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This paper presents a methodology combining Network Science (NS) and
Explainable Machine Learning (XML) that could hypothetically uncover shared
principles across seemingly disparate scientific domains. As an example, it
presents how the approach could be applied to four fields: materials science,
neuroscience, social science, and cosmology. The study focuses on criticality, a
phenomenon associated with the transition of complex systems between states,
characterized by sudden and significant behavioral shifts. By proposing a five-
step methodology—ranging from relational data collection to cross-domain
analysis with XML—the paper offers a hypothetical framework for potentially
identifying criticality-related features in these fields and transferring insights
across disciplines. The results of domains cross-fertilization could support
practical applications, such as improving neuroprosthetics and brain-machine
interfaces by leveraging criticality in materials science and neuroscience or
developing advanced materials for space exploration. The parallels between
neural and social networks could deepen our understanding of human
behavior, while studying cosmic and social systems may reveal shared
dynamics in large-scale, interconnected structures. A key benefit could be the
possibility of using transfer learning, that is XML models trained in one domain
might be adapted for use in another with limited data. For instance, if common
aspects of criticality in neuroscience and cosmology are identified, an algorithm
trained on brain data could be repurposed to detect critical states in cosmic
systems, even with limited cosmic data. This interdisciplinary approach advances
theoretical frameworks and fosters practical innovations, laying the groundwork
for future research that could transform our understanding of complex systems
across diverse scientific fields.
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1 Introduction

“Things are linked by invisible ties, you cannot pick a flower
without disturbing a star.” – Galileo Galilei.

Throughout the centuries, humanity has consistently sought to
find connections between various phenomena to uncover
underlying universal principles. This desire for cohesion has
driven scientific research and philosophical reflection, with
historical examples such as the ancient Greeks’ interest in the
arché and Newton’s laws unifying celestial and terrestrial motion.
The search for a “theory of everything” in physics represents the
latest effort to unite all the fundamental forces and particles of the
universe into a single formulation (Hawking, 2006; Huang et al.,
2018; Kirk et al., 1983; Wilson, 1999).

Despite the desire to uncover unifying principles, progress in
this area has been limited, primarily due to the lack of adequate
theoretical and computational tools (Holland, 1995; Mitchell, 2009).
However, in recent decades, significant changes have occurred. The
rise of interdisciplinary collaboration across scientific fields has
fostered a powerful synergy, advancing innovative theoretical
frameworks and computational methodologies. The complex
systems approach, central to this development, focuses on
understanding the interactions and emergent behaviors of system
components rather than isolating them (Parisi, 1999; Ladyman et al.,
2013; Estrada, 2024). This contrasts with the reductionist method,
which seeks to explain phenomena by breaking them down into
their smallest parts. While reductionism excels in studying
individual components, the complex systems approach abstracts
fundamental principles governing diverse systems, regardless of
context, providing deeper and more unified models (Denning,
2017; Zorzo et al., 2024).

In this scenario, two foundational tools - network science (NS)
and machine learning (ML) - have the potential, when effectively
integrated, to significantly advance the discovery of shared
principles across diverse domains. NS focuses on studying
complex systems modeled as networks, which consist of nodes
(representing entities or elements) and edges (representing the
connections or relationships between nodes). This framework
allows us to analyze the structure, dynamics, and behavior of
interconnected systems across various fields. By representing
entities and their interactions as nodes and edges, network
science enables researchers to apply graph theory to reveal
common patterns and principles that transcend individual
disciplines (Iñiguez et al., 2020; Das and Soylu, 2023). For
example, it has been applied across a wide range of
domains—including materials science, cosmology, social sciences,
biology, and technology—to analyze phenomena such as phase
transitions, information flow, disease transmission, social
dynamics, and technological innovation (Patel et al., 2024;
Choudhary and DeCost, 2021; Batzner et al., 2022; Aroboto
et al., 2023; Batatia et al., 2025; Strey et al., 2023; Artime et al.,
2024; Pósfai and Barabási, 2016; Rosato et al., 2008). ML is a key
aspect of Artificial Intelligence (AI), enabling systems to perform
tasks requiring human-like intelligence, such as learning and
problem-solving. ML could help researchers to extract insights
from diverse data, uncovering hidden patterns and potential
universal principles across various fields. It enables the
automated discovery of correlations, associations, and causal

relationships, facilitating cross-domain comparisons (Khetani
et al., 2023; Longo et al., 2024). This paper focuses on
Explainable ML systems (XML) as they offer several key
advantages, including greater transparency, enabling users to
understand model decisions and build trust (Angelini et al., 2024;
D’Amore et al., 2024; Islam et al., 2022; Linardatos et al., 2020;
Guidotti et al., 2019b; Bodria et al., 2023). XML ability to analyze
feature importance is especially valuable for comparing different
domains. NS and XML offer complementary approaches for
studying shared principles across different domains through
computer simulations and big data analytics. By integrating these
methodologies, researchers can harness the strengths of each to
address interdisciplinary challenges, uncover hidden patterns, and
deepen our understanding of complex systems in science
and beyond.

