-trivial nullspace Godsil et al. (2001). For notational
convenience, we also define the matrix Ω such that
Ω2 � K � L + εI. We choose the damping matrix as Γ � 2γΩ2 for
some small real γ> 0, which corresponds to the fact that the
damping over an edge is proportional to the edge weight (scaled
by a factor of 2γ). This makes both K and Γ consistent with the
network topology. In the later sections, we will assume the damping
multiplier γ to be small. Using these new notations, we can write the
dynamics (1) as €x + 2 γ Ω2 _x + Ω2 x � f ei]t, to which
the steady-state solution is given by Meirovitch (2010):

xs � −]2I + 2i]γΩ2 +Ω2( )−1 f ei]t (1)
It is a well-known fact that if the forcing frequency ] matches

one of the natural frequencies of the network (one of the eigenvalues
of Ω), that leads to resonance, where, with a small damping, the
steady-state amplitude of the forced oscillations can get arbitrarily
large. The objective of this paper is to minimize the expected steady-
state amplitude under a probabilistic model for the distribution of
the forcing frequency ].

We assume that the adversarial agent tries to match its forcing
frequency, ], with one of the natural frequencies of the system (one of the
eigenvalues of Ω), but, is subject to uncertainties, either due to an
inability to precisely select the forcing frequency, or because of an
imprecise knowledge of the natural frequencies of the system. In
particular, we assume that ] is a stochastic variable with a probability
density function dependent upon the natural frequencies of the system.

Definition 1. (Network Vulnerability to Adversarial Resonance
Attack).We define the network vulnerability to adversarial resonance
attack to be the expected value of the squared 2-norm of the steady-
state response, denoted as E],f(‖xs‖22)

The main objective of this work is to develop approaches for
optimization of the spectrum of the network graph (i.e., the
spectrum of the Laplacian matrix, or equivalently, the spectrum
of Ω2) to reduce the vulnerability of the network against adversarial
resonance attacks with a known stochastic model. We approach this
problem in two different ways.

(1) A direct optimization of the weights on the edges of the
network that minimizes E],f(‖xs‖22). We refer to this approach
as Network Graph Optimization (Section 4).

(2) When it is not possible to alter the weights on the edges
directly, we propose to attach an auxiliary network to the
main network, and tune/optimize it such that this auxiliary
network can effectively absorb and dissipate the excess
energy from the resonance in the main network while
minimizing the expected steady-state amplitude on the
main network. We refer to this approach as Auxiliary
Graph Optimization (Section 5).

In this work we only focus on optimizing the weights on the
edges of a network graph with fixed topology. However it can be
noted that in a weighted graph, a weight of zero on an edge is
equivalent to the edge being removed from the graph as far as signal
dynamics is concerned. Although it is possible to remove edges with
low weight from the graph to sever the signal flow to reduce any
potential resonance, this approach would undermine the

FIGURE 1
Illustration of a network being attacked by an adversarial agent
trying to cause resonance.

Frontiers in Complex Systems frontiersin.org04

Sahin et al. 10.3389/fcpxs.2025.1575210

https://www.frontiersin.org/journals/complex-systems
https://www.frontiersin.org
https://doi.org/10.3389/fcpxs.2025.1575210


transmission of the desired signals along the network. We thus use
non-zero lower bounds on edge weights when formulating the
optimization problems. While addition of edges to the graph is
also not addressed within the framework of our optimization
problems, starting with a complete graph topology can ensure
that all possible edges are present to begin with.

4 Network graph optimization

Given an initial configuration of the main network specified via
the graph G, the Network Graph Optimization, refers to the
procedure of optimizing the main network graph’s weights and/
or topology in such a way that the vulnerability of the network is
minimized against the adversarial agent’s forcing behavior (forcing
vector and frequency) obeying the stochastic model that will be
explained in Section 4.1.

In this section, we formulate the spectrum optimization problem
to minimize the vulnerability of the network (i.e., the expected value
of the squared 2-norm of the steady state response).

4.1 Stochastic model of the
adversarial forcing

We assume that the forcing vector f is sampled from a uniform
distribution over a (n − 1)-unit sphere.

We assume that the adversarial agent has uncertain knowledge
of the network (or equivalently precise knowledge of the network,
but uncertainty/error in choosing a forcing frequency). This
uncertainty/error manifests itself when the adversarial agent tries
to pick a forcing frequency that matches one of the natural
frequencies of the network. We model this uncertainty by
considering ] to be a random variable whose probability density
function, ρ, is a uniformly weighted sum of multiple Cauchy
distributions Riley et al. (2006), each of which are centered at the
natural frequencies, {ωj}j�1,...,n, with a constant spread of h:

ρ ]( ) � 1
n
∑n
j�1

ρωj
]( ) � 1

n
∑n
j�1

h/π
ωj − ]( )2 + h2

(2)

The Cauchy distribution, as opposed to other probability
distributions, allows the integral representing the expected value
of ‖xs‖22 to be efficiently computed. Figure 2 illustrates an example
where three individual Cauchy distributions are summed up with
uniform weights to obtain a composite probability distribution ρ(]).

4.2 Network vulnerability

Following proposition computes the network vulnerability in
terms of the spectrum of the network.

Proposition 1. (Network vulnerability). If γ≪ h, then the network
vulnerability is given by
Ef ,](‖xs‖22) � h

2γn2 ∑
k,j

h2+ω2
k+ω2

j

ω4
k
(h4+2h2(ω2

k
+ω2

j )+(ω2
k
−ω2

j )2)
, where ωk and ωj are

the eigenvalues of Ω.

In order to prove this result we need the following lemmas.

Lemma 1. If f ∈ Rn is sampled from an uniform distribution over a
(n − 1)-unit sphere andM is a symmetric matrix, then Ef(‖Mf‖22) �
1
n‖M‖2F where ‖ · ‖F is the Frobenius norm.

The proof of the above lemma is deferred to Appendix 7.1 for
better readability.

Lemma 2. IfM1 andM2 are real symmetric matrices that commute
and (M1 + iM2) is invertible, then
‖(M1 + iM2)−1‖2F � ∑n

j�1
1

λj(M1)2+λj(M2)2, where λj(M1) and
λj(M2) denotes the eigenvalues of M1 and M2 corresponding to
the j-th eigenvector.

