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potential effects of pooling on recordings from large populations 
obtained using VSD or MUA recording techniques. These tech-
niques are believed to refl ect the pooled postsynpatic activity of 
groups of cells. We extend earlier models introduced to examine 
the impact of pooling on correlations (Bedenbaugh and Gerstein, 
1997; Chen et al., 2006; Nunez and Srinivasan, 2006), and show that 
heterogeneities in the presynaptic pools can have subtle effects on 
correlations between pooled signals.

Since neurons respond to input from large presynaptic popula-
tions, pooling also impacts the activity of single cells and cell pairs. As 
observed in Figure 1C, pooling can infl ate weak correlations between 
afferents. However, excitatory–inhibitory correlations (Okun and 
Lampl, 2008) can counteract this amplifi cation, as shown in Figure 1D 
(Hertz, 2010; Renart et al., 2010). We examine these effects analytically 
by modeling the subthreshold activity of postsynaptic cells as a fi ltered 
version of the inputs received (Tetzlaff et al., 2008). The impact of 
correlated subthreshold activity on the output spiking statistics is a 
nontrivial question which we address only briefl y (Moreno-Bote and 
Parga, 2006; de la Rocha et al., 2007; Ostojić et al., 2009).

The effects of pooling provide a simple explanation for certain 
aspects of the dynamics of feedforward chains. Simulations and 
in vitro experiments show that layered feedforward architectures 
give rise to a robust increase in synchronous spiking from layer 
to layer (Diesmann et al., 1999; Litvak et al., 2003; Reyes, 2003; 
Doiron et al., 2006; Kumar et al., 2008). We describe how output 
correlations in one layer impact correlations between the pooled 
inputs to the next layer. This approach is used to derive a map-
ping that describes how correlations develop across layers (Tetzlaff 
et al., 2003; Renart et al., 2010), and to illustrate that the pooling 
of correlated inputs is the primary mechanism responsible for the 
development of synchrony in feedforward chains. Examining how 
correlations are mapped between layers also helps explain why asyn-
chronous states are rarely observed in feedforward networks in 
the absence of strong background noise (van Rossum et al., 2002; 

INTRODUCTION
Cortical neurons integrate inputs from thousands of afferents. 
Similarly, a variety of experimental techniques record the pooled 
activity of large populations of cells. It is therefore important to 
understand how the structured response of a neuronal network is 
refl ected in the pooled activity of cell groups.

It is known that weak dependencies between the response of 
cell pairs in a population can have a signifi cant impact on the vari-
ability and signal-to-noise ratio of the pooled signal (Shadlen and 
Newsome, 1998; Salinas and Sejnowski, 2000; Moreno-Bote et al., 
2008). It has also been observed that weak correlations between cells 
in two populations can cause much stronger correlations between 
the pooled activity of the populations (Bedenbaugh and Gerstein, 
1997; Chen et al., 2006; Gutnisky and Josic´, 2010; Renart et al., 
2010). We give a simple example of this effect in Figure 1C: Weak 
correlations were introduced between the spiking activity of cells 
in two non-overlapping presynaptic pools each providing input to 
a postsynaptic cell (see diagram in Figure 1B). The activity between 
pairs of excitatory, and pairs of inhibitory cells was correlated, but 
excitatory–inhibitory pairs were uncorrelated. Even without shared 
inputs and with background noise, pooling resulted in strong cor-
relations in postsynaptic membrane voltages. The connectivity in 
the presynaptic network was irrelevant – it only mattered that the 
inputs to the downstream neurons refl ected the pooled activity of 
the afferent populations. A similar effect can cause large correlations 
between recordings of multiunit activity (MUA) or recordings of 
voltage sensitive dyes (VSD), even when correlations between cells 
in the recorded populations are small (Bedenbaugh and Gerstein, 
1997; Chen et al., 2006; Stark et al., 2008). The effect is the same, but 
in this case pooling occurs at the level of a recording device rather 
than a downstream neuron (compare Figures 1A,B).

We present a systematic overview, as well as extensions and 
applications of a number of previous observations related to this 
phenomenon. Using a linear model, we start by examining the 
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Department of Mathematics, College of Natural Sciences and Mathematics, University of Houston, Houston, TX, USA

Correlations between spike trains can strongly modulate neuronal activity and affect the ability 
of neurons to encode information. Neurons integrate inputs from thousands of afferents. 
Similarly, a number of experimental techniques are designed to record pooled cell activity. We 
review and generalize a number of previous results that show how correlations between cells 
in a population can be amplifi ed and distorted in signals that refl ect their collective activity. The 
structure of the underlying neuronal response can signifi cantly impact correlations between 
such pooled signals. Therefore care needs to be taken when interpreting pooled recordings, 
or modeling networks of cells that receive inputs from large presynaptic populations. We also 
show that the frequently observed runaway synchrony in feedforward chains is primarily due 
to the pooling of correlated inputs.

Keywords: correlation, pooling, synchrony, feedforward networks, synfi re chains

Edited by:

Philipp Berens, 
Baylor College of Medicine, USA
MaxPlanck Institute for Biological 
Cybernetics, Germany

Reviewed by:

Nestor Parga, 
Columbia University, USA
John A. Hertz, 
Niels Bohr Institute, Denmark
Arvind Kumar, 
University of Freiburg, Germany

*Correspondence:

Robert J. Rosenbaum, 
University of Houston, 
Department of Mathematics, Houston, 
TX 77204-3008, USA. 
e-mail: robertr@math.uh.edu



Frontiers in Computational Neuroscience www.frontiersin.org April 2010 | Volume 4 | Article 9 | 2

Rosenbaum et al. Pooling and correlated neural activity

Vogels and Abbott, 2005). This is in contrast to recurrent networks 
which can display stable asynchronous states (Hertz, 2010; Renart 
et al., 2010) similar to those observed in vivo (Ecker et al., 2010).

MATERIALS AND METHODS
CORRELATIONS BETWEEN STOCHASTIC PROCESSES
The cross-covariance of a pair of stationary stochastic processes, 
x(t) and y(t), is C

xy
(t) = cov(x(s), y(s + t)). The auto-covariance 

function, C
xx

(t), is the cross-covariance between a process and itself. 
The cross- and auto-covariance functions measure second order 
dependencies at time lag t between two processes, or a process and 
itself. We quantify the total magnitude of interactions over all time 
using the asymptotic statistics,

γ σ γ ρ
γ

σ σxy xy x xx xy
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While the asymptotic correlation, ρ
xy,

, measures correlations between 
x(t) and y(t) over large timescales, the auto- and cross- covariance 
functions determine the timescale of these dependencies.

CORRELATIONS BETWEEN SUMS OF RANDOM VARIABLES
Given two collections of correlated random variables { }xi i
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and similarly for σY
2 .

Using these expressions along with some algebraic manipula-
tion, the correlation coeffi cient, ρ γ σ σXY XY X Y= / , between the 
pooled variables can be written as
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and similarly for w
y
, v

y
, σ σy y , and ρyy . In deriving Eq. (3) we 

assumed that all pairwise statistics are uniformly bounded away 
from zero in the asymptotic limit.

Each overlined term above is a population average. Notably, ρxy 
represents the average correlation between x

i
 and y

j
 pairs, weighted 

by the product of their standard deviations, and similarly for ρxx  and 
ρyy . Correlation between weighted sums can be obtained by substi-
tuting x w xi x ii

→  and y w yj y jj
→  for weights wxi

 and wy j
 and making 

the appropriate changes to the terms in the equation above (e.g., 
σ σ ρ ρx x x x y i j x yi i i i j i j

w w w→ →| | , ( )sign ). Overlap between the two 
populations can be modeled by taking ρx yi j

= 1 for some pairs.
Assuming that variances are homogeneous within each popula-

tion, that is σ σx xi
=  and σ σy yj

=  for i = 1,…,n
x
 and j = 1, ...,n

y
, 

simplifi es these expressions. In particular, vx x x x= =σ σ σ2 ,  
σ σ σ σx y x y= , and
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Assuming further that the populations are symmetric, 
σ
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where ρ ρb
xy=  is the average pairwise correlation between the two 

populations and ρ ρ ρw
xx yy= =  is the average pairwise correlation 

within each population. Eq. (5) was derived in Bedenbaugh and 
Gerstein (1997) in an examination of correlations between mul-
tiunit recordings. In Chen et al. (2006), a version of Eq. (5) with 
ρw = ρb is derived in the context of correlations between two VSD 
signals. The asymptotic, ρ

xy
 → 0, limit when ρw = ρb is discussed 

in Renart et al. (2010).
Note that the results above hold for correlations computed over 

arbitrary time windows. We concentrate on infi nite windows, and 
discuss extensions in the Appendix.