This article introduces a highly interdisciplinary methodological
approach that, for the first time, combines NS and XML to explore
the possibility of uncovering shared organizational and functional
principles across scientific domains. As an example, it discusses how
the methodology could be applied to four seemingly unrelated areas:
atomic structures in materials science, neuroscience, social science,
and cosmology. These four domains were chosen because they
represent distinct yet fundamental scales of organization, ranging
from themicroscopic to the cosmic. By examining atomic structures,
we gain insights into the fundamental building blocks of matter.
Neuroscience allows us to explore complex biological systems and
cognitive processes. Social science offers a lens into the behavior of
human networks, while cosmology extends our understanding to the
vast structures of the universe. Despite their differences, these
domains could share underlying patterns and principles that
reveal universal organizational dynamics, making them ideal for
comparative analysis. The study focuses on criticality, a crucial
concept for understanding how complex systems transition
between states, why they exhibit sudden shifts in behavior, and
how universal patterns emerge across different scales. Criticality, a
phenomenon extensively studied, serves as a representative
phenomenon for analyzing the dynamics of complex systems.

The integration of NS and XML could represent a significant
methodological advancement, offering new insights into cross-
domain similarities that have not been previously explored in the
literature. By applying this approach, the paper seeks to go beyond
existing studies and provide a deeper understanding of the
fundamental organizational principles shared across these
domains, thus offering both a fresh research perspective and new
contributions to the field. The significance of our research lies in its
potential to foster unprecedented collaboration across disciplinary
boundaries, paving the way for innovative discoveries. A key
advantage of identifying common principles across domains is
the use of transfer learning, an ML technique that adapts models
from one domain to another, reducing the need for extensive
training data (Pan and Yang, 2009; Weiss et al., 2016). In cases
where data collection is challenging, such as in the observation of
cosmic phenomena, transfer learning can exploit similarities
between complex systems to enhance the efficiency of training.
The proposed approach could also offer practical benefits by
advancing theoretical understanding and enabling cross-domain
applications. Insights from one field can inspire breakthroughs in
another. For example, connections between atomic structures and
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brain activity might lead to advanced neurotechnology materials,
while parallels between social and cosmic networks could inform
models of collective behavior, impacting fields like sociology and
astrophysics.

2 Criticality across different domains

Criticality refers to continuous (second-order) phase transitions,
where a system undergoes a smooth but profound change in state
characterized by diverging correlation lengths, scale invariance, and
critical fluctuations. This is distinct from first-order transitions,
which involve abrupt changes and latent heat, such as melting or
boiling. Criticality occurs across fields, such as in materials science,
where, near critical temperature or pressure, small fluctuations can
cause significant changes, such as the emergence of
superconductivity or superfluidity, showcasing criticality role in
material behavior (Stanley, 1971; Nishimori and Ortiz, 2011;
Petrucci et al., 2017; Parisi et al., 2017; Fultz, 2020). In
neuroscience, phase transitions occur in neural dynamics, such as
shifts between unconscious and conscious states or non-REM and
REM sleep (Allegrini et al., 2015). Criticality emerges when small
disturbances in neural networks cause large-scale changes, driving
cognitive or brain state shifts. Alterations in criticality, rather than
its complete loss, are linked to neurodegenerative disorders, where
deviations from optimal critical states disrupt brain function (Beggs
and Plenz, 2003; Beggs, 2008; Chialvo, 2010). In social science, phase
transitions occur during sudden societal shifts or market changes,
such as rapid smartphone adoption or financial crises, where small
fluctuations in behavior or confidence trigger large transformations
(Levy, 2005; Contucci et al., 2008; Fukami and Nakajima, 2011). In
cosmic science, phase transitions include events like the early
universe cooling after the Big Bang or gas clouds collapsing into
stars. Criticality is key in these processes, where small energy density
fluctuations near critical points shape the universe’s structure,
influencing galaxy and star formation (Guardo et al., 2014;
Barrow and Scherrer, 2018).