The above lemma follows from the definition of the Frobenius
norm, ‖M‖F � ���������

Tr(M*M)√
(where M* denotes the conjugate

transpose of M).
Proof of Proposition 1. The expected value of ‖xs‖22 with respect

to the random variables f and ] is calculated as follows:

Ef ,] ‖xs‖22( ) � ∫∞
−∞

Ef ‖xs‖22( ) ρ ]( ) d] (3)

From Lemma 1 and 2, we have:

Ef ‖xs‖22( ) � 1
n
‖ −]2I + i2]γΩ2 + Ω2( )−1‖2F

� 1
n
∑
k

1

ω2
k − ]2( )2 + 2γ]ω2

k( )2 (4)

where (−]2I + i2]γ Ω2 +Ω2) is always invertible since Ω2 �
L + εI is positive definite. Substituting Equation 4 into Equation 3,
we obtain Ef ,](‖xs‖22) � h

πn2 ∑
k,j

g(ω2
k,ω

2
j), where

g ω2
k,ω

2
j( ) � ∫∞

−∞

d]

ω2
k − ]2( )2 + 2γ]ω2

k( )2( ) ωj − ]( )2 + h2( ) (5)

FIGURE 2
Cauchy distributions centered at the natural frequencies ω1 � 1,
ω2 � 2, and ω3 � 4 with a spread of h � 0.5. The probability density

function ρ(]) � 1
3 ∑3

i�1
ρωi

(]) for the adversarial agent’s choice of forcing

frequency is obtained as the uniformly weighted sum of the
Cauchy distributions each of which are centered at the natural
frequencies of the network.
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Since γ is non-zero, the poles of the integrand above lie away from
the real line on the complex plane, and hence a closed-form
expression for the integral g(ω2

k,ω
2
j) can be obtained using the

Residue theorem Saff (2013) by performing a contour integration
over the real line and a semi-circular arc of radius R → ∞ on the
upper half of the complex plane (Figure 3).

Assuming γ≪ h, we can compute the roots of the quartic
polynomial in ] in the denominator of the integrand in (6) using
a symbolic algebra toolbox, and then apply the Residue theorem to
obtain g(ω2

k,ω
2
j) � π

2γ

h2+ω2
k+ω2

j

ω4
k
(h4+2h2(ω2

k
+ω2

j )+(ω2
k
−ω2

j )2)
. This proves the

proposition.
The objective is to minimize this expected value of the 2-norm of

the steady-state amplitude, so as to mitigate the effects of resonance
attacks on the network. We note that ωk and ωj are the eigenvalues
ofΩ � �����

L + εI
√

, where the Laplacian matrix, L � D − A, depends on
the weights on the edges of the graph. Thus Ef ,](‖xs‖22), as described
in Proposition 1, is a function of the edge weights of the graph. We
thus define the objective function, J(w) � Ef ,](‖xs‖22) to be a
function of the edge weight vector, w ∈ Rm (where m is the
number of edges in the graph). It can be checked that J is in
general a non-convex function. However, if h is large, it can be
indeed shown that J is convex in the edge weights.

Proposition 2. For a sufficiently large value of h, J(w) is convex.
Proof Sketch. Define the symmetrized function ~g(ω2

k,ω
2
j) �

1
2 (g(ω2

k,ω
2
j) + g(ω2

j ,ω
2
k)) so that J(w) � h

πn2∑k,j ~g(ω2
k,ω

2
j). Since

{ω2
j}j�1,2,...,n are eigenvalues of Ω2 � L + εI, we can write J(w) �

h
πn2 Tr(~g(L + εI, L + εI)) (where ~g(M,N) refers to the matrix
extension of the scalar function, ~g Bhattacharya (2025), Bhatia
(2013)). It is known that the trace of the matrix extension of a
scalar function inherits the convexity properties of the scalar function
(see our technical report Bhattacharya (2025) for a detailed proof for
the case of multi-variable scalar functions), and as a consequence of
that, it is sufficient to show that the function ~g is convex.

When h is sufficiently large (compared to the
eigenvalues of L), the function ~g becomes
~g(x, y) � π

4γ
h2+x+y

h4+2h2(x+y)+(x−y)2 ( 1
x2 + 1

y2) ≃ π
4γh2 ( 1

x2 + 1
y2). It is easy to

show that this function is convex in R2
+ (a direct computation of

the Hessian shows that its eigenvalues are positive). This proves
the proposition.

As a consequence of the above proposition, while J(w)may not
be strictly convex for all values of h, when h is large (corresponding
to high uncertainty in the adversarial agent’s ability to choose/apply
a forcing that matches a natural frequency of the graph), the
objective is indeed convex.

4.3 Spectrum optimization of the main
network graph

We define the spectrum optimization problem of the main
network graph as the problem of minimizing the expected steady-
state amplitude of signal on the network under the described
stochastic forcing:

minimize
w

J(w)
subject to 1Tw � wtot,

w ⪰ wmin1

wherew ∈ Rm is the vector of weights on the network graph edges.
Here we treat the total sum of weights, ∑m

j�1wj � wtot ≥m wmin ≥ 0,
as a resource to be re-distributed among all edges, hence their sum is
constrained to be equal to wtot. wtot is assumed to be specified by the
initial weight distribution on the network graph G.

We consider non-negative edge weights throughout the paper,
which further imply wmin > 0 to preserve the connectivity and
network topology. Note that w only contains the weights of the
existing edges on the graph, thus it is not possible to remove existing
edges or add non-existent edges during the optimization.

The optimal edge weights are denoted byw* and the corresponding
optimal weighted graph is G* � (V,E,w*). In Figure 4, we provide a
histogram of eigenvalues of the graph Laplacian matrix (henceforth
referred to as the eigenvalue spectrum) for both the initial network
graph G and the optimized network graph G*, where both graphs are
complete (i.e., there exists an edge between every pair of vertices in V).
As can be seen, the optimization has the effect of flattening the
eigenvalue spectrum, resulting in a more uniform distribution of the
eigenvalues, compared to the initial peaky spectrum where the
eigenvalues are accumulated around a specific value.

Observing that the eigenvalues of the graph Laplacian,
{λk}k�1,2,...,n, and the eigenvalues of Ω, {ωk}k�1,2,...,n, are related
monotonically as ωk �

�����
λk + ε

√
, the interpretation of this change in

the eigenvalue spectrum is as follows: If a graph has a peaky spectrum,
an adversarial agent will have a higher chance of success in causing
resonance (high-amplitude oscillations) in the graph by choosing the
frequency near the peak to pump its forcing signal into the graph.
Whereas, with a flattened spectrum, it has less obvious peak to choose
from, and hence the overall expected steady-state amplitude is lower.

