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To improve the resilience of the computer network infrastructure against cyber
attacks or causal influences and find ways to mitigate their impact, we need to
understand their structure and dynamics. Here, we propose a novel network-
based influence-spreading modelling approach to investigate event trajectories
or paths in attack and causal graphs with directed, weighted, cyclic and/or acyclic
paths. In our model, we can perform probabilistic analyses that extend beyond
traditional methods to visualise cyber-related graphs. The model uses a
probabilistic method to combine paths that join within the graph. This analysis
includes vulnerabilities, services, and exploitabilities. To demonstrate the
applicability of our model, we present three cyber-related use cases: two
attack graphs and one causal graph. This model can serve cyber analysts as a
tool to produce quantitative metrics for prioritising tasks, summarising statistics,
or analysing large-scale graphs.
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1 Introduction

Cyber attacks are unauthorised actions against computer network infrastructure to
exploit vulnerabilities in target systems, while cyber threats refer to potential adversarial
events in which an attacker could exploit vulnerabilities (Li and Liu, 2021). Typically, a
cyber attack can consist of a number of actions, events, or steps required for the attacker to
gain access or sufficient privileges to achieve the objective of an attack, e.g., denial of service
(DOS) or the delivery and use of malware. A common approach to classifying these steps
has been through various frameworks such as the cyber kill chain (Hutchins et al., 2011). At
a more technical level, potential or real cyber attacks have often been modelled as directed
graph structures. Among these graph-based methods, attack graphs and their variants are
often used to represent cyber attacks (Lallie et al., 2020; Liu et al., 2012; Wachter, 2023; Zeng
et al., 2019; Zenitani, 2023). There are two commonly used forms of attack graphs: the first is
a directed graph with nodes representing network states and edges (links) representing
exploits, while the second uses nodes to represent pre- or post-conditions of an exploit and
edges to show the consequences. In addition, knowledge-based methods are used to model
attack concepts and vulnerability details (Alserhani, 2015; Qi et al., 2023; Sikos, 2023).

In order to understand, analyse, and visualise the sequence of events of a successful cyber
attack, we will here use attack modelling techniques (AMTs). There are three main categories of
AMT: (i) methods based on use cases like misuse or security use cases, (ii) temporal methods
based on, e.g., cyber kill chains, and (iii) methods based on graphs (Lallie et al., 2020). Here, we
will focus on graph-basedmodels as they enable cyber analysts and researchers to formulate and
use different metrics, both quantitative and qualitative, to optimise and prioritise defensive
efforts (Lallie et al., 2020). Graph-based cyber attack modelling can be conducted at various
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technological levels, including applications, services, or entire computer
networks. To achieve this, mappings from technical micro-service levels
to higher clustering levels can be accomplished using technical
configuration repositories.

In the literature, the term attack graph has been used to refer to a
variety of modelling approaches (Wachter, 2023), which present a
taxonomy of these models based on analysing 70 attack graph
formalisms. This taxonomy uses a hierarchical categorisation
with two top-level categories: sequential models and causal
dependency models. Sequential models represent attack steps and
paths formed by them, while causal dependency models focus on
cause-effect relationships. Based on node semantics, sequential
models are further categorised into asset-oriented, vulnerability-/
exploit-oriented, and condition-/attribute-oriented types.

Our research approach will focus on network modelling, as it
provides a range of methods and tools for analysing cyber-related
graphs from different perspectives and aggregation levels. One
recent approach involves modelling network structure and
influence flow at a detailed level of nodes and links (Almiala
et al., 2023; Kuikka and Kaski, 2024; Kuikka et al., 2022). This
network model uses Markov processes and applies probability
theory to assess the combined effects from multiple sources. Our
method for evaluating the effects of various joining paths in both
acyclic and cyclic (Levner and Tsadikovich, 2024) graphs extends
the probabilistic techniques discussed in the literature (Carter et al.,
2014; Homer et al., 2013; Stergiopoulos et al., 2022; Wang et al.,
2008). In this study, we calculate the combined effect of multiple
alternative paths in a graph by using the theorem of non-mutually
exclusive events from probability theory. Details of the model and its
corresponding algorithm can be found in (Kuikka et al., 2022). In
general, our probabilistic modelling approach serves as an
integrated, graph-based methodology or framework for analysing
various types of influence spreading processes, including cyber
attacks. The integration of modelling and analysis metrics within
the same probabilistic framework makes our approach self-
consistent, distinguishing it from other graph-based methods.

In this study, we present the modelling of cyber-related graphs
through three use cases and demonstrate how the model can be
applied to examine the exploitability, causality, and incomplete
graph information in the computer network and services system.
The first use case (Stergiopoulos et al., 2022) involves a directed
acyclic graph in which the states of the system are represented as
nodes and the vulnerabilities as links between the nodes, forming an
attack graph. The exploitability of a vulnerability is interpreted as the
probability of a successful exploit (i.e., traversability of a link). In the
network model, these probabilities are assigned to link weights,
which are derived using general CVSS scoring data (Common
Vulnerability Scoring System) (NIST, 2012) and adjusted with a
scaling factor. The second use case (Alsaheel et al., 2021)
demonstrates a larger network structure of services and
applications, illustrating how exploitability metrics can be utilised
to produce aggregate security metrics concerning vulnerability and
service levels. The third use case (Alsaheel et al., 2021; Jiang et al.,
2017) involves two types of nodes, namely, attack entities and non-
attack entities identified by an attack investigation tool using natural
language processing and deep learning. This use case illustrates how
our model can address inaccuracies in results from threat
analysis tools.

These use cases demonstrate how different categorisations can
be applied within the model. Because the model presents metrics as
probabilities, it aids in forming a consistent understanding of the
situation from various perspectives. Additionally, our model
introduces novel methods for analysing cyber-related graphs. It
employs a probabilistic technique to merge multiple alternative
paths—both cyclic and acyclic—within a graph. The model uses
a detailed model to consider all potential paths through the nodes of
the network and defines new metrics to estimate the exploitability
and impacts. For instance, it can be used to evaluate the impact of
eliminating certain vulnerabilities across services or protecting
targeted services within the system. Therefore, our model could
serve as a valuable aid for cyber analysts and those designing cyber-
secure systems. Based on our model, it is possible to develop a
visualisation and analysis tool that allows cyber analysts to leverage
various model outputs and metrics for real-world mitigation
planning. This tool could include enterprise-specific assessments
related to exploitability and impact values. As a result, analysts could
perform what-if analyses and inspect specific parts of networks
and systems.