Criticality offers a powerful lens to explore interconnected
phenomena across scales, from atoms to the brain, society, and
the cosmos. It marks tipping points where systems undergo
transformative changes, uncovering universal principles that
govern complex behaviors. From atomic reorganization and
neural shifts to societal changes and cosmic events, criticality
shows how small fluctuations can trigger large-scale effects,
revealing fundamental mechanisms that link diverse domains.

3 A five-steps computationalmethod to
study criticality across
different domains

This section introduces a five-steps computational method for
quantitatively analyzing the mechanisms governing criticality across
materials science, neuroscience, social sciences, and cosmology.
Figure 1 shows the proposed framework. The procedure is
explained with theoretical and computational justifications for
the choices made and examples illustrating its application to
specific cases. While the method is applied to the case of

criticality in this work, it is general and can be extended to
investigate other shared phenomena.

3.1 Step one: collecting relational data

The first step involves gathering data that describes relationships
between elements in each domain. Large-scale ML datasets from
numerical simulations across various physical systems could be
valuable for accelerating research and for supporting the creation
of multi-disciplinary foundation models (Ohana et al., 2024; The
Multimodal Universe Collaboration et al., 2025). In materials
science, relational data refers to the network of atoms in a
crystalline structure, where nodes represent atoms and links
represent chemical bonds, essential for analyzing stability,
mechanical properties, and material stress response (Mrdjenovich
et al., 2020; Shi et al., 2024). In neuroscience, relational data could
map the human connectome, where nodes are neurons and links are
synapses, aiding the study of cognition and neurological disorders
(Sporns, 2011; Hegedűs and Grolmusz, 2025). In social sciences, it
could capture connections within social networks, with nodes as
people and links as interactions like friendships, useful for studying
influence and group dynamics (Rossetti and Cazabet, 2018; Failla
et al., 2024). In cosmology, relational data could describe the galaxy
network, with nodes as galaxies and links as gravitational
relationships, essential for understanding cosmic evolution (Strey
et al., 2023; Zhou and Li, 2025).

Collecting relational data is crucial for comparing common
phenomena across domains. One key benefit is tracking how
interactions change over time (Milo et al., 2002) – such as the
evolution of crystal structures, brain synapses, social group
dynamics, or galaxies. Relational data also help analyze system
functionality by showing how interactions shape overall behavior
(Boccaletti et al., 2006). Graphs could represent complex structures,
allowing for quantitative analysis of nodes and connections. This
approach is crucial for Step Two of the proposed method (see
below), which involves representing data from various domains
using a system neutral to the origin of the data. A neutral
mathematical formalism, such as graphs, allows the application
of common theories and algorithms to analyze and compare
cross-domain phenomena, facilitating the identification of
universal principles that govern interactions in complex systems.
For example, neural networks in the brain may share properties
similar to social networks and galaxy networks, such as the presence
of hubs (highly connected nodes) and power-law distributions
(Pósfai and Barabási, 2016; Vazza and Feletti, 2020).

3.2 Step two: transforming specific domain
data into a neutral domain

After collecting relational data from various domains, the next
step is to represent this data using a neutral mathematical
framework (blu arrows in Figure 1). This abstract framework is
independent of the specific contexts of materials science,
neuroscience, social science, or cosmology, enabling a
standardized approach that could facilitate comparison and
analysis. Several computational approaches can transform data
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from different domains into a common neutral framework. For
example, Bayesian networks model probabilistic dependencies to
capture causal relationships in systems like synaptic connections or
social interactions (Friedman and Koller, 2003; Koller and
Friedman, 2009). Agent-based models simulate actions and
interactions to study emergent phenomena, such as collective
behavior or structure formation (Bonabeau, 2002). Time series
analysis tracks how variables evolve in dynamic systems,
predicting future values (Fu, 2011), while PCA reduces
dimensionality to highlight key components in large datasets,
useful in fields like genetics or neuroscience (Greenacre et al.,
2022). Together, these techniques provide complementary
insights into relational data.

These approaches are well-suited for representing data across
domains in a neutral format. This article will focus on graphs,
mathematical structures made of nodes (elements of the system) and
connections (relations between them). There are several compelling
reasons for using graphs (Iñiguez et al., 2020; Das and Soylu, 2023).
A first advantage of using graphs is the availability of a vast range of
well-established algorithms and tools for network analysis. These
include algorithms for community detection, centrality measures,
and pattern recognition. Graphs are also highly scalable and flexible,

representing systems at varying scales-from atomic interactions in
materials to networks of galaxies in the universe. This scalability
makes them applicable to several scenarios, offering greater
flexibility than other computational methods. Finally, graphical
visualization of networks is particularly effective for exploring
and interpreting complex structures, providing a significant
advantage over methods such as time series analysis or principal
component analysis, which can be less intuitive to visualize.