In this paper the optimization problem is solved in a centralized
manner. A reformulation of J(w) that is amenable to decentralized
computation is a significant theoretical endeavor and is outside the
scope of this paper.

5 Auxiliary graph optimization

We consider the scenario where the main network cannot be
manipulated directly and the edge weights of the main graph G
cannot be modified. An alternative to changing the network itself at

FIGURE 3
Integration contour for Equation 5. Poles ]1 to ]4 correspond to
the forcing vector component Ef(‖xs‖22) and they collapse on to the
real line as γ goes to zero. Poles ]5 and ]6 correspond to the forcing
frequency component ρ(]).

Frontiers in Complex Systems frontiersin.org06

Sahin et al. 10.3389/fcpxs.2025.1575210

https://www.frontiersin.org/journals/complex-systems
https://www.frontiersin.org
https://doi.org/10.3389/fcpxs.2025.1575210


the level of individual edges of the network is to connect the
network with an auxiliary network that is tuned/optimized in a
way that minimizes the vulnerability of the main network. This
idea of using auxiliary systems to dampen certain frequencies of
oscillation appear extensively in the study and design of
mechanical and structural systems (such as the use of tuned
mass dampers in prevention of mechanical vibrations in
buildings Aly (2014)). We, however, develop the mathematical
foundations and methods for designing analogous tuned auxiliary
networks for mitigating resonance attacks on the network by an
adversarial agent.

In this section, we first reformulate the dynamics equations and
the definition of vulnerability based on the combined network (main
network + auxiliary network). Then, we derive the corresponding
objective function and formulate the spectrum optimization
problem to minimize the vulnerability of the main network.

5.1 Formulation of combined dynamics

We denote the graph representation of the auxiliary network by
~G, and the combined network is denoted by G ∪ ~G (see Figure 5). A
second-order unforced signal dynamics on the stand-alone auxiliary
network is given by €~x + ~Γ _~x + ~K~x � 0, where ~x ∈ C~n is the signal
vector on the vertices of the auxiliary-network, and ~Γ and ~K are the
damping and stiffness matrices respectively that are consistent with
the topology of the auxiliary network (in particular, ~K � ~Ω2 � ~L + εI
and ~Γ � 2~γ~Ω2

(where ~L is the weighted Laplacian matrix of the
auxiliary network and ~γ is the damping multiplier on the
auxiliary network).

We make the following simplifying assumptions about the
auxiliary network and its inter-connection with the main network.

i. We assume the auxiliary network has the same number of
vertices as the main network (i.e., ~n � n).

ii. The above assumption allows a one-to-one connection
between the vertices of G and ~G. The indexing of the

vertices of ~G is done in a way that the k-th vertex of G is
assumed to be connected with (and only with) the k-th vertex
of ~G.

iii. The inter-connecting edges between G and ~G are assumed to
have stiffness (corresponding to a weight of c on those edges),
but no damping, allowing the second derivative of the signal
on a vertex in G to be coupled with the signal on the neighbor
in ~G, but not its first derivative.

iv. It is assumed that the adversarial agent can attack the main
network, but not the auxiliary network.

v. The connectivity of the auxiliary graph is specified via one of
the two types: (1) a mirrored auxiliary graph, which exactly
mirrors the connectivity of the main graph, and (2) a complete
auxiliary graph, which is a complete graph. Note that when the
main graph is complete, both types correspond to the same
auxiliary graph.

Since the auxiliary network is connected to the main network,
with the purpose of mitigating the resonance on the main network
under adversarial forcing, based on the above assumptions, the

FIGURE 4
Histograms of the Laplacian matrix eigenvalues for the initial network graphG and optimized network graph G*. The initial network is modeled by a
complete graph, whose edge weights are perturbed away from a uniform distribution by a small amount. The corresponding spectrum (on the left) is
peaky, whereas as a result of the spectrum optimization, the spectrum (on the right) has become flatter.

FIGURE 5
Illustration of an auxiliary graph ~G attached to the original graph
Gwith an aim to decrease vulnerability against adversarial attacks. The
auxiliary graph is of type mirrored (has the same connectivity as the
main graph). Green lines indicate the inter-graph connections
with weights c.
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signal dynamics over G and ~G are coupled to give the following
signal dynamics on G ∪ ~G:

€x
€~x

[ ] + Γ 0
0 ~Γ[ ] _x

_~x
[ ] + K + cI −cI

−cI ~K + cI
[ ] x

~x
[ ] � f

0
[ ]ei]t

where the terms cI represent coupling between the dynamics of the
two networks due to the one-to-one connection between the vertices
ofG and ~G, and affects the stiffness matrix of the combined network,
but not the damping matrix. An illustration of a combined network
is provided in Figure 5.

5.2 Network vulnerability with attached
auxiliary network

Following proposition gives the vulnerability of a network to
which we attach the auxiliary network.

Proposition 3. (Network vulnerability with attached auxiliary
network). The vulnerability of a network to which an auxiliary
network is attached is given by

Ef ,] ‖xs‖22( ) � 1
n2

∑
j

∫∞

∞
i]2γΩ2 + Ω2 + c − ]2( )I( )(����

+ c2 i]2~γ~Ω2 + ~Ω2 + c − ]2( )I( )−1
)−1‖2Fρωj

]( )d]

where ρωj
(]) � h/π

(ωj−])2+h2.

When Ω and ~Ω are simultaneously diagonalizable, this can be
further simplified to

Ef ,] ‖xs‖22( ) � 1
n2

∑
k,j

∫∞
−∞

sk ]( )�sk ]( )ρωj
]( )d]

where sk(]) � 1
−]2+i]2γω2

k
+ω2

k
+c− c2

−]2+i]2~γ ~ω2k+ ~ω
2
k+c

with ~ωk denoting the k-th

eigenvalue of ~Ω and �sk denoting the complex conjugate of sk.
Note that in either of the expressions for Ef ,](‖xs‖22) above, the

network vulnerability is expressed as a function of the weights on the
edges of the main and auxiliary networks–first one in terms of
Frobenius norm of a matrix involving Ω and ~Ω, and the second one
more explicitly in terms of their eigenvalues.