In Section 3, we will present our network modelling method and
analysis metrics. The pseudo-algorithms of our influence spreading
model are reproduced in the supplementary material from our
earlier study (Kuikka et al., 2022). In Section 2, we review related
research on attack graphs and metrics used to assess the impacts of
cyber attacks. In Section 4, we describe the data and networks of the
use cases on which the model is demonstrated. In Section 5, we will
explain how the model can be used to obtain new results in analysing
cyber-related graphs through the three use cases. In Section 6, we
will discuss the applications of our graph-based methods in
analysing cyber vulnerabilities and attacks, and present
concluding remarks.

2 Related work

Several reviews have been published about attack graphs and
related cybersecurity methods and models to analyse them (Lallie
et al., 2020; Wachter, 2023; Zeng et al., 2019; Zenitani, 2023). The
review in (Lallie et al., 2020) provides a description of a theory of
cyber attacks and how elements of attack graphs and attack trees are
represented and visualised. The study in (Wachter, 2023) presents
the state of research on the representation and analysis of cyber
attacks using attack graph formalisms and proposing a classification
based on an analysis of models regarding graph semantics, agents
involved, and analytical features. This study also investigates which
formalisms enable automatic attack graph generation from raw or
processed data input.

The review in (Zenitani, 2023) presents a recent summary of
studies on attack graphs, by focusing on key concepts such as
exploit dependency and/or rules (Levner and Tsadikovich, 2024),
monotonicity, and handling cycles. The study in (Zeng et al.,
2019) describes the key concepts, generation methods, and
computation tasks of attack graphs. Also, it summarises
various analysis methods, including graph-based, Bayesian
network-based, Markov model-based, cost-optimisation, and
uncertainty analysis methods. In the attack graph analysis,
there is a need to quantify the levels of threats, vulnerabilities,
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exploits, and impact, each with appropriate metrics. For example,
in enterprise environments, system security metrics (Pendleton
et al., 2016) and network attack graph metrics (Noel and Jajodia,
2017) have been proposed to evaluate and compare the threats
and impacts of cyber attacks.

In the literature (Shakarian et al., 2015), an Independent
Cascade (IC) model has been proposed as a way to describe
influence maximisation. This model assumes that nodes activate
their neighbours independently on the basis of a fixed probability
rather than multi-step logical relationships, as in the case of our
influence spreading model. A key difference is that the IC model
does not consider joining paths, like our present model does by
following the probabilistic rule of mutually non-exclusive events.
This can result in a more realistic evaluation of the overall risk for
the enterprise network and services. Our probabilistic method
also allows us to calculate expected cumulative and non-
cumulative impact values, as well as the circular effects of
attack propagation.

The present study is related to two earlier works: one by
Stergiopoulos et al. (2022) and another by Alsaheel et al. (2021).
The data for the first two use cases are adapted from
(Stergiopoulos et al., 2022), while the data for the third use
case comes from (Alsaheel et al., 2021). The study in (Alsaheel
et al., 2021) presents a sequence-based learning approach to
investigate attacks, whereas (Stergiopoulos et al., 2022) proposes
an automatic analysis of attack graphs to facilitate risk
mitigation and prioritisation using probabilistic methods. Our
method uses probability-based path combination, which
complements the approach outlined in (Stergiopoulos et al.,
2022). In that approach, single paths, as well as those with
minimum and maximum exploitability and impact values, are
assessed. However, our method is well suited for the
comprehensive evaluation of enterprise networks. In contrast,
the single path method allows for a detailed analysis of
individual attack paths. Both techniques can be used together
to examine different aspects of cyber attacks. Moreover, in
enterprise-scale networks, analysing single paths can be
computationally resource-intensive due to the vast number of
potential combinations. Relying solely on subjective judgment
to limit the set of possible paths may not produce
accurate results.

Although there are a number of studies using graph-based cyber
attacks modelling, a comprehensive approach applicable to various
levels of applications and services in enterprise networks is still
lacking. In the present study, we introduce a probabilistic method to
quantitatively analyse cyber-related graphs and identify strategies to
improve the resilience of network infrastructure.

3 Attack graph model

Graphs related to cyber security, such as attack graphs and
causal graphs, are mainly created to help visualise complexities of
attack sequences and plan ways to prevent them (Lallie et al., 2020).
These graphs are usually generated from large volumes of data for
this purpose (Sheyner and Wing, 2003; Stojanović et al., 2020).
Consequently, the resulting graphs typically contain a small number
of nodes, ranging from a few to hundreds.

In our network-based modelling approach (Kuikka et al., 2022)
we consider and analyse cyber attack processes from the point of
view of influence spreading for finding ways to prevent or mitigate
potential or ongoing attacks (Haque et al., 2021; Segovia-Ferreira
et al., 2024). The model describes the network structure, including
individual nodes and links. Influence spreads through a non-
conserved process, moving from a node to all neighbouring
nodes via directed links. In our model, the influence spreading
can be assumed to take place via acyclic or cyclic Markov processes
on a complex network structure. In the present study, the model
describes attack propagation along self-avoiding paths, representing
acyclic paths, and uses unrestricted paths to represent general
propagation through either acyclic or cyclic paths.

The weights assigned to directed links represent the probabilities
of successful attack propagation steps within a graph structure. Since
the actual parameter values, including link weights and CVSS scores,
can vary greatly in real environments, in this study, we employ a
scaling factor to cover the full range of possible parameter values.
This approach also enables what-if and sensitivity analyses to
explore various attack scenarios and environments.