Graphs have indices that describe their structural and functional
properties. For example, the degree indicates the number of edges
connected to a vertex, while order and size refer to the total number
of vertices and edges. The diameter measures the maximum distance
between two vertices, and the radius measures the minimum
distance from a vertex. The clustering coefficient quantifies vertex
neighbor interconnectivity, while path length refers to the average
distance between all pairs of vertices in the graph. Researchers
analyze criticality in graphs using various metrics which are
pivotal to understanding phase transitions (Dorogovtsev et al.,
2008). For example, the degree distribution of critical graphs
often follows a power-law, with a few hubs having many
connections and most nodes few. This behavior is typical of
scale-free networks, which remain resilient to random node

FIGURE 1
Proposed framework to unveil shared and organizational principles among seemingly unrelated domains. The approach can be unpacked in five
steps: 1) Collection of domain-specific relational data (represented by the database icons); 2) Data transformation into a neutral domain via graph
representation (blue arrows and graph icons); 3) Data inspection and labeling; 4) Explainable Machine Learning (XML) and feature importance analysis
using Graph Metrics (GM1, GM2, GM3); 5) Translating insights from the neutral domain back to specific domains through Transfer Learning (TL)
(yellow arrows). GM1, GM2, andGM3 are illustrative examples of graphmetrics; the actual number and identity of relevant metricsmay vary depending on
the domain and dataset.
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removal but become vulnerable when hubs are lost (Barabási, 2009).
Figure 2 illustrates the transformation of four domain-specific
relational datasets into neutral domains through graph
representations. This process provides a foundation for exploring
shared aspects across the domains.

3.3 Step three: building datasets for training
explainable machine learning with graph-
based indices

This phase aims at constructing four datasets, each linking graph
index values (graph metrics) from a given domain to two possible
states: critical and non-critical. These datasets are used in the next
stage to train a machine learning algorithm to classify graphs as
either critical or non-critical based on their index values. Consider
specific examples for each domain. In materials science, criticality
refers to the point where a material experiences a drastic change in
properties due to factors like temperature, pressure, or composition,
as seen in phase transitions. For example, water solid-liquid and
liquid-gas transitions near critical points (Bore and Paesani, 2023;
Cheng et al., 2019). In superconducting materials, criticality occurs
at the critical temperature, when a material transitions to a
superconducting state (Tinkham, 2004; Annett, 2004; Flores-Livas
et al., 2020). Data from atomistic configurations at critical and non-
critical points can help construct graphs with indices reflecting these
states. In neuroscience, criticality reflects proper brain function,
while non-critical states are linked to pathological conditions
(Chialvo, 2010; Zimmern, 2020a; Shi et al., 2022). Connectome
data from healthy individuals represent a critical state, while data
from neurodegenerative patients represent a non-critical state.
Using data from healthy and diseased subjects, graphs can be
constructed to represent critical and non-critical states,
respectively. In social sciences, data from stable communities
(critical state) and communities in crisis (non-critical state)

generate graphs for analysis (Levy, 2005; Contucci et al., 2008;
Fukami and Nakajima, 2011). Similarly, in cosmology, criticality
relates to galaxy structures formation, while non-critical states
represent equilibrium. Researchers can use observations of galaxy
distribution in the extragalactic sky (Euclid Collaboration et al.,
2024; Amendola et al., 2018) and set a critical density to distinguish
the structures that will collapse (critical) from the one in equilibrium
(non-critical) (Kravtsov and Borgani, 2012) and create
corresponding graphs for further study. This approach allows us
the creation of four datasets that associate the indices of graphs in a
critical state with the label “critical state” and those in a non-critical
state with the label “non-critical state” (Figure 3).