NEURON MODEL
In the second part of the presentation we consider two excitatory 
and two inhibitory input populations projecting to two postsyn-
aptic cells. The jth excitatory input to cell k is labeled e

j,k
(t) (k = 1 

or 2). Similarly, i
j,k

(t) denotes the jth inhibitory input to cell k. Each 
cell receives n

e
 excitatory and n

i
 inhibitory inputs with individual 

rates ν
e
 and ν

i
 respectively.

Each of the excitatory and inhibitory inputs to cell k, are station-
ary spike trains modeled by point processes, e j k i j k

it t t, ,( ) ( )= −Σ δ  
and i j k i j k

it t s, ,( ) ( )= −Σ δ  where { },t j k
i  and { },s j k

i  are input spike times. 
We assume that the spike trains are stationary in a multivariate sense 
(Stratonovich, 1963). The pooled excitatory and inhibitory inputs 
to neuron k are E t tk j

n

j k
ek( ) ( ),,= =Σ 1e  and I t tk j

n

j k
k( ) ( ).,= =Σ 1

i i
To generate correlated inputs to cells, we used the multiple inter-

action process (MIP) method (Kuhn et al., 2003), then jittered each 
spike time independently by a random value drawn from an expo-
nential distribution with mean 5ms. The resulting processes are 
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Poisson with cross-covariance functions proportional to a double 
exponential, C

xy
(t) ∼ e− |t| /5. Note that since each input is Poisson, 

σ νe e
2 =  and σ νi i

2 = .
While the dynamics of the afferent population were not mod-

eled explicitly, the response of the two downstream neurons was 
obtained using a conductance-based IF model. The membrane 
potentials of the neurons were described by

C
dV

dt
g V V g t V V g t V Vm

k
L k L E k E I k Ik k

= − − − − − −( ) ( )( ) ( )( ),
 

(6)

with excitatory and inhibitory conductances determined by 
g t tE kk

( ) ( )( )= ∗E eα  and g t t
k kI iI( ) ( )( )= ∗α  where ∗  denotes 

convolution. We used synaptic responses of the form 
α τ τ

e e e e( ) ( )/t t tt= − −E 2 Θ  and α τ τ
i i

i( ) ( )/t t tt= − −I 2 e Θ  where Θ(t) is the 
Heaviside function. The area of a single excitatory or inhibitory 
postsynaptic conductance (EPSC or IPSC) is therefore equal to 
the synaptic weight, E or I, with units nS·ms. This analysis can 
easily be extended to situations where each input, e

j,k
 or i

j,k
, has 

a distinct synaptic weight.
When examining spiking activity, we assume that when V

k
 

crosses a threshold voltage, Vth, an output spike is produced and 
V

k
 is reset to V

L
. When examining sub-threshold dynamics, we 

considered the free membrane potential without threshold.
As a measure of balance between excitation and inhibition we 

used (Troyer and Miller, 1997; Salinas and Sejnowski, 2000)

β
ν
ν

=
−
−

V V n

V V n
L

L i i

E e e

I

E
I

.

When β = 1, the net excitation and inhibition are balanced and 
the mean free membrane potential equals V

L
. In simulations, we 

set V
L
 = −60 mV, V

E
 = 0 mV, V

I
 = −90 mV, τ

e
 = 10 ms, τ

i
 = 20 ms, 

C
m
 = 114 pF, and g

L
 = 4.086 nS, giving a membrane time constant, 

τ
m
 = C

m
/g

L
 = 27.9 ms. In all simulations except those in Figure 7, 

the cells are balanced (β = 1).
The conductance-based IF neuron behaves as a nonlinear fi lter 

in the sense that membrane potentials cannot be written as a lin-
ear transformation of the inputs. However, following Kuhn et al. 
(2004) and Coombes et al. (2007), we derive a linear approxima-
tion to the conductance based model. Let U = V

k
 − V

L
 so that Eq. 

(6) becomes

C
dU

dt
g g t g t U g t V V g t V Vm L L L= − − −( ) − −( ) − −( )E I E E I I( ) ( ) ( ) ( ) .

Defi ne the effective membrane time constant,τ
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m
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+ gL
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m
/(g

L 
+ ne

v
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+ ni

v
i
I Substituting this aver-

age value in the previous equation yields the linear approximation 
to the conductance based model,

dU

dt
U J tk= − +1

τeff

( ),
 

(7)

where J t g t V V g t V V Ck L L mk k
( ) ( ( )( ) ( )( ))/= − − − −E E I I  is the total 

input current to cell k. Solving and reverting to the original vari-
ables gives the linear approximation V

k
(t) = (J

k
∗K)(t) + V

L
, where 

K t t t( ) ( ) /= −Θ e effτ  is the kernel of the linear fi lter induced by Eq. (7).

RESULTS
The pooling of signals from groups of neurons can impact both 
recordings of population activity and the structure of inputs to 
postsynaptic cells. We start by discussing correlations in pooled 
recordings using a simple linear model. A similar model is then 
used to examine the impact of pooling on the statistics of inputs 
to cells. For simplicity we assume that all spike trains are station-
ary. However, non-stationary results can be obtained using similar 
methods as outlined in the Section “Discussion.” Though all param-
eters are defi ned in the Meterials and Methods, Tables 1 and 2 in 
the Appendix contain brief descriptions of parameters for quick 
reference.  Also, Tables 3 and 4 summarize the values of parameters 
used for simulations throughout the article.

CORRELATIONS BETWEEN POOLED RECORDINGS
Pooling can impact correlations between recordings of population 
activity obtained from voltage sensitive dyes (VSDs), multi-unit 
recordings and other techniques. Such signals might each repre-
sent the summed activity of hundreds or thousands of neurons. 
Let two recorded signals, X

1
(t) and X

2
(t), represent the weighted 

activity of cells in two populations (see diagram in Figure 1A). If 
we assume homogeneity in the input variances and equal size of 
the recorded populations, Eq. (4) gives the correlation between 
the recorded signals

ρ ρ
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Here n represents the number of neurons recorded, ρkk , k = 1,2 
represents the average correlation between cells contributing to 
signal X

k
(t), and ρ12 represents the average correlation between 

cells contributing to different signals. The averages are weighted 
so that cells that contribute more strongly to the recording, such 
as those closer to the recording site, contribute more to the average 
correlations (see Materials and Methods). Cells common to both 
recorded populations can be modeled by setting the corresponding 
correlation coeffi cients to unity. A form of Eq. (8) with ρ ρ11 22=  
was derived by Bedenbaugh and Gerstein (1997).

When the two recording sites are nearby, so that ρ ρ ρ12 11 22≈ ≈ , 
even small correlations between individual cells are amplifi ed by 
pooling so that the correlations between the recorded signals can 
be close to 1. This effect was observed in experiments and explained 
in similar terms in Stark et al. (2008).

A signifi cant stimulus-dependent change in correlations 
between individual cells might be refl ected only weakly in the 
 correlation between the pooled signals. This can occur, for 
instance, in  recordings of large populations when ρ12 , ρ11, and ρ22 
are increased by the same factor when a stimulus is presented. 
Similarly, an increase in  correlations between cells can actually lead 
to a decrease in  correlations between recorded signals when ρ11 and 
ρ22 increase by a larger factor than ρ12.

To illustrate these effects, we construct a simple model of stimulus 
dependent correlations motivated by the experiments in Chen et al. 
(2006), in which VSDs were used to record the population response 
in visual area V1 during an attention task. In their experiments, 
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the imaged area is divided into 64 pixels, each 0.25 mm × .25 mm 
in size. The signal recorded from each pixel represents the pooled 
activity of n ≈ 1.25 × 104 neurons.

We model correlations between the signals, X
1
(t) and X

2
(t), 

recorded from two pixels in the presence or absence of a stimulus 
(see Figure 2B), using a simplifi ed model of stimulus dependent 
rates and correlations. The fi ring rate of a cell located at distance d 
from the center of the retinotopic image of a stimulus is

r d
B

B d

B

( )
( )( cos( ))

= + − +⎧
⎨

1 1

2

π λ

stimulus present

stimulus absent.

⎪⎪

⎩⎪  

(9)

Here, B ∈ [0,1] represents baseline activity and λ ≥ 1 controls 
the rate at which activity decays with d. Both d and r were scaled 
so that their maximum value is 1 (see Figure 2A).