Our model is quite versatile as it offers different approaches to
dealing with full breakthrough of nodes or self-avoiding paths. The
first approach allows loops in the spreading process, while the
second approach is better for examining connectivity between
nodes. Loops consisting of a minimum of three nodes connected
by links enable circular propagation of influence within the network
structure. Both approaches yield similar results for directed acyclic
graphs because the network lacks cyclic processes. In case of full
breakthrough effects, a bidirectional link creates a cycle between the
two nodes at each end of the link, resulting in recurring events in the
network. Note that due to spreading, the effects are not limited to
those nodes but spread throughout the network structure. In the case
of self-avoiding paths, no recurring effects are permitted, and the
process can propagate only in one direction along a path.

The method and corresponding algorithms proposed in our
earlier article (Kuikka et al., 2022) are based on modelling network
structure and spreading processes. This results in an N × N
probability matrix C, where the number of nodes in the network
is denoted by N. The matrix elements represent directed spreading
or connectivity probabilities from one node to another in the
network with a connecting path between them. When spreading
from branching paths, it occurs in all possible directions, and the
probabilities concern the first arrival at the end nodes. Subsequently,
this matrix is used to define various metrics for analysing the
network structure and network flow process. Note that models
other than our influence spreading model can generate the
probability matrix. As the analysis is based on the probability
matrix, it is independent of the method used to produce the
probability matrix. These models could even be non-Markovian
or include other event types besides mutually non-exclusive events
(OR rule) used to combine multiple joining alternative paths
(Kuikka et al., 2022).

In network analysis, we use two metrics to evaluate the
importance of a node, namely, out-centrality and in-centrality,
and they are defined differently from the standard closeness
centrality measures in the literature. One reason for using
different metrics is the limitations of standard metrics in
describing detailed network structures, because they are defined

Frontiers in Complex Systems frontiersin.org03

Kuikka et al. 10.3389/fcpxs.2025.1620260

https://www.frontiersin.org/journals/complex-systems
https://www.frontiersin.org
https://doi.org/10.3389/fcpxs.2025.1620260


based on the shortest paths between nodes, thus ignoring other
alternative paths an attack could propagate (Landherr et al., 2010).
We use the probability matrix as the basis of analysis, as it enables
the separation of the network modelling from the analysis (Kuikka
et al., 2022).

Next, we define the centrality measures for the subset of nodesV
in the network G of N nodes. (Note that in the case of the entire
network V = G). For the influence spreading through the network,
we define the out-centrality of the source node s by

C out( ) s( ) � 1
N − 1

∑
t∈V
s≠t

C s, t( ) (1)

and the in-centrality of a target node t by

C in( ) t( ) � 1
N − 1

∑
s∈V
s≠t

C s, t( ). (2)

Here, the out-centrality of a node is the average value of probabilities
of spreading from the source node to all other nodes in V, while the
in-centrality of a node is the average value of probabilities of
spreading from all other nodes in V to the target node. These
centrality measures describe the physical properties of the network
structure and the flow process. As C(s, t) is the probability of
influence spreading from node s to node t, the sum in Equation
1 is interpreted as the expected value of the influenced nodes and the
sum in Equation 2 as the expected number of nodes that spread
influence to the specified node. In the context of cyber-related
graphs, influence spreading refers to the propagation of cyber
attacks within the graph. In this study, we adopt the convention
of setting the state value of the source node as zero and using the
corresponding normalisation factor 1/(N − 1) and express the
results as percentage values.

When dealing with cyber-related graphs, the out-centrality is a
measure for assessing the potential effect of a cyber attack on other
nodes within the network. On the other hand, in-centrality is useful
for understanding how various cyber attacks can affect nodes in the
network. Detailed information can be obtained by focusing on a
subset of start and end nodes using Equations 1, 2. Typically, the
main focus is to explore vulnerabilities and the effect of a start node
on an end node. However, multiple start nodes and end nodes can
exist in one cyber-related graph.

Let us move on to discuss the metrics of exploitability and
impact. The exploitability represents the probability of a successful
cyber attack through a link, while impact describes its effect on the
system, functionality, or operation. To assess the impact of different
needs both at the technical and operational levels, the first step is to
define the concept in the specific situation. The impact is calculated
for the nodes and the exploitability is calculated for the links. We
assume that the impact value does not influence the probabilities of
propagation of the cyber attack. Therefore, impact values may not be
expressed as probabilities and can have numerical values beyond the
range of [0, 1]. However, the impact values for different nodes are
comparable, enabling us to calculate the desired sums for paths or
network structures.

When assessing vulnerabilities, there are two main
approaches: the General CVSS scoring (Common Vulnerability

Scoring System) (NIST, 2012) or a custom evaluation method in
which organisations supplement or override CVSS with their
own risk assessments. The empirical CVSS scoring system
provides a quantitative way to capture key characteristics of a
vulnerability, resulting in scores that indicate its severity (the
impact on a system) and exploitability (the ease of exploitation)
(Mell et al., 2007). These metrics adhere to international
standards for measuring cybersecurity risks. By using either
CVSS or a custom evaluation, organisations can prioritise
patches and mitigation strategies based on the potential
impact of each vulnerability. We demonstrate the use of the
CVSS scoring system in our first use case. In our second use case,
since the general CVSS scores are uniformly high across all
vulnerabilities, we focus on illustrating the network structure
of services and applications and, therefore, use equal values for
the vulnerability characteristics of all vulnerabilities.
Furthermore, it is important to note that the general CVSS
method may not accurately reflect the actual risk in a specific
organisation or environment. The equations and algorithms used
to score the base, temporal, and environmental metric groups are
detailed in (Mell et al., 2007). Additional information on the
origin and testing of these equations can be found at
(FIRST, 2025).

