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conditions. In this way the STDP curve is  interpreted as a learning 
rule that defines how a particular type of synapse participates in 
information storage and ultimately brain circuit function.

Certainly the discovery of STDP represented a major advance 
over previous means of inducing synaptic plasticity, which relied 
on less controlled stimulation such as the delivery of strong 
(tetanic) stimuli to entire presynaptic axon tracts. In contrast, the 
minimal nature of STDP protocols carried with it two hopes: that 
the activity patterns used were more realistic, and that the various 
properties of synaptic plasticity could eventually be accounted 
for by knowing the timing of all the spikes. This is realized in 
theoretical models by assuming that cumulative plasticity is pre-
dicted by a simple superposition of spike pairs that repeatedly 
sample the STDP curve (“linear STDP”) (Gerstner et al., 1996; 
Kempter et al., 1999; Abbott and Nelson, 2000; Song et al., 2000; 
van Rossum et al., 2000; Gütig et al., 2003; Izhikevich and Desai, 
2003). In this sense STDP has been considered as a possible first 
law of synaptic plasticity.

This appealingly simple viewpoint neglects the actual mecha-
nisms that change synaptic strength. Synaptic plasticity is induced 
by a variety of receptor-generated second messengers, which in 
turn activate kinases, phosphatases, and other downstream tar-
gets. A first-law view of STDP largely disregard these molecular 

It is amateurs who have one big bright beautiful idea that they 
can never abandon. Professionals know that they have to pro-
duce theory after theory before they are likely to hit the jackpot. 
-Francis Crick.

The term “spike timing dependent plasticity” (STDP) refers 
to the observation that the precise timing of spikes significantly 
affects the sign and magnitude of synaptic plasticity (Bell et al., 
1997; Markram et al., 1997; Bi and Poo, 1998). For example, at 
connections between mammalian pyramidal neurons (Markram 
et al., 1997; Bi and Poo, 1998; Feldman, 2000; Nishiyama et al., 
2000; Sjöström et al., 2001; Wittenberg and Wang, 2006) a pre-
synaptic spike preceding a postsynaptic spike within a narrow 
time window leads to long-term potentiation (LTP); if the order 
is reversed, long-term depression (LTD) results. In a common 
experimental paradigm, presynaptic and postsynaptic spike pairs 
are evoked repeatedly with a fixed time interval, ∆t. This pairing 
is repeated at low frequency and the resulting change in synaptic 
response size is measured. Repeating this experiment for many 
values of ∆t gives the timing-dependence of plasticity. Such an 
STDP curve is assumed to be useful for predicting the plasticity 
that results when ∆t is variable, e.g., for arbitrary trains of presy-
naptic and postsynaptic spikes that occur under less controlled 
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and cellular mechanisms in favor of the view that the essential 
character of synaptic plasticity can be separated from messy bio-
logical details.

In this article we review the considerable experimental evidence 
that real learning rules occupy a parameter space of high dimen-
sionality that is not easily reduced or even approximated using spike 
pairs alone. Such parameters as stimulation frequency or even the 
total number of presynaptic and postsynaptic spikes have a large 
influence on the sign and magnitude of net plasticity. In addi-
tion, major nonlinearities arise from the history of spike activity 
on timescales longer than the width of the STDP curve as well as 
the location and spatial pattern of synaptic activity on and across 
neurons. Finally, on time scales of tens of minutes and shorter, 
single synapses undergo plasticity in what appears to be a sudden 
and all-or-none manner.

Can these and other nonlinearities be tamed without losing the 
conceptual appeal of a rule-based approach? We suggest that this 
complexity is naturally captured by models of synaptic plasticity 
that are based on cellular mechanisms. Consideration of signaling 
machinery allows the creation of a model that can be driven by 
any activity pattern to mimic a variety of experimental induction 
protocols, as well as natural activity patterns that occur in living 
animals. We focus in particular on one messenger, calcium, that 
can potentially account for much of the complexity seen in several 
commonly studied forms of synaptic plasticity.

A brief history of plAsticity
The hypothesis that memory formation may correspond to changes 
in the connections between neurons dates back to Konorski, (1948), 
Hebb, (1949) and other work reviewed in Squire, (1987). In a strik-
ing early formulation, Hebb cited the functional notion of causality 
by postulating that a presynaptic neuron that repeatedly drives a 
postsynaptic neuron to fire should eventually cause the presynaptic 
neuron to become more efficient in driving the postsynaptic neu-
ron. For this to occur, the presynaptic neuron would presumably 
fire immediately before the postsynaptic neuron. Hebb’s rule has 
profoundly influenced neuroscience and machine learning.

The discovery of long-term potentiation in the perforant path 
input to the dentate gyrus of the hippocampus (Bliss and Gardner-
Medwin, 1973; Bliss and Lømo, 1973) provided the first experi-
mental evidence for synaptic plasticity. Now the most widely used 
experimental model is a nearby type of synapse between pyrami-
dal neurons of hippocampal areas CA3 and CA1. High-frequency 
tetanic stimulation of CA3 axons, which drive postsynaptic CA1 
neurons to fire, leads to long-term potentiation (LTP), an increase 
in the synaptic response in CA1 to single stimuli (Figure 1A).

Subsequently Hebb’s postulate was extended to encompass LTD 
as a necessary converse of LTP (Stent, 1973; Sejnowski, 1977). Based 
on observations of the development and plasticity of visual cortex 
(Wiesel and Hubel, 1963), Bienenstock, Cooper, and Munro (BCM) 
theorized (Bienenstock et al., 1982) and several groups (Dudek and 
Bear, 1992; Mulkey and Malenka, 1992) demonstrated experimen-
tally that if a presynaptic neuron drives a postsynaptic neuron only 
weakly, LTD of the active synapses (homosynaptic LTD) would 
occur. These results are consistent with the bidirectional “BCM 
rule” in which the direction and magnitude of plasticity depends 
on a postsynaptic activity variable (Figure 1A).