Proof. The steady-state solution to (8) is

xs
~xs

[ ] � S−1
f
0

[ ]ei]t,where, (6)

S � i]2γΩ2 +Ω2 + c − ]2( )I −cI
−cI i]2~γ~Ω2 + ~Ω2 + c − ]2( )I[ ] (7)

However, we note that we are only interested in the response of
the main network to the adversarial attacks, which from (Equations
6, 7) is:

xs � S−1[ ]11fei]t (8)
where [S−1]11 is the top left n × n block of the inverse of the matrix S,
which can be computed using Schur complement of a block matrix
Boyd and Vandenberghe (2004) as:

S−1[ ]11 � S[ ]11 − S[ ]12 S[ ]−122 S[ ]21( )−1
� i]2γΩ2 +Ω2 + c − ]2( )I( ) + c2 i]2~γ~Ω2 + ~Ω2 + c − ]2( )I( )−1( )−1

(9)
(As a quick sanity check, note that when c � 0, which means that

the main and the auxiliary networks are not connected, we have

S−1[ ]11 � i]2γΩ2 +Ω2 − ]2I( )−1 (10)
indicating that the steady-state response on the main network is
equivalent to the one derived in Equation 1, as expected. In
Section 6 we use this theoretical result to perform further
numerical sanity check on the Auxiliary Graph Optimization
objective function.)

If Ω and ~Ω are simultaneously diagonalizable, using
(Equation 9), allows us to compute the eigenvalues of [S−1]11 as:

sk ]( ) � 1

−]2 + i]2γω2
k + ω2

k + c − c2

−]2+i]2~γ ~ω2
k+ ~ω

2
k+c

(11)

According to the stochastic model explained in Section 4.1, f is
being uniformly sampled from (n − 1)-unit sphere and the
adversarial agent only has imprecise information about the main
graph (i.e., it has no information about the auxiliary graph and hence
the combined network) leading to the probability density function
(3) for the forcing frequency ].

Rest of the proof is similar to the proof of Proposition 1. We use
Lemma 1 and Lemma 2, and Equation 11 to compute the expected
value with respect to f the result of the proposition then follows from
the substitution of this expected value together with the p. d.f.
(Equation 2) into Equation 3.

Later on, we will show that there will be an approximation error
between the computed expected value and the average squared 2-
norm of the steady-state response when Ω and ~Ω are not
simultaneously diagonalizable.

A closed form expression for the integral in Proposition 3 is
obtained using the Residue theorem with the same contour as before
as described in Section 4.2. In order to use the Residue theorem as
described, however, one needs to compute the roots of the quartic
polynomial in ] in the denominator of the integrand and determine
whether those roots have positive or negative imaginary parts. In this
case a direct computation of that, even using a symbolic algebra
toolbox, was not feasible because of the complexity of the problem.
In order to simplify computation of the roots, we use linearization
with respect to γ. The details of the computation are provided in
Appendix 7.2. Corresponding calculations are performed using a
symbolic mathematics toolbox. We omit the resulting expression
for brevity.

Assuming that the main graph G and the parameters n, h, γ
remain constant, the objective is to minimizeEf ,](‖xs‖22), which is a
function of the eigenvalues of the auxiliary stiffness matrix ~Ω
(which, in turn, are functions of the weights on the auxiliary graph
edges, ~w), the uniform inter-graph edge weight c and the auxiliary
damping factor ~γ. For the purposes of this paper, we assume ~γ to be
a small constant, in order to allow signals transmitted over the
network (non-adversarial) to persist and not get dissipated too
quickly. The resulting objective function is thus defined as
~J(~w, c) � Ef ,](‖xs‖22).
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5.3 Spectrum optimization of the auxiliary
network graph

We define the spectrum optimization problem of the auxiliary
network graph as follows:

minimize
~w,c

~J(~w, c)
subject to 0 ⪯ ~w,

0≤ c,
1T ~w + nc≤ rmw

tot

Here, we assume that the weight resource is specified as a multiple of
the total weights on the main graph (denoted by rmwtot) which is to
be distributed among the auxiliary graph and inter-graph edges. We
consider non-negative edge weights throughout, without any
additional lower bound.

The optimal auxiliary graph edge weights are denoted by ~w*, the
optimal inter-graph edge weight is c* and the corresponding optimal
auxiliary graph weight configuration is ~G*.

Note that it is also possible to consider the case where the
auxiliary damping multiplier ~γ is a decision variable. We include
further discussion on the effects of the auxiliary damping and
experimental results in Section 6.3.4.

6 Results

In this section, we present experiments conducted to accomplish
the following.

• Validate the accuracy of the objective functions, J and ~J, in
representing the network vulnerability measured by E(‖xs‖22)
for xs defined on G and ~G, as described in Proposition 1 and 3
respectively.

• Analyze the effects of the problem parameters associated with
the network dynamics and constraints on the relative
vulnerability decrease that can be achieved via the
proposed methods.

• Demonstrate the effectiveness of the proposed methods in
decreasing the network vulnerability across a variety of
problem instances.

• Perform numerical simulation of dynamics over a network to
further validate the results achieved by the Network Graph
Optimization.

• Apply the network graph optimization to the communication
network among a team of mobile robots between which the
signal strength decays with increasing distance.

6.1 Implementation details and setup

We solve the network graph and auxiliary graph spectrum
optimizations using the interior-point algorithm The
MathWorks (2023).

6.1.1 Network graph construction
All algorithms are implemented and tested on three classes of

network graphs.

i.Random Complete Graphs (“RCG”): Given the number of
vertices, n, we establish an edge between every pair of
vertices, thus resulting in a graph with
ne � dimw � (n2)edges. We then sample the weight for each
edge from an uniform distribution on the interval
[1 − wp, 1 + wp], where wp is a given weight perturbation.

iiRandom Incomplete Graphs (“RIG”): Given the number of
vertices, n, and the number of edges, ne � dimw < (n2), we
randomly chose ne distinct pair of vertices to establish the
edges between. Weights for the edges are sampled from an
uniform distribution on the interval [1 − wp, 1 + wp].

iii. Social Network Graphs (“Social”): As a representative of real-
world networks, we extracted subgraphs from the
“Government” graph category of the Gemsec Facebook
Dataset Rozemberczki et al. (2019) which encompasses
various graphs representing blue verified Facebook page
networks. To generate the subgraphs, ego graphs with a
radius of two were created. Nodes were randomly selected
without replacement to serve as the center of each ego graph.
Only the first 100 subgraphs containing between 25 and
200 vertices that were generated were selected, resulting in
a set of 100 subgraphs with an average 109.82 vertices and
867.69 edges per subgraph.