3.4 Step four: comparing criticality-related
features across domains with explainable
machine learning

It is possible to train XML classifiers with supervised learning to
determine whether a system is in a critical or non-critical state based
on the values of the graph indices. Explainable techniques can
identify the most relevant features for each domain to establish
the criticality of a system (Figure 4). Algorithms such as Extreme
Gradient Boosting (XGBoost), known for its efficiency and accuracy
in classification tasks, could be suitable for this purpose (Chen and
Guestrin, 2016). SHAP (SHapley Additive exPlanations) values
provide a robust and interpretable method for understanding
feature importance, offering both global and local perspectives.
While SHAP often provides a more complete picture, LIME
(Local Interpretable Model-agnostic Explanations) is a valuable
tool for specific use cases where its simplicity or particular
visualization methods are preferred (Ribeiro et al., 2016;
Lundberg and Lee, 2017).

In materials science, XGBoost could classify graphs representing
materials state as critical or non-critical, with SHAP identifying key

FIGURE 2
Transforming the four domain relational datasets (Step One, left) into their corresponding neutral domains using graph representations (Step Two,
right). This transformation lays the groundwork for constructing a framework to explore common aspects across the different domains. The reduced
thickness of the cross dividing the four domains in the neutral representation signifies the potential convergence in the study of them.
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FIGURE 3
Datasets for training explainablemachine learning using graph-based index values (graphmetrics). These datasets link graph indices in a critical state
to the label “Critical” and those in a non-critical state to the label “Non-Critical.” The thinner cross dividing the four domain datasets (compared to the
thickness shown in Figure 2) highlights how the construction of these datasets represents a further step toward the potential convergence in the study of
the four domains.

FIGURE 4
Comparing graph criticality-related features across domains with XML. In (a), four XML algorithms are applied to datasets obtained from Step Three,
using graph-based index values (graph metrics) to train explainable models. The magnifying glass represents the use of explainable techniques like SHAP
and LIME. The dashed cross dividing the four domains XML indicates how this step advances beyond Step Three, allowing comparisons across different
domains. In (b), an hypothetical feature importance analysis highlights the graph metrics that are most critical for identifying key states across
different domains. In the provided example, “Graph Metric 1” is assumed to be a significant feature for determining criticality in both material science
and cosmology.
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structural features (e.g., atomic arrangement) that are most
important in determining these states. LIME could further
explain the model decisions for each sample, highlighting local
arrangements of atoms or relevant variations of particular
physical quantities that contribute to a non-critical state. In
neuroscience, XGBoost could classify graph data from
connectome analysis, with SHAP values identifying the most
relevant neural connections (graph features) that differentiate
between healthy (critical state) and diseased (non-critical state)
individuals. LIME provides detailed, local explanations for model
predictions, showing which connections most strongly influence the
critical state for individual subjects. In social sciences, XGBoost
could distinguish between stable (critical state) and crisis (non-
critical state) communities using social interaction graphs. SHAP
values could reveal the most influential interactions, such as
connection density or the centrality of nodes, in determining
criticality. LIME could provide detailed insights into model
predictions, pinpointing specific social relationships that drive
either stability or crisis in a community. In cosmology, data on
the distribution of galaxies in extragalactic surveys, e.g., Euclid
(Euclid Collaboration et al., 2024) could be used. XGBoost could
analyze graph indices related to these distributions to classify
observations as critical or equilibrium. SHAP values would
identify the features of these fluctuations or distributions that
most strongly indicate critical phenomena, such as the Big Bang
or galaxy formation. LIME could further explain individual
observations, highlighting which aspects of dark matter
distributions significantly influence the critical vs non-critical
classification.

In each of these examples, the use of XML tools provides deeper
insights into the fundamental characteristics that define whether a
state is critical or non-critical across various scientific domains.
Importantly, this approach facilitates comparisons of the most
significant features among different domains, helping to identify
potential similarities.

In more detail, after identifying the most important graph
metrics (features) for determining criticality across the four
domains, it is possible to compare the results to identify possible
similar dynamics that define when a system is in a critical or non-
critical state (Figure 4b). This comparison can be done by studying
feature correlations or analyzing causality. In the first approach,
Correlational AI could identify statistical relationships between
critical features across domains. However, correlation alone does
not explain the direction or nature of these relationships. Causal AI
goes beyond correlation to establish cause-and-effect links.
Techniques such as causal inference and counterfactual reasoning
clarify how changes in one variable directly impact another,
providing deeper insights. These approaches complement each
other. Correlational AI uncovers potential relationships, while
Causal AI identifies the underlying causal mechanisms. This
synergy proves valuable across domains, enabling the discovery
of shared principles that drive criticality (Neuberg, 2003;
Weinberg et al., 2024). For example, in neuroscience,
Correlational AI might uncover relationships between neural
connections and brain criticality, while in cosmology, it could
reveal links between cosmic fluctuations and critical phenomena
like structure formation. Causal AI can determine if similar causal
mechanisms drive these transitions in both domains.