We assume that the correlation between the responses of two 
neurons is proportional to the geometric mean of their fi ring 
rates (de la Rocha et al., 2007; Shea-Brown et al., 2008), and that 

correlations decay exponentially with cell distance (Smith and 
Kohn, 2008; see however Poort and Roelfsema, 2009; Ecker et al., 
2010). We therefore model the correlation between two cells as 
ρ α

jk j k

D
S r d r d j k= −

( ) ( ) ,e  where d
j
 and d

k
 are the distances from 

each cell to the center of the retinotopic image of the stimu-
lus, D

j,k
 is the distance between cells j and k, α is the rate at 

which correlations decay with distance, and S ≤ 1 is a constant 
of proportionality.

If pixels are small compared to the scales at which correlations are 
assumed to decay, then the average correlation between cells within 
the same pixel are ρ11 1= Sr d( ) and ρ22 2= Sr d( ). The average correla-
tion between cells in different pixels is ρ α

12 1 2
1 2= −S r d r d D( ) ( ) .,e

In this case, whether a stimulus is present or not, the correlation 
between the pooled signals is of the form ρ α

X X
D n

1 2

1 2 1= +−e , ( / ).O  
Thus, even signifi cant stimulus dependent changes in correlations 
would be invisible in the recorded signals. This overall trend is consist-
ent with the results in Chen et al. (2006) (compare Figure 2C to their 
Figure 2f). In such settings, it is diffi cult to conclude whether pairwise 
correlations are stimulus dependent or not from the pooled data.

FIGURE 1 | Models of pooled recordings and the effects of pooling on 

correlations. (A) Pooling in experimental recordings. Cells from different 
populations are correlated with average correlation coeffi cient ρ12 and cells from 
the same population have average correlation coeffi cient ρ11 or ρ22. We examine 
correlations between the pooled signals, X1 and X2. (B) Pooled inputs to cell pairs. 
Individual excitatory (e) and inhibitory (i) inputs are correlated with coeffi cient ρee, 
ρii, and ρei, respectively. The total input to a cell is the summed activity of its 
excitatory (EK) and inhibitory (IK) presynaptic population. The membrane potentials, 
V1 and V2, are obtained by fi ltering these inputs. (C) A simulation of the setup in 
(B) with background noise. Correlations between excitatory and between 

inhibitory cells were uniform (ρee = ρii = 0.05), but excitatory–inhibitory correlations 
were absent (ρei = 0). The raster plot shows the activity in a subset of the input 
population. The correlation coeffi cient between the sub-threshold activity of the 
postsynpatic cells was ρvv = 0.768 ± 0.001 s.e. Each cell receives 250 correlated 
and 250 uncorrelated excitatory Poisson inputs as well as 84 correlated and 84 
uncorrelated inhibitory Poisson inputs (ne = 250 and ni = 84, qe = qi = 1, νe = 5 Hz, 
νi = 7.5 Hz, I = 4E, and E≈2.3 nS·ms – see Materials and Methods and Figure 3A 

for notation and precise model description). (D) Same as (B), but with ρei = 0.05, 
νe = νi=5 Hz, I = 6E to maintain balance. In this case ρVV = 0.0085 ± 0.0024 s.e.. 
The simulations were run 8000 times at 10 s each.
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However, in Supplementary Figure 3 of Chen et al. (2006) the 
presence of a stimulus apparently results in a slight decrease in 
correlations between more distant pixels. In Figure 2D this effect 
was reproduced using the alternative model described above, with 
the additional assumption that baseline activity, B, decreases in the 
presence of a stimulus (Mitchell et al., 2009). The effect can also be 
reproduced by assuming that spatial correlation decay, α, increases 
when a stimulus is present.

As this example shows, care needs to be taken when inferring 
underlying correlation structures from pooled activity. The sta-
tistical structure of the recordings can depend on pairwise cor-
relations between individual cells in a subtle way, and different 
underlying correlation structures may be diffi cult to distinguish 
from the pooled signals. However, downstream neurons may also 
be insensitive to the precise structure of pairwise correlations, as 
they are driven by the pooled input from many afferents.

CORRELATIONS BETWEEN THE POOLED INPUTS TO CELLS
We next examine the effects of pooling by relating the correla-
tions between the activity of downstream cells to the pairwise cor-
relations between cells in the input populations (see Figure 1B). 
The idea that pooling amplifi es correlations carries over from the 
previous section. However, the presence of inhibition and non-
 instantaneous synaptic responses introduces new issues.

A homogeneous population with overlapping and independent inputs
For simplicity, we fi rst consider a homogeneous population model 
(see Figure 3A). Each cell receives n

e
 inputs from a homogeneous 

pool of inputs with pairwise correlation coeffi cients ρ
ee

 and an 
additional q

e
n

e
 inputs from an outside pool of independent inputs. 

The two cells share p
e
n

e
 of the inputs drawn from the correlated 

pool. Processes in the independent pool are uncorrelated with all 
other processes. All excitatory inputs have variance σe

2.
The correlation between the pooled excitatory inputs is given 

by (see Appendix)

ρ
ρ ρ

ρ ρ
E E

ee
e

e
ee

ee
e

ee e

1 2

1

1
1

=
+ −( )

+ − +( )

p

n

n
q

.

 

(10)

A form of this equation, with p
e
 = 0 and q

e
 = 0, is derived in Chen 

et al. (2006). In the absence of correlations between processes in the 
input pools, ρ

ee
 = 0, the correlation between the pooled signals is 

just the proportion of shared inputs, ρE E e1 2
= p . When ρ

ee
 > 0 and n

e
 

is large, pooled excitatory inputs are highly correlated, even when 
pairwise correlations in the presynaptic pool, ρ

ee
, are small, and the 

neurons do not share inputs (p
e
 = 0). Even when most inputs to the 

downstream cells are independent (q
e
 > 1), correlations between 

the pooled signals will be nearly 1 for suffi ciently large input pools 
(see Figure 4A).

Under analogous homogeneity assumptions for the inhibitory 
pools, the correlation, ρI I1 2

, between the pooled inhibitory inputs 
is given by an equation identical to Eq. (10), and the correlation 
between the pooled excitatory and inhibitory inputs is given by

ρ ρ ρ

ρ ρ ρ ρ
E I I E

ei

ee
e

ee e ii
i

ii i

1 2 1 2

1
1

1
1

= =

+ − +( )⎛
⎝⎜

⎞
⎠⎟

+ − +( )⎛
⎝⎜n

q
n

q
⎞⎞
⎠⎟

.

 
(11)

Interestingly, since | | ,ρE I1 2
1≤  pairwise excitatory– inhibitory 

 correlations obey the bound | | ( / ).ρ ρ ρei ee ii e i≤ +O 1 n n  
Combining this inequality with Eq. (10) and the analogous equa-
tion for ρI I1 2

, it follows that | |ρ ρ ρE I E E I I e i1 2 1 2 1 2
1≤ +O( / )n n  for 

homogeneous populations. These are a result of the non-negative 
defi niteness of covariance matrices.

Heterogeneity and the effects of spatially dependent correlations
We next discuss how heterogeneity can dampen the amplifi cation 
of correlations due to pooling. In the absence of any homogeneity 
assumptions on the excitatory input population (see the popula-
tion model in the Materials and Methods), Eq. (3) gives the pooled 
excitatory signals, ρ ρ ρ ρE E e e e e e e e e1 2 1 2 1 1 2 2 1 2

1= +/ ( / ).O n n  The term 
ρe e1 2

 is a weighted average of the correlation coeffi cients between the 
two excitatory populations, and ρe e1 1

 and ρe e2 2
 are weighted averages 

of the correlations within each excitatory input population.
To illuminate this result, we assume symmetry between the 

populations: Let n n
ke e=  and σ σ

e e
k
j =  for k = 1,2 and j = 1,2,…,n

e
, 

and assume ρ ρe e e e1 1 2 2
= . The average “within” and “between” correla-

tions, are ρ ρ ρee
w

e e e e= =
1 1 2 2

 and ρ ρee
b

e e=
1 2

 respectively (see Figure 3B). 
Under these assumptions, Eq. (5) can be applied to obtain (See also 
Bedenbaugh and Gerstein, 1997)

ρ ρ

ρ ρ

ρ
ρE E

ee
b

ee
w

e
ee
w

ee
b

ee
w

e
1 2 1

1

1=
+ −( )

= +
⎛
⎝⎜

⎞
⎠⎟

n
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(12)