6.1.2 Adversarial force sampling
For computing steady-state amplitudes for specific instances of

simulation for a given graph, we need to sample the adversarial
forcing vector, f , and the adversarial forcing frequency, ].

As described in Section 4.1, we assume that the forcing vector f is
sampled from an (n − 1)-dimensional unit sphere. This is achieved by
sampling each element of the vector from the standard normal
distribution, and then normalizing the vector Muller (1959). Here
we highlight that the necessary number of forcing vector samples to
cover the sphere surface increases exponentially as the size of the
network, n, (the dimension of the forcing vector/unit sphere)
increases, if the sample dispersion is to be maintained. This comes
from the fact that the dispersion is inversely proportional to the
sample size and the dimension Sukharev (1971); Deheuvels (1983).

As described in Section 4.1, the forcing frequency needs to be
sampled using a probability density function that is a uniformly
weighted sum of multiple Cauchy distributions each of which are
centered at the natural frequencies, {ωj}j�1,...,n, with a constant spread
of h. However, in order to perform this sampling, one needs to
compute the inverse of the cumulative distribution function (c.d.f.) of
the ρ described in Equation 2, which is computationally difficult. We
thus adopt a practical method that is used to generate samples from
mixture models as explained in Moitra (2018): Using an uniform
probability of 1/n on all the natural frequencies, {ωj}j�1,...,n, we first
sample one of the natural frequencies, say ωs. Then the forcing
frequency is sampled from a Cauchy distribution centred at ωs

and with a spread of h using the inverse c. d.f. of Cauchy
distribution, ] � ωs + h tan(π(p − 0.5), where p is sampled from
an uniform distribution over the unit interval [0,1].

6.2 Network graph optimization

First we present the results from Network Graph Optimization.
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6.2.1 Validation of the objective function
The objective function, J (Proposition 1), for the network graph

spectrum optimization problem is the expected value of the squared
2-norm of the steady-state response of the dynamic network subject
to adversarial forcing with the stochastic model explained
in Section 4.1.

To validate the accuracy of the objective function in representing
the expected value, we generate 400M adversarial forcing samples
(using the procedure explained in Section 6.1), evaluate the closed-
form steady state response, xs, for each sample using Equation 1 and
compute the average squared 2-norm of the responses ‖xs‖22. For the
validation study, we use a RCG with n � 10 and wp � 0.3. The
running average over the number of samples divided in multiple
batches are provided in Figure 6.

It can be observed that over a large number of forcing samples,
the average of the squared 2-norm of the steady-state responses is
well approximated by the objective values for both initial and
optimized graphs. Hence, Ef ,](‖xs‖22) is accurately represented by
J. Consequently, it can be seen that on the optimized graph, the
steady state responses have smaller amplitudes on average.
Following this validation, we can use the objective value as a
measure of a graph’s vulnerability to adversarial attacks, where a
lower objective function indicates less vulnerability.

6.2.2 Parameter analysis
Each spectrum optimization problem on a network graph can be

specified via a set of parameters regarding the second order
dynamics of the network, the external forcing and the
constraints. These parameters are the number of vertices on the
graph (n), the number of edges on the graph (ne), the minimum
weight constraint (wmin), the stiffness constant (ε), the damping
factor (γ), and the spread of the external agent’s frequency
distribution (h).

We analyze the effects of these parameters on the percentage
reduction of objective value that can be achieved via the spectrum
optimization, hence the reduction in the vulnerability of the main

network graph using the Network Graph Optimization method. For
this purpose, we start with set of parameter values, n � 30, ne � 225,
wmin � 10−3, ε � 10, γ � 10−6, h � 0.1, and generate problem
instances featuring both RCGs and RIGs where we vary one
parameter and keep the rest constant. We solve for each problem
instance and compute the percentage reductions in objective as
%dJ � |J0−J*|

J0 × 100 (where superscripts 0 and p denote initial and
optimal objective values), which are plotted against the varying
parameter values in Figure 7. Note that by comparing the percentage
decrease in the objectives instead of the final objective values
achieved, we are trying to isolate the effect of the parameters on
the effectiveness of Network Graph Optimization method in
reducing the vulnerability of a graph instead of trying to find the
set of problem parameters that make the network the least
vulnerable.

It can be observed from Figure 7 that a larger decrease in the
objective value can be achieved as the number of vertices or the
number of edges increase. Intuitively, more vertices and more edges
correspond to more flexibility in distributing the weight resources,
thus resulting in larger improvements to the vulnerability of the
graph. As expected, larger stiffness yields better results, where the
effect gets more significant with increased orders of magnitude. The
spread of the external agent’s frequency distribution has a non-
monotonic effect. As the spread gets smaller, the agent is able to pick
the resonance frequencies more accurately, leaving the graph
helpless against the attack, whereas a larger frequency spread
corresponds to an agent that almost arbitrarily picks its
frequencies, against which any modification of the graph based
on reasoning would be less effective. Since the minimum weight
constraint and the damping factor did not demonstrate a significant
effect on the percentage decrease of the objective, corresponding
plots are excluded. By observing the plots overall and the analysis on
the number of edges, it is clear that the spectrum optimization on a
main network graph is more effective when the graph is complete.
This behavior will become more apparent in the next section.

6.2.3 Demonstration of the effectiveness of
network graph optimization

To demonstrate the overall effectiveness of spectrum
optimization on the main network graph in reducing the
network vulnerability, we solve the optimization problem for
RCGs, RIGs and Social graphs, and show that significant
decrease in objective values can be achieved. We generate
100 RCGs and RIGs with n sampled uniformly from the interval
[10, 30] and wp sampled uniformly from the interval [0.1,0.5]. For
the RIGs, we sampled ne from the interval [n, n2/4]. While in a real-
world problem, the parameters would be provided based on the
properties of the network and the adversarial agent, for the purpose
of demonstration of the effectiveness of the Network Graph
Optimization, based on the parameter analysis in the previous
section we choose a set of values for which the effects our
approach are more apparent. The parameters associated with the
network dynamics are the minimum weight, wmin � 0.001, the
stiffness constant, ε � 10, the damping coefficient, γ � 10−6, and
the adversarial agent’s frequency spread, h � 0.1. The average
percentage decrease in the objective value and the standard
deviation across the problem instances featuring RCGs, RIGs and
Social graphs are provided in Figure 8. Qualitatively, on the

FIGURE 6
Squared 2-norm of the steady state response xs is evaluated in
closed-form using sampled external forcing. This plot shows the
running average of ‖xs‖22 against the number of forcing samples. The
running averages are computed using batches of 100K samples.
Over large enough samples, the average ‖xs‖22 evaluated on the initial
graph G and the optimized graph G* converge to the values of the
objective function evaluated at w and w* respectively.
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spectrum of the graph, the optimization is manifested as a flattening
of the spectrum, as can be seen for the complete graph in Figure 9A
and the Social graph in Figure 9B.