3.5 Step five: translating criticality insights
from the neutral domain (graphs) to
specific domains

This final step translates insights into the most important
features for establishing criticality, derived from the neutral
domain (graphs), into specific domains such as materials science,
neuroscience, social sciences, and cosmology (orange arrows in
Figure 1). By mapping key graph features to domain-specific
elements, abstract criticality analysis results are transformed into
practical interpretations, leading to actionable conclusions. For
example, graph features like centrality and clustering coefficient
correspond to specific properties in the original dataset. Centrality
identifies key nodes – whether atoms in a crystal, neurons in a brain,
people in a social network, or galaxies in a cosmic structure. The
clustering coefficient reveals local interconnectedness, such as
tightly bonded atoms, strongly connected neurons, close-knit
social groups, or galaxy clusters. Mapping these graph metrics to
domain-specific entities clarifies which metrics are critical for
establishing domain-specific criticality. Linking these graph-based
insights to domain-specific data bridges abstract analysis with real-
world entities and their interactions. For example, if centrality is a
key feature for determining criticality in neuroscience, neurons with
high centrality may be crucial for cognitive processes, guiding
interventions for neurodegenerative diseases. Similarly, if high
connectivity between nodes is important for criticality in other
domains, in materials science, central atoms with high
connectivity may reveal key atomic bonds for material strength;
in social sciences, individuals with high social centrality may be
influential figures within a community; and in cosmology, central
galaxies may offer insights into the gravitational dynamics of large-
scale structures.

4 Computational feasibility and
technical considerations

The practical implementation of the proposed methodology
involves several key technical aspects that warrant detailed
discussion, particularly regarding the selection of graph metrics,
the scalability of XML models, and the computational cost of
transfer learning across domains.

4.1 Selection criteria for graph metrics

Choosing appropriate graph metrics is fundamental for effective
cross-domain analysis. To generate meaningful and comparable
insights, the methodology emphasizes graph metrics that are
interpretable and relevant across a broad range of
disciplines—such as, in our case, materials science, neuroscience,
social science, and cosmology—and suited to the specific
phenomenon under investigation, which in our case is criticality.
For example, key metrics could include clustering coefficient,
average path length, degree distribution, and various centrality
measures, all well supported by literature as markers of structural
transitions near critical points (Jensen, 1998; Bigdeli et al., 2009;
Gaur et al., 2019; Zimmern, 2020a; Ponti et al., 2021). Additional
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criteria guiding metric selection involve robustness to noise, the
ability to discriminate between critical and non-critical states,
computational efficiency on large-scale graphs, and empirical
validation from previous studies within each domain.
Furthermore, filtering out highly correlated metrics could
improve XML performance while significantly reducing dataset
dimensionality and computational overhead (see Section. 4.2).
Expert knowledge plays a crucial role in the initial selection of
metrics to ensure domain-specific relevance and scientific
coherence. Applying these criteria ensures the approach
preserves interpretability and reliability while supporting
scalable analysis.

4.2 Scalability of graph and XML models

Scalability plays a critical role when dealing with a large
collection of graphs, each potentially containing thousands of
nodes and edges. To manage this complexity, the methodology
relies on efficient graph processing techniques that allow reliable
extraction of structural features without incurring excessive
computational costs. Handling numerous or intricate graphs
may require optimization methods such as batching, parallel
execution, or selective feature computation, yet these demands
generally remain within the capabilities of standard computing
resources. On the XML side, the analysis operates on a compact set
of graph-derived metrics, keeping the input dimensionality low.
This focus enables interpretable and computationally efficient
modeling, even across large or diverse datasets. To address
issues of missing or unreliable data, the framework can
incorporate imputation techniques and uncertainty
quantification methods, enhancing robustness and ensuring
more reliable model predictions in the presence of noise or
incomplete information (Gupta and Gupta, 2019; Emmanuel
et al., 2021).

4.3 Computational cost of transfer learning

Transfer learning facilitates knowledge sharing between
domains by fine-tuning pre-trained models on target domain
data, reducing the need for extensive retraining. The
computational overhead depends largely on the similarity
between source and target domains and the size of the datasets
involved (Caccia et al., 2023). To manage costs, the methodology
incorporates selective fine-tuning focused on key graph metrics
identified through feature importance analysis, limiting training
time while preserving cross-domain generalization. Additionally,
domain adaptation techniques such as careful fine-tuning schedules
and feature alignment help maintain the relevance of learned
representations across domains with differing data distributions.
Moreover, since the data is represented as graphs, the models can
isolate and reuse specific structural patterns learned from one
domain when analyzing another. This modular reuse means that
instead of retraining the entire model from scratch, only relevant
components or features require adjustment. Such an approach
reduces computational effort and accelerates learning during
adaptation to new domains, enhancing overall efficiency.