Our approach is based on the use of link weights as
probabilities to represent successful exploits. The exploitability
metric measures the current state of exploit techniques or code
availability. When easily accessible exploit code is publicly
available, it increases the number of potential attackers,
including unskilled ones, increasing the severity of
vulnerabilities. The following equation illustrates how the
factors AccessVector, AccessComplexity, and Authentication
describe the accessibility and complexity of the vulnerability, and
whether additional conditions are needed to exploit it. The
exploitability metric is defined as follows (Mell et al., 2007):

Exploitability � 20 pAccess Vector

pAccessComplexitypAuthentication. (3)
Impact metric measures the potential consequences of

exploiting a vulnerability of an IT asset. These impacts are
independently defined based on the degree of loss in three
key areas, namely, confidentiality, integrity, and availability.
The present analysis can be further extended to consider
specific business impacts by incorporating relevant effects in
Equation 5. The total impact metric is defined as follows (Mell
et al., 2007):

Impact � 10.41 p 1 − 1 − ConfImpact( )(

p 1 − IntegImpact( ) p 1 − AvailImpact( )). (4)
In a network structure, a node can be targeted by different cyber
attack paths from the source node through various links directed to
the target node. In an attack graph, these may involve the same
vulnerability. However, if different vulnerabilities can be exploited
on one node, we calculate the weighted average value for the node or
use themaximum impact of alternative exploits. We define a vector I
with elements representing the impact values for the nodes in the
network. The impact of a cyber attack from the start nodes S to the
end nodes T can be defined as:
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I S, T; I( ) � ∑
i∈S
j∈T

C i, j( )Ij, (5)

where the matrix C consists of elements C(i, j) that represent the
probabilities of successful attacks from node i to node j via
alternative paths. The impact value on the end node alone
includes the last exploit on the path. The impact value of
Equation 5 can be calculated for specific events, including effects
on specific services or aspects of security. Additionally, Equation 5
can be utilised to analyse the impact of exploits by determining the
decrease in the impact value after mitigating vulnerabilities.

When all elements of vector I are set to one, we obtain a quantity
that describes the attack propagation from the source node set S to
the target node set T in the network. In this way, the impact value in
Equation 5 is linked to the out- and in-centrality metrics in
Equations 1, 2. Therefore, the centrality measures and the impact
measure in Equation 5 are defined consistently with each other.
Combining the alternative paths using probabilistic methods allows
us to calculate accurate metrics based on Equations 3 and 4 for real-
world cyber attacks and different classifications.

As a further characteristic measure, one can calculate a cumulative
impact for an individual attack path, as done in (Stergiopoulos et al.,
2022). In our model approach, the cumulative impact along a path is
calculated by summing up the products of propagation probabilities
and node impacts according to Equation 5. Once again, the impact on
the end node only includes the impact on that node.

In summary, four kinds of impact metrics can be calculated:
cumulative impacts along individual paths or all alternative paths,
and non-cumulative impacts on the end nodes through individual or
all alternative paths. In this study, we prefer metrics that combine
alternative paths using a probability theory approach and methods. The
factorsCi,j in Equation 5 account for the effects of all potential alternative
paths. This approach allows for the definition of newmetrics in analysing
cyber events from different perspectives and categorisations. In the next
section, we provide examples of this through use cases.

4 Use case data

For this study, we chose three different graph structures,
described in Table 1 to serve as our use cases.

4.1 Use case 1: Multi-cloud
enterprise network

The graph for the Multi-cloud Enterprise Network from
(Stergiopoulos et al., 2022) represents the network topology of

two cloud infrastructures connected to the Internet behind an
external firewall. The first cloud server hosts three virtual
machines, all connected to a virtual switch. The second cloud
server hosts a public network and a private network. External
users can access a web server, and internal users can access the
SQL server from inside the local network. Each server in this
topology represents a realistic vendor-specific system with a set
of real-world CVE vulnerabilities, with the impacts of exploitation
extracted from the CVE database.

4.2 Use case 2: netflix OSS architecture

Ibrahim et al. (2019) used a combination of tools to construct
attack graphs for microservice architectures, consisting of a Docker
host running various interconnected containers. The network
topology was extracted from the docker-compose configuration
files that define the orchestration of the services and details about
the connections between containers, published ports, and any
privileged access granted to containers. Vulnerabilities were
scanned from the Docker images using the vulnerability scanning
software Clair, producing a list of CVEs with textual descriptions
and attack vectors for each image. The topology and vulnerability
data were used as input for the final attack graph generation process.
Attack pre- and postcondition parsing was performed by matching
the attack vectors of the vulnerabilities by keyword matching
(Aksu et al., 2018).

4.3 Use case 3: pony APT (advanced
persistent threat) campaign

In the research conducted on the Pony APT campaign (CVE-
2017-0199) (Jiang et al., 2017), the methodology was based on the
work by Alsaheel et al. (2021), describing a framework for
constructing ”attack stories” from audit logs. Their approach
involved several steps. First, a platform independent causal graph
representation was constructed using various system audit logs,
including DNS records, web objects, processes, file accesses, and
network connections. This graph was then abstracted using
optimisation techniques to reduce its complexity. Specifically,
nodes and edges that were not reachable from the attack nodes or
attack symptom nodes were removed, repeated edges between
entities were reduced to only the first occurrence, and nodes and
edges referring to the same type of event were combined.

Next, the process of attack sequence construction took place.
All “attack entities” from the causal graph were obtained, and
subsets consisting of two or more attack entities were formed.

TABLE 1 Summary of the use case graphs.

Graph Description Nodes Links References

Multi-cloud Enterprise Network Netflix OSS microservice system 18 25 Stergiopoulos et al. (2022)

Netflix OSS Netflix OSS microservice system 21 94 Stergiopoulos et al. (2022)

ATLAS, Pony campaign attack Recovered sequences and a causal graph 39 65 Alsaheel et al., 2021, Jiang et al., 2017
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The neighbourhood graph for each entity within these subsets
was extracted, followed by retrieving time-stamped events for
each neighbourhood graph. Sequences were labelled attack
sequences if they consisted exclusively of attack events, which
means that both the source and destination nodes were associated
with attacks. Following this, sequence lemmatisation was
performed. This involved transforming sequences into a
textual representation using a general vocabulary of 30 words,
divided into four types: process, file, network, and actions. To
balance the dataset, non-attack sequences were undersampled,
and attack sequences were oversampled by mutating existing
attack sequences. Finally, the sequences were embedded and
modelled, followed by an investigation of attack and recovery
of “attack stories”. In the resulting processed graph, the semantic
interpretations of nodes and edges are connected to system states
inferred from the audit logs. The nodes represent processes
(i.e., executables), files or IP addresses. The edges between
them in turn represent actions or events between the entities,
like read, write, execute, or connect.