As mentioned before, network graph spectrum optimization is
more successful at reducing the objective value relative to the
initial value of the objective when it is performed on complete
graphs. A reason for this behavior is the greater vulnerability of the
complete graphs to the resonance attacks, due to the fact that the
natural frequencies of a complete graph are heavily accumulated
around a value resulting in a peaky spectrum, compared to a
relatively flatter/uniform distribution of the natural frequencies on
an incomplete graph. A fewer number of optimization variables
impose greater rigidity on incomplete graphs due to their fewer
edges, whereas complete graphs, with their maximum possible
number of edges, offer a greater flexibility in edge weight
manipulations. Qualitatively, this is manifested by a lower
relative flattening of the spectrum in case of the incomplete
Social graph (Figure 9B) as compared to the complete
graph (Figure 9A).

6.2.4 Numerical second-order dynamics
simulation of the main network

We considered an unoptimized complete graph with uniform
edge weights with an added perturbation as detailed in Section 6.1, as
well as the corresponding optimized graph obtained using the
network graph optimization method detailed in Section 4, and
performed 100 numerical simulations (via numerical integration)

of the second-order dynamics on each of these graphs with varying
forcing vectors and sampled forcing frequencies. The simulations
were run until a steady state was achieved. The squared amplitude of
x as a function of time for each of the 100 simulations, each
normalized by the closed-form steady-state squared amplitude
‖xs‖2, is shown in Figure 10. Besides observing that the steady-
state amplitudes of the numerical simulations match the computed
closed-form values, we note that the unsteady amplitude in relation
to the steady-state amplitude has less variation in the
optimized graph.

FIGURE 7
A RCG and a RIG are generated for the problem instances specified by each set of parameters (only a RIG is generated for the casewhere the variable
parameter is the number of edges). The optimization problem is solved for each instance, and the percentage decrease in objective values are plotted
against the varying parameter.

FIGURE 8
The network graph spectrum optimization problem is solved for
instances featuring 100 RCGs, 100 RIGs and 100 social network
graphs. On problems instances where the main network graphs are
complete, the optimization consistently yielded larger relative
decrease in the objective values.
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6.2.5 Network Vulnerability Reduction in a Mobile
Robot Network

We consider a team of nmobile robots and their communication
network desc-ribed by a complete graph. The signal strength
between robot i and j (represented by the edge weight wij) is
computed as: wij � Adist

‖ri−rj‖+εdist, where Adist and εdist are constant
parameters, and ri refers to the positions the i-th robot.

Considering the weights to be functions of robot positions,
J(w(r)), we solve the optimization problem defined in Section
4.3 with respect to the robot positions, with an additional
constraint, ‖ri − rj‖≥ dmin, on the separation between the robots
in order to prevent robot collisions.

We consider three types of initial configurations for the robots:
arbitrary placement within some bounding box, on a uniform grid,
on a line. We generate 10 instances for each initial condition where
some small random perturbation is applied to the robot locations.

Following parameters are used for the experiments: n � 30,
wmin � 0.001, ε � 1, γ � 10−6, h � 0.1, Adist � 1, εdist � 0.1, dmin � 1.

The mean and the standard deviation of the objective reduction
achieved from each type of initial configuration is reported in the
table in Figure 11. The initial and optimal robot locations for a
problem instance with 64 robots is provided in Figure 11. Our
observation suggests that optimization of the network vulnarability
results in a reorganization of the robots in an approximate multi-
layer formation.

6.3 Auxiliary graph optimization

For the Auxiliary Graph Optimization approach, we conduct
similar experiments and provide additional analysis on the effects of
auxiliary damping.

FIGURE 9
Left (a): Example of eigenvalue spectrum of a complete graph before and after optimization represented as histograms of the eigenvalues of the
networks stiffness matrix, L + εI. The objective value significantly decreased from 1.378 to 0.3778, yielding a 72.58% decrease as a result of the network
graph optimization on a 100-node RCG. Qualitatively, as a result of the network graph optimization, the eigenvalue spectrum has become flatter. Right
(b): Example of eigenvalue spectrum of a representative Facebook Social subgraph before and after optimization represented as histograms of the
eigenvalues of the networks stiffness matrix, L + εI. The objective value significantly decreased from 6.868 to 2.467 as a result of the network graph
optimization on the 173-node Facebook social subgraph, corresponding to a 64.089% decrease in the objective value. As a result of the optimization, the
eigenvalue spectrum has become smoother and flatter.

FIGURE 10
Normalized amplitude plot of 100 different numerical simulations of the second-order dynamics for both the initial and optimized complete graph,
displaying their corresponding two-norm squared amplitude values divided by the steady-state squared amplitude value calculated by the closed-form
evaluation for the respective forcing vector and forcing frequency (i.e., ‖x(t)‖

2

‖xs‖2 ). Since the two-norm squared amplitude value from the simulation of the
second-order dynamics should converge to the same closed-form steady-state evaluation for the two-norm squared amplitude given the same
corresponding forcing vector and forcing frequency, the values in the plot are expected to approach 1, as indicated by the blue line, which they indeed do.
In these 100 simulations, the initial graph’smean steady-state squared amplitude value is 0.0899, while the optimized graph’s mean steady-state squared
amplitude value is 0.0145.
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6.3.1 Validation of the objective function
The objective function ~J for the auxiliary graph spectrum

optimization problem is the expected value of the squared 2-
norm of the steady-state response corresponding to the main
network vertices when the dynamic network is subject to
stochastic adversarial forcing.

To validate the accuracy of the objective function in representing
the expected value, we generate 800M adversarial forcing samples,
evaluate the closed-form steady state responses for each sample
using Equation 8 and compute the average squared 2-norm of the
responses. For the validation study, we generate a RCG with n � 10,
with wp � 0.3 and use it as the main network graph. The running
average over the number of samples divided in multiple batches are
provided in Figure 12A.