5 Exploiting cross-domain synergies

The proposed framework aims to generalize across disciplines,
but a brief comparison with traditional methods used in each
example domain helps clarify its distinct contribution. In
materials science, conventional studies of phase transitions often
rely on atomistic simulations—such as molecular dynamics or
Monte Carlo methods—or thermodynamic models. While these
offer high-fidelity representations, they are computationally
intensive and tailored to specific physical systems (Tavenner
et al., 2023; Łach, 2025). Abstracting material systems as
interaction networks could enable the detection of structural
patterns associated with critical behavior in a more generalizable
and scalable form. Crucially, combining NS with XML could
enhance this framework by providing not only predictive
capabilities but also interpretability. XML models could identify
which network features most influence phase behavior, offering
insights that are both actionable and transferable across materials.
This synergy could facilitate the development of lightweight,
interpretable tools that complement traditional simulations while
broadening the scope for cross-domain generalization. Brain activity
is typically analyzed using statistical and signal processing
techniques such as spectral analysis, dynamic causal modeling, or
multivariate pattern analysis. While these methods yield valuable
insights into specific neural processes, they seldom capture system-
level organization or dynamics associated with criticality (Razi and
Friston, 2016; Bahrami et al., 2023). The proposed approach shifts
focus toward modeling brain function as a complex network, using
graph-based features that characterize large-scale connectivity
patterns. When combined with XML, this representation could
enable interpretable analyses that highlight which structural
properties most influence emergent neural behavior. This
integrative methodology may support cross-domain
generalization and contribute to identifying potential common
principles underlying critical dynamics in both biological and
artificial systems. Social systems are often explored through
statistical models, agent-based simulations, or qualitative analysis.
While NS has gained traction in this domain, its application typically
remains confined to specific tasks such as community detection or
information diffusion (Borgatti et al., 2009; Weisburd et al., 2024).
The proposed framework takes a broader approach by leveraging
generalizable graph features to enable structural comparisons across
domains and identify shared patterns underlying complex social
behaviors. By integrating NS with XML, the methodology may
support predictive modeling while offering insights into which
topological properties are most likely to influence system
dynamics. This combination could enable interpretable and
scalable analyses that extend beyond isolated use cases,
potentially facilitating the identification of shared principles
across social and other complex systems. Finally, large-scale
simulations of the universe—such as N-body or lattice field
models—serve as the standard tools for studying cosmic structure
and phase transitions. These simulations are grounded in physical
laws but do not typically support interpretability or cross-domain
comparison (Bertschinger, 1998; Partmann et al., 2020).
Representing cosmological systems as graphs may help identify
structural markers (e.g., critical points) that resemble patterns
observed in other complex systems. In addition, combining NS
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with XML could offer added interpretability and potential for
generalization. While NS can highlight topological signatures of
complex dynamics, XML techniques might help trace how specific
features contribute to model predictions. This integrated approach
may support hypothesis generation across domains and promote
transparency—an important consideration when modeling
phenomena as intricate and data-intensive as cosmology. From this
comparative perspective, the proposed methodology has the potential
to shift the focus from domain-specific optimization toward
uncovering shared mechanisms—such as criticality—through
unified NS representations and XML-based analysis.

This section highlights the potential benefits of identifying
common principles across domains, which may enable transfer
learning—a machine learning technique that adapts a model
trained in one domain for use in a related one. This approach
could potentially reduce training time and resource demands,
especially when data is limited. For instance, recognizing critical
states in cosmic systems with sparse data could be facilitated by first
training a model on more accessible neuroscience data. Transfer
learning would then adapt the model for application in cosmology,
helping it detect critical states in less monitored systems.