The ATLAS approach thus focuses on reconstructing the
attack story from observed system behaviours, with nodes and
edges closely tied to actual system events and entities as recorded
in the audit logs. Currently, the calculations treat all nodes in the
graph equivalently, even in the use case where the graph nodes
represent different entity types. A potential direction for further
study is to treat different entities in the multiplex graph as
distinct and perform the calculations separately for each
node class.

5 Results

In this section, we present the results of our attack graph model
for three different use cases. The first use case presents a small
directed acyclic attack graph (Stergiopoulos et al., 2022). The second
use case is a more complex attack graph from (Stergiopoulos et al.,
2022) and finally, the third use case is a causal graph that was
generated by an attack investigation tool using natural language
processing and deep learning (Alsaheel et al., 2021).

5.1 Use case 1: Multi-cloud
enterprise network

We use a multi-cloud enterprise network as the first use case to
demonstrate our modelling method. The network topology and
vulnerabilities are adopted from (Stergiopoulos et al., 2022). The
first cloud server hosts three virtual machines: a Mail server, a Web
server, and a DNS server, and the second cloud server consists of
public and private networks. The public network hosts an SQL
server and a NAT gateway server, and the private network hosts an
Admin server and three virtual machines (VMs). Users outside the
network can access the Web server, and employees within the same
LAN can access the SQL server through their workstations.

FIGURE 1
Use Case 1: Attack graph Multi-cloud Enterprise Network
(Stergiopoulos et al., 2022).

TABLE 2 Exploitability and impact values calculated from Equations 3, 4 for
vulnerabilities in the attack graph of Figure 1 (Stergiopoulos et al., 2022).

Vulnerability Expl./10 Impact Links

- 1 - E1,E2

CVE-2010-3847 0.339258 10.00085 E3,E4,E20

CVE-2003-0693 0.99968 10.00085 E5,E6

CVE-2007-4752 0.99968 6.442977 E7

CVE-2001-0439 0.99968 6.442977 E8

CVE-2008-4050 0.85888 10.00085 E9,E10

CVE-2008-0015 0.85888 10.00085 E11,E12,E21, E22,E23

CVE-2009-1918 0.99968 10.00085 E13,E16

CVE-2018-7841 0.99968 6.442977 E14,E18

CVE-2004-0840 0.99968 10.00085 E15

CVE-2008-5416 0.7952 10.00085 E17,E19

CVE-2001-1030 0.99968 6.442977 E24

CVE-2009-1535 0.99968 6.442977 E25

FIGURE 2
Impacts of successful cyber attacks from the start node one of
Figure 1 to other nodes in the graph. The impact values calculated
from Equation 5 are highlighted with node colours and sizes.
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Figure 1 shows the attack graph on the Multi-cloud Enterprise
Network that consists of directed links representing the exploits and
nodes representing the states. These kinds of networks are directed
acyclic graphs (DAGs), i.e., without cycles (Kordy et al., 2014).

The systems have vulnerabilities that are listed in the CVE
vulnerabilities database (Mell et al., 2007). The attacker’s goal is
to compromise a virtual machine in the private network or the
database in the public network by gaining root access. The attacker
can take different paths in the attack graph.

In Table 2, we show the impact and exploitability values
calculated for vulnerabilities in the attack graph (Figure 1). The
third column of this table shows the list of links in the attack graph
for each vulnerability. In this context, impacts are associated with
the properties of vulnerabilities (or edges), while in Equation 5 and
Figure 1, successful cyber attacks affect services (or nodes). Our
model treats nodes as representations of network states; therefore, all
exploits of vulnerabilities that occur on the same node are assumed
to have the same impact. If this does not hold, the construction of the
attack graph is not consistent, and additional network states (or
nodes) should be added to the attack graph.

In Figure 2, we illustrate the non-cumulative impact values of
successful cyber attacks from the start node one to other nodes in the
graph. For example, the node 7 has a lower impact than nodes 6, 14,
and 17 because the vulnerability CVE-2007-4752 from the start
node to node 7 has a relatively low impact value. On the other hand,
node 10 has a high impact value because the vulnerability CVE-
2008-0015, which affects nodes 7 and 12 and is propagated to node
10. As a numerical example, the value of the expected non-
cumulative impact of node 10 is
(0.859 + 0.859 − 0.859 × 0.859) × 10.0 ≈ 0.98 × 10 � 9.8. The
corresponding value of the expected cumulative impact is
3 × 6.44 + 9.8 � 29.1. This example illustrates how the
probabilistic model is applied to calculate expected impacts, and
the distinction between non-cumulative and cumulative impacts.
The effects on other end nodes can be explained similarly according
to Equation 5. In this numerical example and Figure 2, we have used
a scaling factor of w � 1 to emphasise the main idea. If a scaling
factor is also used, then all exploitability values in Table 2 are
multiplied by the scaling factor to get the link weights in the attack
graph model.

In our model, we use out-centrality and in-centrality metrics to
analyse the propagation of attacks from potential start nodes to
potential end nodes. In Figure 1, node one is the start node and node
18 is the end node, but there could be other nodes where the attack
chain can start or end. For example, let us consider database servers
(dbServer) as the attacker’s goal, like in (Stergiopoulos et al., 2022).
Equations 1 and 2 define out-centrality and in-centrality metrics as
expected values over the whole network structure, not just for
possible start and end nodes. There are a few reasons for this.
Initially, the start and end nodes might change depending on the
situation, or this information may not be available. Furthermore,
complete metric data provide details about the structure of the attack
graph, which can be used to plan mitigation actions against
unknown attack scenarios. In addition, it is straightforward to
define metrics for a subset of start nodes and a subset of end
nodes similarly to Equation 5.

The out-centrality (Equation 1) and in-centrality (Equation 2)
values for the 18 nodes of the Multi-cloud network are shown in

Figure 3. The results are shown for the four link weight values
w � 0.2, 0.5, 0.8, and 1. As the link weights are interpreted as
probabilities of successfully exploiting vulnerabilities, lower link
weight values correspond to reduced probabilities.