The problem instance generated for the validation study resulted
in an optimized auxiliary graph for which Ω and ~Ω* are
simultaneously diagonalizable. As a consequence, we observe that
‖xs‖22 converge to the objective values for both the optimized and
unoptimized combined networks. To demonstrate the fact that there
will be an approximation error between ‖xs‖22 and ~J, whenΩ and ~Ω*
are not simultaneously diagonalizable, we perform another auxiliary
graph spectrum optimization based on a RIG with n � 10, ne � 25
and wp � 0.3. The running average over the number of samples
divided in multiple batches are provided in Figure 12B.

From Figures 12A, B, it can be observed that over a large
number of forcing samples, the average of the squared 2-norm of
the steady-state responses is well approximated by the objective
values when Ω and ~Ω are simultaneously diagonalizable, whereas
there exist an approximation error when these matrices are not
simultaneously diagonalizable. Also, it can be seen that on the
optimized graphs, the steady state responses have smaller
amplitudes on average.

As a sanity check, we leverage the theoretical result provided in
Equation 10 and confirm that J and ~J match when evaluated
numerically for arbitrary choices of Ω and ~Ω when c � 0.

Following the validation of the objective function ~J, we can use
the objective value as a measure of a graph’s vulnerability to
adversarial attacks, where a lower objective function indicates less
vulnerability.

6.3.2 Parameter analysis
Parameters that specify an spectrum optimization problem on

an auxiliary graph is similar to those of network graph optimization.
Since the auxiliary graph edges and inter-graph edges are assumed to
have non-negative weights, we do not consider the minimum weight
constraint (wmin) parameter in this case. However, in addition to the
network graph optimization parameters, we must consider the
effects of the following parameters associated with auxiliary
graphs: the auxiliary connectivity type (mirrored or complete), the
weights resource multiplier rm, and the auxiliary damping factor ~γ.
We defer the analysis of the auxiliary damping factor to Section 6.3.4
and use a constant auxiliary damping factor of ~γ � 10−6 throughout
the parameter analysis.

We analyze the effects of these parameters on the percentage
reduction of objective value that can be achieved via the auxiliary
graph optimization, hence the relative decrease in the vulnerability
of the graph using the Auxiliary Graph Optimization method. We
start with the same set of parameter values with the addition of
rm � 5, and generate problem instances where we vary one
parameter and keep the rest constant. We solve for each problem
instance and compute the percentage reductions in objective as
%d~J � |J0−~J*|

J0 × 100, which are plotted against the varying parameter
values in Figure 13. Note that for the problem instances where the
main network graph is a RIG, we provide two sets of results achieved
with a mirrored auxiliary graph and a complete auxiliary graph.

Here we highlight that the percentage reduction of the objective
value is computed based on the value of the objective before the
auxiliary graph is attached, that is J0, instead of the objective value
evaluated using an unoptimized auxiliary graph, that is ~J

0 � ~J(~w, c).
The individual effects of attaching an arbitrary auxiliary graph, and
the optimization of the auxiliary graph will be presented in the
next section.

For all parameters, effects are similar to those on the network
graph optimization. However, even for the parameter values for
which the network graph optimization was less effective, the
Auxiliary Graph Optimization method can achieve larger
decreases in the objective, which makes the approach less
sensitive to the choice of the parameters. The same insensitivity
is observed to the weight resource multiplier parameter. For the

FIGURE 11
Vulnerability reduction in a mobile robot network. Left: Mean and the standard deviation of the objective reduction achieved. Right: an example
initial and final (after network vulnerability minimization) arrangement of a group of 64 robots.
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instances where the network graph was incomplete, some of the
optimizations of the mirrored auxiliary graph failed to converge in
the maximum number of iterations considered, which is indicated
by a 0% decrease in the plots.

6.3.3 Demonstration of the effectiveness of
auxiliary graph optimization

To demonstrate the overall effectiveness of spectrum
optimization on the auxiliary graph in reducing the network
vulnerability, we solve the optimization problem for RCGs and
RIGs and show that significant decrease in objective values can be
achieved. We use the same problem instances generated for the
network graph optimization, with rm � 5 and ~γ � 10−6 and using
complete auxiliary graphs. To demonstrate the effects of attaching
an arbitrary auxiliary graph and the optimization of this auxiliary
graph separately, we provide the average and the standard deviation
of the percentage decrease in the objective calculated as (1) %d~J �|J0−~J0 |
J0 × 100 (decrease achieved by going from network configuration

G to G + ~G), and (2)%d~J � |J0−~J*|
J0 × 100 (decrease achieved by going

from network configuration G to G + ~G*) across the problem
instances featuring complete and incomplete main network
graphs are provided in Figure 14.

It can be seen that attaching even an arbitrary auxiliary graph
decreases the vulnerability of the network significantly. However,
performing the optimization over the auxiliary edge weights and
inter-graph edges results in a further decrease of the vulnerability
and provides more consistent behavior.

6.3.4 Effect of the auxiliary damping and auxiliary
damping optimization

Assuming that the auxiliary graph weights and the inter-graph
edge weights are constant, the auxiliary objective function ~J becomes
a function of the auxiliary damping factor ~γ only. Furthermore, if the

auxiliary damping is uniform across all auxiliary vertices, ~J is a
single-variable function. To visualize the effect of the auxiliary
damping, we evaluate ~J on an optimized combined network
(specified by G, ~G*, c*) with ~γ varying logarithmically on the
interval [10−6, 105]. The objective values are plotted against the
auxiliary damping factor in Figure 15.

We observe that the objective function ~J is highly sensitive to the
value of the auxiliary damping ~γ and that one can significantly
decrease the objective value by setting the auxiliary damping to be
larger than the damping on the main network. However, simply
setting the auxiliary damping to the maximum allowed value does
not yield the smallest objective value as observed from Figure 15. To
the best of our understanding, as the auxiliary damping gets larger
than the optimal value, the auxiliary network loses the ability to
dissipate the signal that is being transmitted from the main network
and the signal tends to bounce back causing a resonance. For this
reason, optimizing over the variable ~γ could provide further
improvements if the goal is to achieve the least possible
vulnerability in the network.