FIGURE 2 | The effect of pooling on recordings of stimulus dependent 

correlations. (A) The response amplitude of a model neuron as a function of its 
distance from the retinotopic image of a stimulus [Eq. (9)] with B = 0.05 and 
λ = 10. (B) A diagram of our model. Signals X1(t) and X2(t) are recorded from two 
pixels (red and blue squares). The activity in response to a stimulus is shown as 
a gradient centered at some pixel (the center of the retinotopic image of the 
stimulus). (C) The prediction of the correlation between two pixels obtained 
using the stimulus-dependent model considered in the text with stimulus 
present (red) and absent (green). We assumed that one pixel is located at the 
stimulus center (d1 = 0). Parameters are as in (A) with α = 1, S = 0.1, and 
n = 1.25×104. A stimulus dependent change in correlations is undetectable. (D) 
Same as in (C), except that baseline activity, B, was scaled by 0.5 in the 
presence of a stimulus. Compare to Figure 2f in Chen et al., 2006.
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which is plotted in Figure 4A (green line) and Figure 4B. For 
large n

e
, the correlation between the pooled signals is the ratio of 

“between” and “within” correlations.
This observation has implications for a situation ubiquitous in 

the cortex. A neuron is likely to receive afferents from cells that are 
physically close. The activity of nearby cells may be more strongly 
correlated than the activity of more distant cells (Chen et al., 2006; 
Smith and Kohn, 2008). We therefore expect that pairwise correla-
tions within each input pool are on average larger than correlations 
between two input pools, that is, ρ ρee

w
ee
b> . This reduces the correla-

tion between the inputs, regardless of the input population size.
An increase in correlations in the presynaptic pool can also decor-

relate the pooled signals. If correlations within each input pool increase 
by a greater amount than correlations between the two pools, then the 

variance in the input to each cell will increased by a larger amount than 
the covariance between the inputs. As a consequence the correlations 
between the pooled inputs will be reduced. Modulations in correla-
tion have been observed as a consequence of attention in V4 (Cohen 
and Maunsell, 2009; Mitchell et al., 2009; but apparently not in V1, 
Roelfsema et al., 2004). Such changes may be, in part, a consequence 
of small changes in “within” correlations between neurons in V1.

Equation 12 implies that correlations between large populations 
cannot be signifi cantly larger than the correlations within each 
 population. Since | | ,ρE E1 2

1≤  it follows that | | | | ( / ).ρ ρee
b

ee
w

e≤ +O 1 n
The correlation, ρI I1 2

, between the pooled inhibitory inputs 
is given by an identical equation to Eq. (12) and the correlation 
between the pooled excitatory and inhibitory inputs is given by

ρ ρ ρ

ρ ρ ρ ρ
E I I E

ei
b

ee
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e
ee
w

ii
w
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ii
w

1 2 1 2
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O 1

n n
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Correlations between the free membrane potentials
We now look at the correlation between the free membrane poten-
tials of two downstream neurons. The free membrane  potentials are 
obtained by assuming an absence of threshold or spiking activity. 
For simplicity we assume symmetry in the statistics of the inputs to 
the postsynaptic cells: σ σE Ek

= , σ σI Ik
= , ρ ρE I E I1 2 2 1

= , ρ ρE I E I1 1 2 2
= , 

ρ ρE E E E1 1 2 2
=  and ρ ρI I I I1 1 2 2

= . The analysis is similar in the asymmet-
ric case.

In the Section “Materials and Methods”, we derive a linear 
approximation of the free membrane potentials,

V t J K t Vk k L( ) ( ) ,= ∗( ) +

where J t g t V V g t V V Ck L L mk k
( ) ( ( )( ) ( )( ))/= − − + −E E I I  are the total 

input currents and K t t t( ) ( ) /= −Θ e effτ  for k = 1,2. Under this approxi-
mation, the correlation, ρV V1 2

,  between the membrane potentials is 

FIGURE 3 | Two population models considered in the text. (A) 
Homogeneous population with overlap and independent inputs: 
A homogeneous pool of correlated inputs (large black circle) with correlation 
coeffi cient between any pair of processes equal to ρee. Each cell draws ne 
inputs (larger red and blue circles) from this homogeneous input pool. Of 
these ne correlated inputs, pene are shared between the two neurons (purple 
dots). In addition, each cell receives qene independent inputs (smaller red and 
blue circles), for a total of ne + qene inputs. All inputs have variance σe

2. (B) A 
population model with distinct “within” and “between” correlations: Each cell 
receives ne inputs. The average correlation between two inputs to the 
same cell is ρee

w , and between inputs to different cells is ρee
b .

FIGURE 4 | The effect of pooling on correlations between summed input 

spike trains. (A) The correlation coeffi cient between the pooled excitatory spike 
trains (ρEE) is shown as a function of the size of the correlated excitatory input 
pool (ne) for various parameter settings. The solid blue line was obtained by 
setting ρee = 0.05 for the population model in Figure 3A in the absence of shared 
or independent inputs (pe = qe = 0). The dashed line illustrates the decorrelating 
effects of the addition of ne independent inputs (qe = 1, qe = 0, ρee = 0.05). The 
dotted blue line shows that shared inputs increase correlations, but have a 
diminishing effect on ρEE with increasing input population size (pe = 0.2, qe = 0, 

ρee = 0.05). The solid pink line shows the effect of reducing the pairwise input 
correlations (ρee = 0.005, pe = qe = 0). The dashed tan line was obtained with 
uncorrelated inputs so that correlations refl ected shared inputs alone (pe = 0.2, 
ρee = qe = 0). The green line was obtained with disparity in the “within” and 
“between” correlations (ρe

b = 0 05.  and ρe
w = 0 1. ) using the model in Figure 3B. 

(B) The correlations coeffi cient, ρEE, between the pooled inputs as a function of 
the within and between correlations (ρe

b
 and ρe

w
) for ne = 50. Note that the pooled 

correlation is relatively constant along lines through the origin. Thus, changing ρe
b
 

and ρe
w
 by the same proportion does not affect the pooled correlation.
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equal to the correlation, ρ ρin = J J1 2
,  between the total input currents 

and can be written as a weighted average of the pooled excitatory 
and inhibitory spike train correlations (see Appendix),

ρ ρ
ρ ρ ρ

ρV V

W W W W

W W W W1 2

2

2
≈ =

+ −
+ −in

E
2

E E I
2

I I E I E I

E
2

I
2

E I E I

1 2 1 2 1 2

1 1  
(13)

where ρ ρ ρE E E I I I1 2 1 2 1 2
, ,  and ρE I1 1

 are derived above, and 
W

E
 = E|V

E
 − V

L
|σ

E
 and W

I
 = I|V

I
 − V

L
|σ

I
 are weights for the exci-

tatory and inhibitory contributions to the correlation. In Figure 5, 
we compare this approximation with simulations.

The correlation between the membrane potentials has positive 
contributions from the correlation between the excitatory inputs 
( ),ρE E1 2

 and between the inhibitory inputs ( ).ρI I1 2
 Contributions 

coming from excitatory–inhibitory correlations (ρE I1 2
 and ρE I2 1

) are 
negative, and can thus decorrelate the activity of downstream cells. 
This “cancellation” of correlations is observed in Figures 1D and 5, 
and can lead to asynchrony in recurrent networks (Hertz, 2010; 
Renart et al., 2010).

IMPLICATIONS FOR SYNCHRONIZATION IN FEEDFORWARD CHAINS
Feedforward chains, like that depicted in Figure 6A, have been 
studied extensively (Diesmann et al., 1999; van Rossum et al., 2002; 
Litvak et al., 2003; Reyes, 2003; Tetzlaff et al., 2003; Câteau and 
Reyes, 2006; Doiron et al., 2006; Kumar et al., 2008). In such net-
works, cells in a layer necessarily share some of their inputs, leading 
to correlations in their spiking activity (Shadlen and Newsome, 
1998). Frequently, spiking in deeper layers is highly synchronous 
(Reyes, 2003; Tetzlaff et al., 2003). However, in the presence of back-
ground noise, correlations can remain negligible (van Rossum et al., 
2002; Vogels and Abbott, 2005).

Feedforward chains amplify correlations as follows: When inputs 
to the network are independent, small correlations are introduced 
in the second layer by overlapping inputs. The inputs to each sub-
sequent layer are pooled from the previous layer. The amplifi ca-
tion of correlations by pooling is the primary mechanism for the 
development of synchrony (Compare solid and dotted blue lines 
in Figure 4A). Overlapping inputs serve primarily to “seed” syn-
chrony in early layers. The internal dynamics of the neurons and 
background noise can decorrelate the output of a layer, and compete 
with the correlation amplifi cation due to pooling.

We develop this explanation by considering a feedforward net-
work with each layer containing N

e
 excitatory and N

i
 inhibitory 

cells. Each cell in layer k + 1 receives n
e
 excitatory and n

i
 inhibitory 

inputs selected randomly from layer k. For simplicity we assume 
that all excitatory and inhibitory cells are dynamically identical 
and E|V

E
 − V

L
| = I|V

E
 − V

L
|. Spike trains driving the fi rst layer are 

statistically homogeneous with pairwise correlations ρ
0
.