The out-centrality and in-centrality values depicted in Figure 3
illustrate the typical characteristics of directed acyclic networks.
Node 1 (Start) has the highest out-centrality, while node 18 (End)
has the highest in-centrality. The out-centrality values tend to be
more varied than the in-centrality values, as structures near the
source nodes and high link weights boost propagation more than
structures near target nodes. We also observe that the number of
potential alternative paths affects the out-centrality and in-centrality
values. Nodes 7, 12, 14, and 15 have high out-centrality values
because paths originating from these nodes have many
alternatives. Similarly, multiple alternative paths leading to an
end node increase its in-centrality value.

When planning, the mitigation actions are optimised based on
detailed network modelling and the order of actions can change
depending on the exploitability or link weight values of
vulnerabilities. Additionally, skilled attackers may utilise longer
attack path lengths because their probability of success remains
high even with multiple consecutive exploits.

5.2 Use case 2: Netflix OSS architecture

The second use case is a combination of containers provided by
Netflix, consisting of the Spring cloud ecosystem (Stergiopoulos
et al., 2022). Table 3 provides descriptions of the 21 nodes in the
NetflixOSS attack graph, the topology of which is depicted
in Figure 4.

In Figure 5, we show the out-centrality and in-centrality values
of the NetflixOSS attack graph (Stergiopoulos et al., 2022) for four
link weight values, and they are found to increase monotonically as
the link weight increases. However, the growth rate is slow for low
link weights, then increases, and finally slows down again with high
link weights due to saturation effects. CVSS scoring (Mell et al.,
2007) values are not used in this use case as they have almost equal
values in this scenario.

The out-centrality and in-centrality in Figure 5 illustrate the two
aspects of the NetflixOSS attack graph. The out-centrality values for
the 21 nodes of the graph indicate that nodes 3, 4, 7, 10, 11, 20, and
21 are positioned at the beginning of possible attack chains, while
nodes 1, 2, 5, 6, 8, 9, 18, and 19 are at the end of the attack chains. The
node seven is identified as the start node of the graph as it has a
hundred per cent out-centrality value for the link weight values
w � 1. Nodes 12, 13, 14, 15, 16, and 17 are in the intermediary
positions within the attack chains, which can be used to
prioritise protective actions or mitigate the impacts of the
ongoing cyber attacks.

In Figure 6, the average percentage of exploited nodes is shown
when a node’s vulnerabilities are mitigated. The results are displayed
for link weight values w � 0.2, w � 0.5, and w � 0.8 when the start
node is 7. Here the effects are computed as average effects on other
nodes. The dotted lines illustrate the average percentage of exploited
nodes when the nodes are not protected. The relationship between
the link weights of the nodes and the average effect on the network is
not linear. For instance, the link weight of w � 0.2 results in only
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about 10 per cent exploitation in the network. Meanwhile, the link
weights of w � 0.5 and w � 0.8 lead to approximately sixty and
ninety per cent exploitation levels, respectively.

A significant decrease in the number of exploited nodes is seen
when the vulnerabilities of the nodes 3, 4, 20, and 21 in the graph are
mitigated. This is expected because these nodes are at the beginning
of potential attack chains starting from node 7. The impact is bigger
when the links have higher weights. Nodes that come right after the
start node become more important when the link weight values
(exploitability) increase.

When it comes to addressing vulnerabilities, it may be more
useful to focus on eliminating vulnerabilities related to services
rather than just protecting individual nodes in the attack graph.
Next, we compare how out-centrality and in-centrality values
decrease when vulnerabilities in services are protected. The
comparison will be performed by taking the difference between
the unprotected and protected results. Next, we calculate out-
centrality (Equation 1) and in-centrality (Equation 2) results for
all nodes in the attack graph in Figure 4. In these calculations, we
assume that the cyber attack starts at node s in Equation 1 or nodes t
in Equation 2 with certainty. If the attack starts from the first node in

the attack graph in Figure 4, then the relevant results focus solely
on node 7.

Figure 7 shows these differences (i.e., decrease) for nodes 1 −
21 after mitigating all the vulnerabilities in the services indicated
in the legend. For this example, the link weight is w � 0.8 to
represent a skilled perpetrator. Looking at the out-centrality
histogram in Figure 7, we observe that 4 bars stand out: Zuul
and Eureka services have decreased by 95% and 85% for the out-
centrality of node 7, and Eureka services also show a significant
decrease for the out-centrality values of node 20 (by 85%) and for
node 21 (by 88%).

The in-centrality values shown in Figure 7 indicate that
protecting services at the nodes leads to a decrease in the in-
centrality values of these particular nodes. For example, Turbine
services have a significant impact on nodes 18 and 19. Furthermore,
protecting Turbine services results in a substantial decrease in the in-
centrality values of nodes 5 and 6. These effects result from nodes
18 and 19 denoting Turbine services states (see Table 3), while nodes
5 and 6 represent subsequent Hystrix dashboard states in the attack
graph (Figure 4). On the other hand, protecting services at the
beginning of attack chains, such as Zuul and Eureka services, affects

FIGURE 3
Out- and in-centrality values of the Multi-cloud Enterprise Network of 18 nodes in Figure 1 from Equations 1, 2, respectively. The histograms show
the effects of usingweighted link values according to the exploitability of vulnerabilities. Linkweights are calculated bymultiplying the Exploitability values
from Table 2, which are based on the CVSS score values, with the scaling factors w.

TABLE 3 List of nodes in the NetflixOSS attack graph in Figure 4.

Node Description Node Description

1 Config service (Admin priv) 12 Service b (Admin priv)

2 Config service (User priv) 13 Service b (User priv)

3 Eureka (Admin priv) 14 Service c (Admin priv)

4 Eureka (User priv) 15 Service c (User priv)

5 Hystrix dashboard (Admin priv) 16 Spring cloud dasboard (Admin priv)

6 Hystrix dashboard (User priv) 17 Spring cloud dasboard (User priv)

7 Outside (Admin priv) 18 Turbine (Admin priv)

8 rabbitmq (Admin priv) 19 Turbine (User priv)

9 rabbitmq (User priv) 20 Zuul (Admin priv)

10 Service (Admin priv) 21 Zuul (User priv)

11 Service (User priv)
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the in-centrality values of nodes 3 and 4. Services exploited later in
the attack chains have no effect on these nodes.