7 Conclusion and discussions

In this paper, we developed the notion of vulnerability of a
network with second order signal dynamics under adversarial
forcing that obeys a known stochastic model. To minimize the
network vulnerability, we proposed two methods that optimize the
network structure: i. The Network Graph Optimization method
provides an optimal set of network edge weights under the condition
that the edge weights can be directly manipulated, and, ii. The
Auxiliary Graph Optimization method allows us to design an
auxiliary network that can be attached to the main network with
the purpose of minimizing the vulnerability, when the main network

FIGURE 12
Squared 2-norm of the steady state response corresponding to the main graph xs is evaluated in closed-form using sampled external forcing. This
plot shows the running average of ‖xs‖22 against the number of forcing samples. The running averages are computed using batches of 100K samples. Left
(a): Over large enough samples, the average ‖xs‖22 evaluated on the unoptimized combined network system G + ~G and the optimized system G + ~G*
converge to the values of the objective function evaluated at ( ~w,c) and ( ~w*,c*) respectively. Right (b):Over large enough samples, the average ‖xs‖22
evaluated on the unoptimized combined network system G + ~G converges to the values of the objective function evaluated at ( ~w, c). However, when
evaluated on the optimized systemG + ~G* the average ‖xs‖22 does not converge to the value of the objective function evaluated at ( ~w*, c*), resulting in an
approximation error.
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edge weights cannot be adjusted directly. We conducted numerical
experiments to analyze the two methods in detail.

Currently, the notion of vulnerability and the optimization
problems posed in this work depend on a linear model of the

signal dynamics and a specific stochastic model of adversarial
forcing. While the adaptation of some aspects of the model to
other setting (e.g., a different stochastic model of adversarial
forcing) can be straight-forward re-derivation of the objective
functions, a more general formulation that encompasses more
complicated signal models, forcing models, and potentially
nonlinear signal dynamics, is within the scope of future work.
The optimization formulations presented in this paper lead to

FIGURE 13
A RCG and a RIG is generated for the problems specified by each set of parameters (only a RIG is generated for variable ne). The optimization
problem is solved for each instance (using both mirrored and complete auxiliary graphs for instances where the network graph is incomplete), and the
percentage decrease in objective values (%d~J) are plotted against the varying parameter. Data points where the percentage decrease is at 0 indicate the
instances where the optimization failed to converge within the maximum number of iterations.

FIGURE 14
The auxiliary graph spectrum optimization problem is solved for
instances featuring 100 RCGs and 100 RIGs. We report the average
and standard deviation of the percentage decrease in the objective
achieved by both going from the network configuration G to G +
~G and from the network configuration G to G + ~G*. Success rates for
running Auxiliary Graph Optimization on RCGs and RIGs were %100
and %97 respectively.

FIGURE 15
Value of the auxiliary objective function ~J evaluated on an
optimized combined network (specified by G, ~G*, c*) with auxiliary
damping factor ~γ on the interval [10−6 , 105].
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generally non-convex problems which are in turn solved by gradient
based solvers. While we do show convexity (Proposition 2) of the
objective function of the Network Graph Optimization problem
under the assumption that the parameter h is large, a more general
analysis of the optimization landscape for finite values of h would be
necessary to provide guarantees on the quality of the solution being
returned, both for the Network Graph Optimization as well as the
Auxiliary Graph Optimization problems. Such analyses are within
the scope of future work.

The current optimization problem is formulated as a centralized
one that assumes complete knowledge of the network graph edge
weights. This limits the scalability of the optimization problem to
larger networks. A potential future work involves the development
of a distributed optimization scheme in which each vertex would use
information about its local subgraph and would only adjusts weights
on its incident edges in order to optimize the network. A distributed
method would allow the approach to scale to larger networks and
generalize to settings where global information regarding the
network may not be available due to privacy restrictions. In
future we will work towards implementing the proposed methods
on real-world, physical networks such as electrical grids, robot
networks and social networks.
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Appendix

7.1 Proof of lemma one

Statement of the Lemma If f ∈ Rn is sampled from an uniform
distribution over a (n − 1)-unit sphere andM is a symmetric matrix, then

Ef ‖Mf‖22( ) � 1
n
‖M‖2F

where ‖ · ‖F is the Frobenius norm.
Proof. SupposeM is diagonalized by the orthogonal matrixU, so

that M � UDUT, where D � diag(d1, d2, . . . , dn) is the diagonal
matrix of the eigenvalues of M.

Because of rotational symmetry of the distribution of f (uniform
distribution over a sphere), the expected value of ‖Mf‖22 is
independent of the choice of (an orthonormal) basis, and in
particular, is the same in the basis of the eigenvectors of M. Thus,

Ef ‖Mf‖22( ) � Ef ‖Df‖22( ) � Ef ∑n
j�1

d2
jf

2
j

⎛⎝ ⎞⎠ � ∑n
j�1

d2
j E f2

j( ) (12)

where E(f2
j) is the expected value of the square of the j-th

component of f .
However, we note that because of the spherical symmetry of the

distribution of f , we must have
E(f2

1) � E(f2
2) � / � E(f2

n) ≕ ξ. Thus,

Ef ‖f‖22( ) � 1 � ∑n
j�1

E f2
j( ) � nξ

0 ξ � 1/n
Hence from (Equation 12) we have,
Ef(‖Mf‖22) � ∑n

j�1d
2
j/n � 1

n‖M‖2F.

7.2 Approximate root computation using
linearization

Consider a polynomial in the variable x ∈ C, given by
Q(x, γ), where γ ∈ R is a parameter involved in the
coefficients of the polynomial. We are interested in
approximately computing the roots of the polynomial for a
general small, positive parameter value, γ, given the roots of the
polynomial when γ � 0 (which is presumed to be easier
to compute).

If {rk(γ)}k�1,2,...,n are the roots of the polynomial Q(x, γ)
(possibly with multiplicity), we have

Q x, γ( ) � ∏n
k�1

x − rk γ( )( )
0

∂Q

∂γ
x, γ( ) � −∑n

l�1
rl′ γ( )∏

k≠l

x − rk γ( )( )
Evaluating the above at x � rj(γ),

∂Q

∂γ
rj γ( ), γ( ) � − rj′ γ( )∏

k≠j

rj γ( ) − rk γ( )( )

0 rj′ γ( ) � −
∂Q

∂γ
rj γ( ), γ( )

∏k≠j rj γ( ) − rk γ( )( )
This gives first order approximations for rj(γ) in the neighborhood
of γ � 0

rj γ( ) ≈ rj 0( ) + rj′ 0( )γ

� rj 0( ) −
∂Q

∂γ
rj 0( ), 0( )

∏k≠j rj 0( ) − rk 0( )( ) γ
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