FIGURE 5 | The effects of pooling on correlations between postsynaptic 

membrane potentials. Results of the linear approximation (solid, dotted, and 
dashed lines) match simulations (points). For the solid blue line, 
ρee = ρii = 0.05, and ρei = pe = pi = qe = qi = 0. The total number of excitatory 
and inhibitory inputs to each cell was n = ne + qene, and ni + qini respectively. 
Here ni = ne/3, with other parameters given in the Section “Materials and 
Methods.” The dotted blue line was obtained by including independent 
inputs, qe = qi = 1. The pink line was obtained by decreasing input correlations 
to ρee = ρii = 0.005. The solid green line was obtained by including excitatory–
inhibitory correlations, ρei = 0.05, so that total input correlations canceled. The 
dashed tan line was obtained by setting ρee = ρii = ρei = qe = qi = 0 and 
pe = pi = 0.2 so that correlations are due to input overlap alone. In all cases, 

E= 590
n

nS ms,·  and I = 4E. Standard errors are smaller than twice the radii of 

the points.

FIGURE 6 | The development of synchrony in a feedforward chain can be 

understood using a model dynamical system (Tetzlaff et al., 2003). 
(A) Schematic diagram of the network. Each layer consists of Ne excitatory 
and Ni inhibitory cells. Each cell in layer k receives precisely ne excitatory and 
ni inhibitory, randomly selected inputs from layer k − 1. (B) Stages of 
processing in the feedforward network. Inputs from layer k − 1 are pooled 
with overlap, and drive the cells in layer k. (C) The correlation transfer map 
described by the pooling function, P(ρ) (blue dotted line), is composed with 
the decorrelating transfer function, S(ρ) = ρ2 (red dotted line), to obtain the 
mapping, T = SºP (solid blue line). Cobwebs show the development of 
correlations in the discrete dynamical system defi ned by ρ ρk kT+ =1

out out( ) with 
ρ0 = 0. Nearly perfect correlations develop by the fi fth layer. The identity is 
shown as a dashed line. (D) Closer to balance (β≈1), the correlating effects of 
pooling are weakened, and the model develops a stable fi xed point close to 
ρ = 0. However, cells may no longer decorrelate their inputs in the balanced 
regime, and fl uctuations in the input statistics due to random connectivity 
can destabilize the fi xed point and lead to synchrony. The shaded region in the 
inset represents the region two standard deviations away from the mean 
(blue line) when randomness in the overlap is taken into account (see 
Appendix). The standard deviations were calculated using Monte Carlo 
simulations. In C and D, Ne = 12000 and ne = 600. In C, Ni = 8000 and 
ni = 400. In D, Ni = 10500 and ni = 525 to obtain approximate balance 
(β = 600/525). Filled black circles represent stable fi xed points and open black 
circles represent unstable fi xed points.
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To explain the development of correlations, we consider a sim-
plifi ed model of correlation propagation (See also Renart et al., 
2010 for a recurrent version). In the model, any two cells in a layer 
share the expected proportion p

e
 = n

e
/N

e
 of their excitatory inputs 

and p
i
 = n

i
/N

i
 of their inhibitory inputs (the expected proportions 

are taken with respect to random connectivity). We also assume 
that inputs are statistically identical across a layer.

For a pair of cells in layer k ≥ 1, let ρk
in  and ρk

out represent the 
correlation coeffi cient between the total input currents and out-
put spike trains respectively. The outputs from layer k are pooled 
(with overlap) to obtain the inputs to layer k + 1. Using the results 
developed above, ρ ρin

1
0= P( ) and ρ ρk kP+ =1

in out( ), for k ≥ 1, where (see 
Appendix and Tetzlaff et al., 2003 for a similar derivation)

P
n

p p

n

( )

( ) ( )

( ) ( )( )
.ρ

ρ β ρ β

ρ β ρ β
=

− + − +( )

− + − +

1
1

1

1
1

1 1

2

2

i
e i

i  

(14)

Here β measures the balance between excitation and inhibi-
tion (see Materials and Methods). From our assumptions, β = n

e
/n

i
. 

With imbalance (β ≠ 1) and a large number of cells in a layer, pool-
ing amplifi es small correlations, P(ρ) > ρ, as discussed earlier.

To complete the description of correlation transfer from layer 
to layer, we relate the correlations between inputs to a pair of cells, 
ρk

in , to correlations in their output spike trains, ρk
out . We assume that 

there is a transfer function, S, so that ρ ρk kSout in= ( ) at each layer k. 
We additionally assume that S(0) = 0 and S(1) = 1, that is uncor-
related (perfectly correlated) inputs result in uncorrelated (perfectly 
correlated) outputs. We also assume that the cells are decorrelat-
ing, |ρ| > |S(ρ)| > 0 for ρ ≠ 0,1 (Shea-Brown et al., 2008). This is 
an idealized model of correlation transfer, as output correlations 
depend on cell dynamics and higher order statistics of the inputs 
(Moreno-Bote and Parga, 2006; de la Rocha et al., 2007; Barreiro 
et al., 2009; Ostojić et al., 2009).

Correlations between the spiking activity of cells in layers k + 1 
are related to correlations in layer k by the layer-to-layer trans-
fer function, T = S ◦ P. The development of correlations across 
layers is modeled by the dynamical system, ρ ρk kT+ =1

out out( ), with 
ρ ρ1 0

out = S( ).

When the network is not balanced (β ≠ 1), pooling amplifi es 
correlations at each layer and the activity between cells in deeper 
layers can become highly correlated (see Figure 6C). The output of 
the fi rst layer is uncorrelated if the individual inputs are independ-
ent (ρ

0
 = 0). In this case all of the correlations between the total 

inputs to the second layer come from shared inputs,

ρ2 0in e e i i

e i

= = +
+

P
n p n p

n n
( ) .

These correlations are then reduced by the second layer of cells, 
ρ ρ2 2 0 0out in= = >S T( ) ( ) , and subsequently amplifi ed by pooling and 
input sharing before being received by layer 3, ρ ρ3

in
2
out= P( ). This 

process continues in subsequent layers. If the correlating effects 
of pooling and input sharing dominate the decorrelating effects 
of internal cell dynamics, correlations will increase from layer to 
layer (see Figure 6C).

When ρ
0
 = 0, overlapping inputs increase the input correlation 

to layer 2, but have a negligible effect on the mapping once correla-
tions have developed since the effects of pooling dominate [see Eq. 
(14) and the dashed blue line in Figure 4A which shows that the 
effects of input overlaps are small when n

e
 is large, ρ > 0 and β ≠ 1]. 

Therefore, shared inputs seed correlated activity at the fi rst layer, 
and pooling drives the development of larger correlations. When 
ρ

0
 = 0, we cannot expect large correlations before layer 3, but when 

ρ
0
 > 0 large correlations can develop by layer 2.
To verify this conclusion, we constructed a two-layer feed-

forward network with no overlap between inputs (P
e
 = P

i
 = 0). 

In Figure 7A, the inputs to layer 1 were independent (ρ
0
 = 0), 

and the fi ring of cells in layer 2 was uncorrelated. In Figure 7B, 
we introduced small correlations (ρ

0
 = 0.05) between inputs to 

layer 1. These correlations were amplifi ed by pooling so that 
strong synchrony is observed between cells in layer 2. We com-
pared these results with a standard feedforward network with 
overlap in cell inputs (Figure 7C, where P

e
 = P

i
 = 0.05). Inputs 

to layer 1 were independent (ρ
0
 = 0), and hence outputs from 

layer 1 uncorrelated. Dependencies between inputs to layer 2 
were weak and due to overlap alone, ρ2

in = =P( ) . .0 0 05  Cells in 
layer 3 received pooled inputs from layer 2, and their output 
was highly correlated.

These results predict that correlations between spike trains 
develop in deeper layers, but they do not not directly address 
the timescale of the correlated behavior. In simulations, spiking 
becomes tightly synchronized in deeper layers (see for instance 
Litvak et al., 2003; Reyes, 2003; and Figure 7). This can be under-
stood using results in Maršálek et al. (1997) and Diesmann et al. 
(1999) where it is shown that the response of cells to volleys of 
spikes is tighter than the volley itself. The fi ring of individual cells in 
the network becomes bursty in deeper layers and large correlations 
are manifested in tightly synchronized spiking events. Alternatively, 
one can predict the emergence of synchrony by observing that 
pooling increases correlations over fi nite time windows (see next 
section and Appendix) and therefore the analysis developed above 
can be adapted to correlations over small windows.