Figure 8a illustrates the decrease of the in-centrality values from
the start node seven to other nodes in the graph for the link weight of
w � 0.8 after mitigating a vulnerability indicated on the horizontal

axis. In the model (see Section 3) these correspond to a decrease in
the matrix element values C(s, t), for s � 7 and
t � 1, 2, 3, 4, 5, 6, 8, . . . , N. By mitigating the vulnerabilities CVE-
2017-7376 and CVE-2017-13,090, a significant decrease in the in-
centrality values for several nodes can be achieved. Results at the

FIGURE 4
Use Case 2: Attack graph NetflixOSS from (Stergiopoulos et al., 2022). Nodes are described in Table 3.

FIGURE 5
Out-centrality and in-centrality values for the 21 nodes of the NetflixOSS example network network in Figure 4 for four different link weight values.

Frontiers in Complex Systems frontiersin.org09

Kuikka et al. 10.3389/fcpxs.2025.1620260

mailto:Image of FCPXS_fcpxs-2025-1620260_wc_f4|eps
mailto:Image of FCPXS_fcpxs-2025-1620260_wc_f5|eps
https://www.frontiersin.org/journals/complex-systems
https://www.frontiersin.org
https://doi.org/10.3389/fcpxs.2025.1620260


node level indicate that CVE-2017-7376 significantly affects the in-
centralities of nodes 1, 2, 4, 11, 13, 17, and 21, with smaller effects on
the other nodes. On the other hand, the vulnerability CVE-
2017–13,090 has a major impact on nodes 14 and 18, but with
minor effects on the other nodes.

Figure 8b illustrates the decrease in the in-centrality values from
the start node seven to other nodes in the graph for the link weight of

w � 0.8 after mitigating vulnerabilities in the services indicated on
the horizontal axis. Zuul and Eureka are the most effective services
to be protected, as they are at the beginning of attack chains. In
Figure 9a we show the summary of the decrease in the average out-
centrality from the start node seven to other nodes for the link
weight w � 0.8 after mitigating the vulnerabilities. The four most
important vulnerabilities in this order are CVE-2017-7376, CVE-
2017-13,090, CVE-2017-1000116, and CVE-2005-2541. Figure 9b
shows the corresponding results for the services. The most
important services are Zuul and Eureka as we have already seen
in Figure 8b.

5.3 Use case 3: Pony APT campaign

The third use case involves a causal graph generated in
(Alsaheel et al., 2021) using an attack investigation tool. This
tool integrates natural language processing and deep learning
techniques into data analysis to model sequence-based attack and
non-attack entities.

Figure 10 depicts attack and non-attack entities detected by the
ATLAS investigation tool (Alsaheel et al., 2021). The original attack
entities are indicated by the red colour and the original non-attack
entities by the green colour (Alsaheel et al., 2021). The blue line
shows the extended set of attack nodes reachable from start nodes
eight or nine by following all alternative paths in the graph. The red
line shows the minimum set of nodes restricted to the original set of
attack nodes.

FIGURE 6
The average percentage values of exploited nodes in the
NetflixOSS example network in Figure 4when a node is protected. The
effects are calculated as average effects on other nodes. The results
are shown for link weight values ofw � 0.2,w � 0.5, andw � 0.8.
The start node of the attack is 7. The dotted lines show the average
percentage of exploited nodes when nodes are not protected.

FIGURE 7
Out-centrality and in-centrality differences (i.e., decrease) for nodes 1 to 21 in Figure 4 after mitigating vulnerabilities in services indicated in the
legend (link weight w � 0.8).
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FIGURE 8
(a) Probability differences (decrease) of the in-centralities from the attack start node seven to other nodes (link weight w � 0.8) after mitigating a
vulnerability from the network. Vulnerabilities are indicated on the horizontal axis. (b) Probability differences (decrease) of the in-centralities from the
attack start node seven to other nodes (link weight w � 0.8) after removing all vulnerabilities from a server. Servers are indicated on the horizontal axis.
Summaries generated from themodel (a)when the entire network is protected against a single vulnerability or (b) a server is protected against all its
vulnerabilities.

FIGURE 9
(a) A specific vulnerability removed from the attack graph indicated on the legend (Summary from Figure 8a). (b) Vulnerabilities removed from
specific servers/services indicated on legend (Summary from Figure 8b). Relative effects after removing a vulnerability from the network or all
vulnerabilities from a server. As an example, the results are shown for the link weight value w � 0.8.
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In Figure 11 we show the out- and in-centrality values for the
39 nodes of the ATLAS causal graph for four different link weight
values. The histograms in Figure 11 are similar to those in Figure 5,
but there are some differences. When comparing the ATLAS and
NetflixOSS graphs, we can observe that the out-centrality and in-
centrality values for the ATLAS causal graph for low link weight
values are much smaller. Additionally, the centrality values for
higher link weight values are roughly half of the Netflix results.
These differences are attributed to the higher density and higher
mean node degree of the NetflixOSS graph compared to the
ATLAS graph.

Figure 12 illustrates the percentage of exploited nodes in the
ATLAS causal graph when one of the 39 nodes is protected. The
results are presented for three link weight values: w � 0.2,
w � 0.5, and w � 0.8. The start node is node eight or node 9.
The effects are calculated as average values on the other nodes.
The dotted lines represent the average percentage of the exploited
nodes when no nodes are protected. Compared to Figure 6
results, we observe more fluctuations but with smaller
amplitude. Mitigating vulnerabilities in the nodes 1, 2, 16, 15,
34 or 12 has the largest effects of protecting against the attack.
Similarly to the case of Figure 11, the lower density causes the

curves to be lower compared to those of Figure 6, and the ratios
between the curves turn out to be different.