Beyond this example, the proposed framework could provide a
structured approach for identifying analogies between phenomena
in seemingly unrelated fields. Detecting similar patterns of criticality
through graph metrics—such as phase transitions in materials and
neural activity in the brain—could help generate hypotheses about
how structural features shape functional behavior across systems.
These cross-domain parallels could potentially offer a foundation for
designing interfaces that better align with the brain natural
dynamics, enhancing both adaptability and performance. The key
connection lies in the shared dynamics of criticality observed across
domains, which could, for example, inform the design of
neuroprosthetic devices by enhancing their timing and
responsiveness. In this respect, studying how materials undergo
phase transitions that alter electrical conductivity near critical points
may support the development of biocompatible materials optimized
for stable and efficient neural interfaces. Feature importance analysis
can help identify the structural or functional properties that most
influence criticality in both materials and neural networks. By
manipulating these key features, it may become possible to
modulate critical behavior in both systems, thereby enhancing
the efficiency and stability of interactions between engineered
materials and the brain, particularly near critical thresholds.
Within this framework, causal AI could explore how properties
like flexibility and biocompatibility influence neuroprosthetic
integration near critical thresholds. Meanwhile, correlational AI
could detect links between material microstructure and electrical
performance, and in neuroscience, between material characteristics
and neural tissue compatibility. Overall, these integrated insights
could support the co-design of materials and devices tailored for
reliable performance at key points of interaction. More broadly, the
same approach could be extended to other domains—such as linking
behavioral tipping points in society with neural state transitions, or
comparing stress propagation in engineered structures with energy
distribution during cosmological phase transitions—to leverage
shared principles of criticality. This could enable a deeper
understanding of how complex behaviors emerge and stabilize
across fields.

6 Conclusion and future work

This paper explores an interdisciplinary, system-level approach
that could potentially be used to uncover common principles across
different scientific domains. As an example, the paper focuses on
materials science, neuroscience, social science, and cosmology, with
an emphasis on criticality. It combines NS and XML to propose a
five-step method: gathering relational data, converting it into a
neutral framework, building graph-based datasets, using XML to
compare criticality across fields, and applying findings back to
specific domains. This approach could potentially enable XML
models to work in fields with limited data, such as applying
neuroscience insights to detect critical states in cosmology.

In the future, extending explainability by incorporating rule-based
and counterfactual-based explanations could enhance model
interpretability, especially in complex domains (Guidotti et al.,
2019a; Guidotti et al., 2021). This would broaden the scope
beyond feature importance methods and shift towards a more
comprehensive Explainable AI (XAI) framework, offering more
intuitive and actionable insights, thus increasing transparency and
trust across various applications (Samek et al., 2019; Guidotti et al.,
2024). Additionally, exploring the integration of explainable machine
learning (XML) techniques with graph-based neural networks—such
as Graph Convolutional Networks and Graph Attention
Networks—may offer valuable insights. Such a comparison could
clarify trade-offs between interpretability and performance, and
inform hybrid strategies that effectively balance explanatory depth
with predictive accuracy (Khemani et al., 2024; Li et al., 2024).

By integrating NS and XML, the proposed framework offers a
structured and interpretable approach for cross-domain analysis.
While this study focused on four exemplary domains—materials
science, neuroscience, social science, and cosmology—and on the
phenomenon of criticality, the methodology is generalizable and
designed to accommodate other scientific areas and complex
phenomena. In particular, it can be extended to investigate
additional emergent behaviors, such as synchronization,
resilience, and adaptation, which are prevalent in many natural
and artificial systems (Holland, 1992; Bar-Yam, 2002; Siegenfeld and
Bar-Yam, 2020; Artime et al., 2024). Shared properties across
domains—such as hierarchical organization, feedback loops, and
nonlinear dynamics—give rise to complex behaviors including
crystallization in materials, neural synchronization in the brain,
and structure formation in the cosmos. Recognizing and
systematically comparing these patterns through a unified
analytical lens could drive breakthroughs not only in
neurotechnology and materials science, but also in fields like
ecology, epidemiology, and economics, ultimately fostering both
theoretical insight and practical innovation through
interdisciplinary collaboration. Future research will focus on
implementing and testing the framework on real-world datasets
(Strey et al., 2023; Failla et al., 2024; Ohana et al., 2024; The
Multimodal Universe Collaboration et al., 2025; Batatia et al.,
2025). Initial experiments on selected domain-specific data could
provide evidence of practical performance and manageable
computational requirements. However, quantitative
benchmarking across diverse datasets, systematic performance
evaluation, and scalability testing will be essential to validate the
framework robustness and generalizability. For example, comparing
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the model ability to identify critical states against established
benchmarks—such as known phase transition models in
materials science or cosmological simulations—could help assess
the scientific validity of the detected patterns. This next phase will be
key to establishing the practical viability of the approach in applied
scientific and engineering contexts.
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