Balanced feedforward networks
In the simplifi ed feedforward model above, when excitation balances 
inhibition, that is β ≈ 1, correlations between the pooled inputs to 
a layer are due to overlap alone, ρ ρk

in out
e i= ≈ +−P p pk( ) ( )/1 2 for all k. 

The correlating effects of this map are weak, and this would seem 
to imply that cells in balanced feedforward chains remain asyn-
chronous. Indeed, our model of correlation propagation displays 
a stable fi xed point at low values of ρ when β ≈ 1 (see Figure 6D). 
However, in practice, synchrony is diffi cult to avoid without careful 
fi ne-tuning (Tetzlaff et al., 2003), and almost always develops in 
feedforward chains (Litvak et al., 2003). We provide some reasons 
for this discrepancy.

Our focus so far has been on correlations over infi nitely large 
time windows (see Materials and Methods where we defi ne ρ

xy
). 

Even when the membrane potentials are nearly uncorrelated over 
large time windows, differences between the excitatory and inhib-
itory synaptic time constants can cause larger correlations over 
smaller time windows (Renart et al., 2010). This can, in turn, lead to 
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signifi cant correlations between the output spike trains. We discuss 
this effect further in the Appendix and give an example in Figure 8. 
In this example, the correlations between the membrane poten-
tials over long windows are nearly zero due to cancellation (see 
Figure 8A where ρ

VV
 = 0.0174 ± 0.0024 s.e. with threshold present), 

but positive over shorter timescales. The cross- covariance func-
tion between the output spike trains is primarily positive, yielding 
signifi cant spike train correlations (ρ

spikes
 = 0.1570 ± 0.0033 s.e.). 

Therefore, the assumption that pairs of cells decorrelate their inputs 
may not be valid in the balanced case.

Another source of discrepancies between the idealized model 
and simulations of feedforward networks are inhomogeneities, 
which become important when balance is exact. Note that Eq. (14) 
is an approximation obtained by ignoring fl uctuations in connec-
tivity from layer to layer. In a random network, inhomogeneities 
will be introduced by variability in input population overlaps. To 
fully describe the development of correlations in a feedforward 
network, it is necessary to include such fl uctuations in a model of 

correlation propagation. The asynchronous fi xed point that appears 
in the balanced case has a small basin of attraction and fl uctuations 
induced by input inhomogeneities could destroy its stability (see 
Figure 6D). Other sources of heterogeneity can further destabilize 
the asynchronous state (see Appendix).

It has been shown that asynchronous states can be stabilized 
through the decorrelating effects of background noise (van Rossum 
et al., 2002; Vogels and Abbott, 2005). To emulate these effects, a 
third transfer function, N, can be added to our model. The cor-
relation transfer map then becomes T(ρ) = S °N°P(ρ). Suffi ciently 
strong background noise can increase decorrelation from input to 
output of a layer, and stabilize the asynchronous fi xed point.

DISCUSSION
We have illustrated how pooling and shared inputs can impact cor-
relations between the inputs and free membrane voltages of post-
synaptic cells in a feedforward setting. The increase in correlation 
due to pooling was discussed in a simpler setting in (Bedenbaugh 

FIGURE 7 | Development of synchrony in feedforward networks. (A) A 
feedforward network with no overlap and independent, Poisson input. For 
excitatory cells, we set E ≈ 1.55nS·ms, and I ≈ 4.67nS·ms. For inhibitory cells, 
E ≈ 3.61nS·ms, and I ≈ 10.82nS·ms. (B) Same as A, except inputs to layer 1 are 
correlated with coeffi cient ρ0 = 0.05. The network is highly synchronized in the 

second layer, even though inputs do not overlap. (C) Same as A, except for the 
presence of overlapping inputs (pe = pi = 0.05). Correlations due to overlap in the 
input to layer 2 result in average correlations of 0.05 between input currents. Layer 
3 cells in C synchronize (Compare with layer 2 in B). In all three fi gures, each cell in 
the fi rst layer was driven by excitatory Poisson inputs with rate ν0 = 100 Hz.

FIGURE 8 | Cross-covariance functions between membrane potentials 

and output spike trains. (A) The cross-covariance function between 
membrane potentials, scaled so that its maximum is 1. The linear 
approximation in Eq. (16) (blue, shaded) agrees with simulations of the full 
conductance-based model (black dashed line). Differences between 
simulations with and without threshold are too small to be observable (8000 
simulations 10s each; simulations with and without threshold are shown). 
Parameters are as in Figure 1D. The cells are balanced with 

ρee = ρii = ρei = 0.05 so that the correlation between the membrane potentials 
over long time windows is essentially zero (ρvv = 0.0085 ± 0.0024 s.e. 
unthresholded, and ρvv = 0.0174 ± 0.0024 s.e. thresholded). However, 
correlations over shorter time windows are positive as indicated by the central 
peak in the cross-covariance function. (B) The cross-covariance between the 
output spike trains is mostly positive. The correlation between the output spike 
trains was ρspikes = 0.1570 ± 0.0033 s.e. (500 simulations of 100s each with 
same parameters as in A.
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and Gerstein, 1997; Super and Roelfsema, 2005; Chen et al., 2006; 
Stark et al., 2008), and similar ideas were also developed for the 
variance alone in (Salinas and Sejnowski, 2000; Moreno-Bote et al., 
2008). The saturation of the signal-to-noise ratio with increasing 
population size observed in (Zohary et al., 1994) has a similar ori-
gin. Our aim was to present a unifi ed discussion of these results, 
with several generalizations.

Other mechanisms, such as recurrent connectivity between cells 
receiving the inputs, can modulate correlated activity (Schneider 
et al., 2006; Ostojić et al., 2009). Importantly, the cancellation of 
correlations may be a dynamic phenomenon in recurrent net-
works, as observed in (Hertz, 2010; Renart et al., 2010). On the 
other hand, neurons may become entrained to network oscilla-
tions, resulting in more synchronous fi ring (Womelsdorf et al., 
2007). A full understanding of the statistics of population activity 
in neuronal networks will require an understanding of how these 
mechanisms interact to shape the spatiotemporal properties of the 
neural response.

The results we presented relied on the assumption of linearity at 
the different levels of input integration. These assumptions can be 
expected to hold at least approximately. For instance, there is evi-
dence that membrane conductances are tuned to produce a linear 
response in the subthreshold regime (Morel and Levy, 2009). The 
assumptions we make are likely to break down at the level of single 
dendrites where nonlinear effects may be much stronger (Johnston 
and Narayanan, 2008). The effects of correlated inputs to a single 
dendritic branch deserve further theoretical study (Gasparini and 
Magee, 2006; Li and Ascoli, 2006).

We demonstrated that the structure of correlations in a popula-
tion may be diffi cult to infer from pooled activity. For instance, a 
change in pairwise correlations between individual cells in two pop-
ulations causes a much smaller change in the correlation between 
the pooled signals. With a large number of inputs, the change in 
correlations between the pooled signals might not be detectable 
even when the change in the pairwise correlations is signifi cant.

While we discussed the growth of second order correlations only, 
higher order correlations also saturate with increasing population 
size. For example, in a 3-variable generalization of the homogene-
ous model from Figure 3A, it can be shown that ρE E E e1 2 3

= −1 1O( / )n  
where n

e
 is the size of each population and ρE E E1 2 3

 is the triple correla-
tion coeffi cient (Stratonovich, 1963) between the pooled signals E

1
, 

E
2
, and E

3
. The reason that higher order correlations also saturate fol-

lows from the generalization of the following observation at second 
order: Pooling amplifi es correlations because the variance and covari-
ance grow asymptotically with the same rate in n

e
. In particular σE

2  
and γ E E1 2

 both behave asymptotically like n ne
2

ee e eρ σ2 +O( ), and their 
ratio, ρ γ σE E E E E

2

1 2 1 2
= / , approaches unity (Bedenbaugh and Gerstein, 

1997; Salinas and Sejnowski, 2000; Moreno-Bote et al., 2008).
We concentrated on correlations over infi nitely long time win-

dows (see Materials and Methods where we defi ne ρ
xy

). However, 
pooling amplifi es correlations over fi nite time windows in exactly 
the same way as correlations over large time windows. Due to 
the fi ltering properties of the cells, the timescale of correlations 
between downstream membrane potentials may not refl ect that of 
the inputs. We discuss this further in the Appendix where the auto- 
and cross-covariance functions between the membrane potentials 
are derived.