Use case 3 illustrates how our model can analyse incomplete
graph information. The original attack graph produced by the
investigation tool (Alsaheel et al., 2021) is indicated by the red
line in Figure 10. However, more nodes can be accessed from
starting nodes eight or 9. Consequently, the original attack
graph can be extended by including these additional nodes,
some of which have been classified as non-attack nodes (in
green) by the investigation tool. This enlarged attack graph is
shown by the blue line in Figure 10. Certain nodes remain
outside of this node set, with five identified as attack nodes (in
red). This suggests that the actual attack graph could even be
larger, and it is important to also consider these outlying nodes
of Figure 10.

Figure 10 also presents a table that lists the nodes together
with their effects when protected. As an example, the link
weight value of w � 0.8 is used for all links in the graph.
When an attack starts from node eight or 9, the average
percentage of exploited nodes in the graph is 35.6% when no
nodes are protected. When node one is protected, 0.0% of the
nodes are exploited, and when node two is protected, 2.1% are

FIGURE 10
Use Case 3: Attack entities are identified based on the connections within the graph structure. The original attack entities are highlighted in red, while
the original non-attacks are marked in green. The blue line represents the extended set of attack nodes detected by our network modelling method,
whereas the red line indicates the minimum set of reachable nodes confined to the original set of attack nodes. The list of nodes is provided in the table
from (Alsaheel et al., 2021).
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exploited. This outcome is attributed to the critical positions of
these nodes within the graph structure. In the table of Figure 10,
the tool’s classified attack nodes are indicated in red, non-attack
nodes in blue, and non-reachable nodes (both attack and non-
attack) in black. When prioritising mitigation measures, nodes
22 and 15 have significant effects on the extended graph,
although they have not been recognised as attack nodes by
the investigative tool.

In contrast to the networks in use cases 1 and 2, the ATLAS
causal graph (Figure 10) has a loop between the nodes 15, 22, and
24, and bidirectional links between the nodes 10 and 11, and
between the nodes 30 and 31. In our model, we assume that due to
a loop and bi-directionality, circular and recurrent effects are
possible. Figure 13 illustrates the circular effects in the ATLAS
causal graph for three different link weight values. The histogram
shows a difference between two situations, namely, one with
circular effects and the other with only self-avoiding paths in the
network structure. The effects vary according to the weight values
of the links. They are low when the link weights are w � 0.2, peak
at higher link weights, and gradually slow down due to saturation
effects for high link weight values.

To summarise, it turns out that for the attack graph with one
loop and two bidirectional links, the out-centrality values are
increased. Furthermore, nodes 1, 2, 8, and 9 have increasing out-
centrality values because they are at the beginning of attack paths
that can reach the loop nodes 15, 22 or 24. Upon examining the
graph in Figure 12, we conclude that the in-centrality values of

nodes 5, 7, 10, 11, 12, 13, and 23 have increased due to the circular
effects of the loop, and the in-centrality values of nodes 28, 29 and
33 have increased due to the recurrent effects between nodes
30 and 31 by the two bidirectional links.

6 Concluding remarks

In cybersecurity analysis of computer networks and service
systems, it is natural to take a graph-based approach. Until
recently, cyber-related graphs, such as attack graphs, have been
created manually or generated by scanning network configurations
to identify vulnerabilities and compute potential attack paths. In this
case, the analysis of an attack graph involves examining individual
paths that an attacker could take and evaluating the risk associated
with each path.

In the present study, we have introduced a novel probabilistic
graph-based analysis approach to investigate the structural and
dynamic properties of the attack and causal graphs. This
approach has previously been used in our research to model the
spread of influence in complex networks. Here, we are applying this
methodology for the first time to analyse the propagation of attacks
and causal influences. In this context, out-centrality and in-
centrality measures are used to identify critical nodes in the
graph. The documented exploitability values of vulnerabilities
mimic the probability of propagation of attacks or causal
influences on possible paths or sequences of actions that an

FIGURE 11
Out-centrality and in-centrality values for the 39 nodes of the ATLAS causal graph in Figure 10 for four different link weight values.
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attacker or influencer can follow to achieve a particular objective,
such as compromising a critical asset in a network. Similarly, the
documented impact values of vulnerabilities are used to demonstrate
the model in analysing cumulative and individual impacts of attacks.

Future research could focus on multilayer modelling of
enterprise infrastructure and attack graphs. Additional areas of
interest could include the integration of real-time attack graph
generation and the exploration of hybrid approaches that
combine machine learning or anomaly detection methods.
Recently, there has emerged a variety of studies on AI-driven

techniques in cybersecurity (Salem et al., 2024) and intrusion
detection (Por et al., 2024). These approaches offer new
opportunities to be integrated with the probabilistic methods
discussed in this study.

In summary, we have developed a new method for analysing
alternative paths within an attack graph and calculating their
combined exploitability and impact. This approach differs from
the previous methods since our approach offers a probabilistic
framework to assess the combined effects of the entire attack
graph, rather than focusing solely on the maximum or minimum

FIGURE 12
The average percentage values of exploited nodes in the ATLAS causal graph in Figure 10 when a node is protected. The effects are calculated as
average effects on other nodes. The results are shown for the link weight values w � 0.2, w � 0.5, and w � 0.8. The start node is 8 or 9. The dotted lines
show the average percentage values of exploited nodes when nodes are not protected. In the table, nodes are ordered according to their criticality for
w � 0.8 (blue curve).

FIGURE 13
Circular Effects in the ATLAS causal graph of Figure 10 for three different link weight values. The bars in the histograms show differences between
two calculations: full breakthrough propagation and self-avoiding paths between nodes.
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scenarios. We have applied our model by presenting results related
to functional services based on identified vulnerabilities.
Additionally, this method can be extended to analyse multiple
attack graphs simultaneously in a network structure. For higher
levels of abstraction and summaries, it is essential to consistently
aggregate alternative attack or causal effect paths within the model.
This integrated perspective improves understanding of the situation
and helps prioritise mitigation efforts. Thus, our model could be a
versatile tool in the hands of cyber analysts.
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