To simplify the presentation, we have so far assumed stationary. 
However, since Eq. (2) applies to the Pearson correlation between any 
pooled data, all of the results on pooling can easily be extended to the 
non-stationary case. In the non-stationary setting, the cross- covariance 
function has the form R

xy
(s, t) = cov (x(s), y(s + t)), but there is no nat-

ural generalization of the asymptotic statistics defi ned in Eq. (1).
Correlated neural activity has been observed in a variety of neu-

ral populations (Gawne and Richmond, 1993; Zohary et al., 1994; 
Vaadia et al., 1995), and has been implicated in the propagation and 
processing of information (Oram et al., 1998; Maynard et al., 1999; 
Romo et al., 2003; Tiesinga et al., 2004; Womelsdorf et al., 2007; 
Stark et al., 2008), and attention (Steinmetz et al., 2000; Mitchell 
et al., 2009). However, correlations can also introduce redundancy 
and decrease the effi ciency with which networks of neurons repre-
sent information (Zohary et al., 1994; Gutnisky and Dragoi, 2008; 
Goard and Dan, 2009). Since the joint response of cells and recorded 
signals can refl ect the activity of large neuronal populations, it will 
be important to understand the effects of pooling to understand 
the neural code (Chen et al., 2006).

APPENDIX
DERIVATION OF EQ. (10)
Equation (10) can be derived from Eq. (2). However, we fi nd that 
it is more easily derived directly. We will calculate the variance, 
σ σE

2
E
2

1 2
= , and covariance γ E E1 2

 between the pooled signals.
The covariance is given by the sum of all pairwise covariances 

between the populations, γ σ σ ρE E e E ,e E e e e e1 2 1 1 2 2 1 2
= ∈ ∈Σ

1 2
. Each cell 

receives n q ne e e+  inputs so that there are (n
e
 + q

e
n

e
)2 terms that 

appear in this sum. However, the q
e
n

e
 “independent” inputs from 

each pool are uncorrelated with all other inputs and therefore don’t 
contribute to the sum. Of the remaining ne

2  pairs, n
e
p

e
 are shared 

and therefore have correlation ρe e1 2
= 1. These shared processes 

therefore collectively contribute n pe e eσ2 to γ E E1 2
. The remaining 

n n pe
2

e e−  processes are correlated with coeffi cient ρ
ee

 and collec-
tively contribute ( ) .n n pe e e ee e

2 2− ρ σ  The pooled covariance is thus

γ ρ σ σE E e
2

e e ee e

Correlated

e e e
2

Shared

1 2
= − +( ) .n p n n p2

1 244 344 123

The variance is given by the sum of all pairwise covariances within 
a population, σ σ σ ρE

2
e E e E e e e e1 1 1 2 1

= ∈ ∈Σ , .
1 2 1 2

 As above, there are n
e
 + q

e
n

e
 

neurons in the population, so that the sum has (n
e
 + q

e
n

e
)2 terms. 

Of these, n
e
 + q

e
n

e
 are “diagonal” terms (e

1
 = e

2
), each contributing 

σe
2 , for a total contribution of ( )n q ne e e e+ σ2  to σE1

2 . The processes 
from the independent pool do not contribute any additional terms. 
This leaves n

e
(n

e
 − 1) correlated pairs which each contribute σ ρe ee

2  
for a collective contribution of n ne e e ee( ) ,−1 2σ ρ  giving

σ σ σ ρ σE E e e e ee

Correlated

e e e e

Diagon

1 2
1 2 2= = − + +n n n n q( ) ( )

1 244 344
aal

1 244 344
.

Now, ρ γ σE E E E E1 2 1 2
= /

1
 can be simplifi ed to give Eq. (10). Equations 

for ρI I1 2
 and ρ ρE I I E1 2 1 2

=  can be derived identically.

FINITE-TIME CORRELATIONS AND CROSS-COVARIANCES
Throughout the text, we concentrated on correlations over large time 
windows. However, the effects of pooling described by Eq. (2) apply to 
the correlation, ρ

xy
(t), between spike counts over any time window of 
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size t, defi ned by ρxy x y x yt N t N t N t N t( ) cov( ( ), ( ))/ var( ( ))var( ( ))=  
where N t x s sx

t( ) ( )= ∫0 d  is the spike count over [0,t] for the spike 
train x(t). The equation also applies to the instantaneous correla-
tion at time t, defi ned by R t C t C t C txy xy xx yy( ) ( )/ ( ) ( ).=  Thus pool-
ing increases correlations over all timescales equally.

However, the cell fi lters the pooled inputs to obtain the mem-
brane potentials and, as a result, the correlations between mem-
brane potentials is “spread out” in time (Tetzlaff et al., 2008). To 
quantify this effect, we derive an approximation to the auto- and 
cross-covariance functions between the membrane potentials.

The pooled input spike trains are obtained from from a weighted 
sum of the individual excitatory and inhibitory spike trains (see 
Materials and Methods). As a result cross-covariance functions 
between the pooled spike trains are just sums of the individual cross-
covariance functions, C t C tXY x X y Y xy( ) ( ),= ∈ ∈Σ  for X, Y = E

1
, E

2
, I

1
, I

2
 

and x, y = e, i accordingly. Thus only the magnitude of the cross-
 covariance functions is affected by pooling. The change in magni-
tude is quadratic in n

e
 or n

i
. This is consistent with the observation 

that pooling amplifi es correlations equally over all timescales.
The conductances are obtained by convolving the total inputs 

with the synaptic fi lter kernels,

g t t g t t k
k kk k iE e IE and I( ) ( )( ), ( ) ( )( ); , .= ∗ = ∗ =α α 1 2

The cross-covariance between the conductances can therefore be 
written as a convolution of the cross-covariance function between 
the input signals and the deterministic cross-covariance between 
the synaptic kernels (Tetzlaff et al., 2008). In particular,

C t C tg g XY x yX Y
( ) ( ( ))( )= ∗ α α�

 
(15)

for X, Y = E
1
, E

2
, I

1
, I

2
 and x, y = e, i accordingly, where 

( )( ) ( ) ( )α α α αx y x yt s t s s� = ∫ +−∞
∞

d  is the deterministic cross-
 covariance between the synaptic fi lters, α

x
 and α

y
. Note that total 

correlations remain unchanged by convolution of the input spike 
trains with the synaptic fi lters, since the integral of a convolution 
will be equal to the product of the integrals (Tetzlaff et al., 2008).

The total input currents, J
K
(t) = –( ( )g tEk

(V
L
–V

I
))/C

m
, obtained 

from the linearization of the conductance-based model described 
in the Section “Materials and Methods” are simply linear combina-
tions of the individual conductances. The cross-covariance function 
between the input currents is therefore a linear combination of 
those between the conductances,

C t V V C t V V C t

V V V

J J L g g L g g

L

h k h k h k
( ) | | ( ) | | ( )

| ||

= − + −

− −
E I

E I

E E I I

2 2

2 −−V C tL g g
h k

| ( ).
I E

Combining this result with Eq. (1), yields the correlation, 
ρ ρin = J J1 2

,  between the total input currents given in Eq. (13).
Using the solution of the linearized equations described in the 

Section “Materials and Methods”, we obtain a linear approximation 
to the cross-covariance functions,

C t C K K tV V J Jh k h k
( ) ( ( ))( )≈ ∗1

2τeff

�

 
(16)

for h,k = 1,2 where ( )( ) | |/K K t e t� = −τ τeff eff

2
 is the cross-covariance 

between the linear kernel, K, and itself. The convolution with 
(K�K)(t) scales the area of both the auto- and cross-covariance 

functions by a factor of τeff
2 , and therefore leaves the ratio of the 

areas, ρV V1 2
 unchanged. Thus, the linear approximation predicts 

that ρ ρV V1 2
≈ in .

When the total inputs are strong, τ
eff

 is small and we can simplify 
Eq. (16) by approximating (K�K)(t) with a delta function with 
mass τeff

2  so that C t C tV V J J1 2 1 2
2( ) ( )/≈ τeff  and similarly for C tV V1 1

( ). 
This approximation is valid when the synaptic time constants are 
signifi cantly larger than τ

eff
, which is likely to hold in high conduct-

ance states. We compare this approximation to cross-covariance 
functions obtained from simulations in Figure 8.

In all examples considered, the cross-covariance functions have 
exponentially decaying tails. We defi ne the correlation time con-
stant, τxy

t
xyt C t= −

→∞
lim / ln( ( )), as a measure of the decay rate of the 

exponential tail. If t � τ
xy

, then x(s) and y(s + t) can be regarded 
as approximately uncorrelated and γ xy t

t
xyt s t C s s≈ ∫ −− ( | | / ) ( )d  

(Stratonovich, 1963).
The time constant of a convolution between two exponen-

tially decaying functions is just the maximum time constant of 
the two functions. Thus, from the results above, the correlation 
time constant between the membrane potentials is the maximum 
of the correlation time constants between the inputs, the syn-
aptic time constants, and the effective membrane time constant 
τ τ τ τ τ τ τ τV V1 2 1 2 1 2 1 2 2 1

= max{ , , , , , , }E E I I E I E I e i eff  where τE E1 2
, τI I1 2

, τE I1 2
, and 

τE I2 1
 are the time constants of the input spike trains and τ

e
 and τ

i
 

are synaptic time constants. Thus the cross-covariances functions 
between the membrane potentials are generally broader than the 
cross-covariance functions between the spike train inputs.

DERIVATION OF EQ. (14)
Consider a feedforward network where each layer consists of N

e
 

excitatory cells and N
i
 inhibitory cells; each cell in layer k receives n

e
 

excitatory and n
i
 inhibitory inputs from layer (k − 1), and these con-

nections are chosen randomly and independently across neurons in 
layer k. Then the degree of overlap in the excitatory and inhibitory 
inputs to a pair of cells in layer k is a random variable. Following 
the derivation in Derivation of Eq. (10) in Appendix,

ρ
γ
σ

σ ρ σ
σ ρ σE E

E E

E

e e e e ee e

e e e e ee e
1 2

1 2= = + −
+ −2

2 2 2

2 2 2

s n s

n n n

( )

( )
,

where s
e
 denotes the number of common excitatory inputs between 

the two cells. To understand the origin of s
e
, suppose the n

e
 excita-

tory inputs to cell 1 have been selected. Then the selection of the n
e
 

excitatory inputs to cell 2 involves choosing, without replacement, 
from two pools: the fi rst, of size n

e
, projects to cell 1, and the second, 

of size (N
e
 − n

e
), does not. Therefore, s

e
 is follows a hyper-geometric 

distribution with parameters (N
e
, n

e
, n

e
), and has mean n N n pe

2
e e e/ .=  

In addition, this random variable is independently selected amongst 
each pair in layer k. Using the mean value of s

e
, we obtain Eq. (10).

For simplicity, we assume that E |V
E
 − V

L
| = I |V

I
 − V

L
|, so that 

β = n
i
/n

e
. If we assume that the statistics in the (k − 1)st layer are uniform 

across all cells and cell types (i.e., ρ ρ ρ ρ ρ= = = = −ee ii ei
out
k 1 and σ

e
 = σ

i
) 

then by substituting Eq. (10) and the equivalent forms for ρ
II
, ρ

EI
 in to 

Eq. (13), we may write the input correlations to the kth layer as

ρ
γ γ γ

in
E E E I I I E I

E

1 2 1 2=
− + − − − −

−
| | | | | || |

|

V V V V V V V V

V V
L L L L E I

L

2 2 2
1 2

|| | | | || |
.

2 2 2 2 2σ σ γE I I E I E I1 1
+ − − − −V V V V V VL L L
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Substituting the values of the covariances and variances, and 
dividing the numerator and denominator by (E|V

E
 − V

L
|σ

e
)2, 

we get

ρ ρ ρ ρ
ρin

e e
2

e i i
2

i e i

e e
2

e i i
2

 = + − + + − −
+ − + + −

s n s s n s n n

n n n n n

( ) ( )

( ) (

2

nn n ni e i  )
.

ρ ρ− 2

Rearranging terms and dividing numerator and denominator 
by ni

2 , along with the substitution β = n
e
/n

i
, we have

ρ
ρ β ρ

ρ β ρ
in

i
e i

i
e i

=
− + +( ) −

− + + −

( ) ( )

( ) ( )( )

1
1

1

1
1

1

2
2

2
2

n
s s

n
n n

 

(17)

This equation takes into account the variations in overlap due 
to fi nite size effects since s

e
 and s

i
 are random variables. Eq. (14) 

in the text represents the expected value P(ρ) = 〈ρ
in
〉 which can 

be obtained by replacing the variables s
e
 and s

i
 in Eq. (17) with 

their respective means, 〈s
e
〉 = n

e
p

e
 and 〈s

i
〉 = n

i
p

i
. The expectation 

above is taken over realizations of the random connectivity of the 
feedforward network.

To calculate the standard deviation for the inset in Figure 6D, 
we ran Monte Carlo simulations, drawing s

e
 and s

i
 from a hyper-

geometric distribution and calculating the resulting transfer, 
S( )ρ ρin in

2=  using Eq. (17). Note, however, that Eq. (17) and the inset 
in Figure 6D, do not account for all of the effects of randomness 
which may destabilize the balanced network. In deriving Eq. (17), 
we assumed that the statistics in the second layer were uniform. 
However, variations in the degree of overlap in one layer will cause 
inhomogeneities in the variances and rates at the next layer. In 
a feedforward setting, these inhomogeneities are compounded at 
each layer to destabilize the asynchronous fi xed point.

DEFINITIONS AND VALUES OF VARIABLES USED IN THE TEXT

Table 1 | Defi nitions of variables pertaining to recordings.

X1(t), X2(t) Signals from two populations.
ρX X1 2

 Correlation between the signals.

ρjk  Average pairwise correlation between a cell in population j

 and a cell in population k.

r(d ) Firing rate of a cell at distance d from the center of a stimulus.

Table 2 | Defi nitions of variables pertaining to downstream cells. 

Subscripts e and E (i and I) denote excitation (inhibition).

ne, ni Number of correlated inputs to a cell.

νe, νi Input rates. 

E, I Synaptic weights.

qe, qi Neurons received neqe(niqi) independent excitatory

 (inhibitory) inputs.

ρee, ρii, ρei Correlations between pairs of afferents. 
ρ ρxy xy

w b,  Correlations within or between two non-overlapping 

 populations (x,y = e,i). 

pe, pi Proportion of shared input to the post-synaptic pair. 

Ne, Ni Number of cells per layer in feed-forward network model.

Ej, Ij Pooled input spike trains to cell j. 

σE, σI Standard deviation of pooled excitatory 

 or inhibitory spike trains. 
γ γ γE E E I I I, ,

j k j k j k  Covariance between pooled spike trains. 
ρ ρ ρE E E I I I, ,

j k j k j k  Correlations between pooled spike trains. 

β Measure of balance between excitation and

 inhibition in the inputs. 
ρ ρk k

in out,  Correlations between inputs to or outputs from cell

 pairs in a feedforward network. 

CXY(t) Cross-covariance function between processes X and Y. 

P(ρ) Correlations between the pooled inputs to cells in

 the feedforward model. 

S(ρ) Correlation between output spike trains in

 terms of input current correlations between 

 cell pairs in the feedforward model. 

Table 3 | Parameter values for simulations of two downstream cells. For 

fi elds with “var,” various values of the indicated parameters were used and 

are described in the captions. For all simulations, VL = −60 mV, VE = 0 mV, 

VI = −90 mV, Cm = 114 pF, gL = 4.086 nS, τe = 10 ms, τi = 20 ms.

 ρ
ee

, ρ
ii
 ρ

ei
 n

e
, n

i
 p

e
, p

i
 q

e
, q

i
 ν

e
, ν

i
 (Hz) E,I (nS·ms)

Figure 1C 0.05 0 250, 84 0 1 5, 7.5 2.3, 9.2

Figure 1D 0.05 0.05 250, 84 0 1 5 2.3, 13.8

Figure 5 var var var, ne/3 var var 5, 7.5 590/ne, 4E
Figure 8 0.05 0.05 250, 84 0 1 5 2.3, 13.8

Table 4 | Parameter values for simulations of feedforward networks. The parameter ν0 is the input rate to the fi rst layer, (E, I)e indicates synaptic weights 

for excitatory cells, and (E, I)i for inhibitory cells. For all simulations, VL = −60 mV, VE = 0 mV, VI = −90 mV, Cm = 114 pF, gL = 4.086 nS, τe = 10 ms, τi = 20 ms. 

For Figure 6, theoretical values were obtained under the assumption that νe = νi and E|VE − VL| = I|VI − VL|.

 n
e
, n

i
 N

e
, N

i
 p

e
, p

i
 ν

0
 (Hz) ρ

0
 (E, I)

e
, (E, I)

i
 (nS·ms)

Figure 6C 600, 400 12000, 8000 0.05 NA 0 NA

Figure 6D 600, 525 12000, 10500 0.05 NA 0 NA

Figure 7A 225, 75 NA 0 100 0 (1.55,5.67),(3.61,10.82)

Figure 7B 225, 75 NA 0 100 0.05 (1.55,5.67),(3.61,10.82)

Figure 7C 225, 75 4500, 1500 0.05 100 0 (1.55,5.67),(3.61,10.82)
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