Empirical search revealed that LTP was robustly induced with 
1-s-long stimuli (high-frequency tetanus, 100 Hz), while LTD 
required 15 min of stimulation (low-frequency, 1 Hz; Figure 1A). 
Pairing low-frequency presynaptic stimulation with postsynaptic 
depolarization (to 0 mV for LTP, to −30 mV for LTD) was also found 
to elicit these phenomena robustly in voltage-clamp experiments 
(Figure 1B), suggesting that the strength of postsynaptic activation 
determines the sign of plasticity (Artola et al., 1990; Ngezahayo 
et al., 2000). These protocols were not physiologically realistic, 
but they did enable detailed studies of molecular mechanisms of 
inducing, expressing and maintaining synaptic plasticity. Another 
thread of research was the exploration of naturalistic-seeming 
patterns of neural activity. It was found that a necessary part of 
LTP induction at CA3–CA1 synapses was bursts of stimulation 
at intervals corresponding approximately to the theta frequency 
(Figure 1C; Rose and Dunwiddie, 1986; Larson and Lynch, 1988), 
which occurs in vivo in the hippocampus during active behavior 
and REM sleep. However, in neither thread of work was spiking in 
the postsynaptic neuron controlled or measured (though see Levy 
and Steward, 1983).

At the time, computational neuroscience was oriented toward 
connectionist-inspired learning models in which a neuron’s activ-
ity was described by a continuously varying firing rate (Wilson 
and Cowan, 1973; Sejnowski, 1977; Bienenstock et al., 1982; 
Oja, 1982; Hopfield, 1984; Rumelhart and McClelland, 1987) 
with very little work considering the timing of discrete spikes. 
Currently much of the attention has shifted to computational 
models with spiking neurons in which spike timing might actu-
ally carry information, or where computations are too quick for 
obtaining good rate estimates (Hopfield, 1995; Amit and Brunel, 
1997; Gerstner and Kistler, 2002). This shift to spiking mod-
els has intensified considerably following the demonstration of 
STDP (Figure 1D). Spike timing-dependence has since become 
a foundation on which both theorists and experimentalists seek 
to build a general understanding of synaptic change, learning, 
and memory recall.

stDp As the “first lAw” of synAptic plAsticity?
The discovery of diverse forms of timing-dependent plasticity at dif-
ferent synapses generated excitement because it appeared that such 
learning rules reflected different information processing and stor-
age needs depending on the particular neural circuit (Figure 2A). 
These timing-dependent rules are sometimes interpreted as kernels, 
timing-dependent functions that can predict other properties of 
synaptic plasticity simply by a superposition of the effects of all 
pre/post spike pairs. A large body of theoretical work now models 
plasticity in such a manner (Kempter et al., 1999; Song et al., 2000; 
van Rossum et al., 2000; Rao and Sejnowski, 2001; Gütig et al., 
2003; Izhikevich and Desai, 2003; Cassenaer and Laurent, 2007; 
Fiete et al., 2010). In this simplifying approach STDP is viewed as 
the “first law” of synaptic plasticity.

A first-law use of plasticity curves induced by pairs of spikes 
requires one to assume a strong form of linearity. Timing-dependent 
learning curves as shown in Figure 1D are typically measured by 
giving of order 100 pairs of spikes. Computational models assume 
that one pair of spikes evokes of order 1/100th the amount of plas-
ticity seen in the curve (Figure 2A). The result of all induction 
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Figure 1 | Classical induction protocols for synaptic plasticity. (A) Changing 
the stimulation frequency of robust extracellular stimulation affects the sign and 
magnitude of synaptic plasticity. Left: high-frequency stimulation results in LTP 
whereas low-frequency stimulation produces LTD. Right: frequency vs. plasticity 
curve (from O’Connor et al., 2005a). (B) Low-frequency stimulation paired with 
voltage clamping of the postsynaptic cell can also result in LTP or LTD depending 
on the postsynaptic voltage. Left: moderate depolarization produces LTD where 
as large depolarization produces LTP. Right: depolarization vs. plasticity curve 

(from Ngezahayo et al., 2000). (C) Theta-burst stimulation tries to mimic more 
naturalistic conditions. In the hippocampus of awake behaving animals there is a 
strong theta-frequency oscillation (right). Left: In a theta-burst induction protocol, 
short high-frequency bursts are delivered each 200 ms, or at a frequency of 5 Hz, 
within the theta range (from Hirase et al., 1999). (D) STDP protocols are induced 
by precisely stimulating the presynaptic afferents at a specific time (∆t) before or 
after a postsynaptic spike. Right: The precise ∆t determines the sign and 
magnitude of synaptic plasticity (from Bi and Poo, 1998).
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the kernel for that synapse, each ∆t translates into a change in syn-
aptic weight (∆w), and the total synaptic weight change is simply 
the linear sum of all the changes. Mathematically, this is done by 
convolving the STDP kernel with the cross-correlation function 
between the presynaptic and postsynaptic neuron.

neArest neighbor tAkes All
An alternative to counting all spike pairs in two complex trains 
is to count only plasticity arising from neighboring spike pairs 
(Izhikevich and Desai, 2003) (Figure 2B, bottom). This rule 
requires a definition of neighbor pairs, for instance counting the 
nearest postsynaptic spike to each presynaptic spike (Figure 2B, 
green lines). Alternatively, one could start from each postsynaptic 
spike, leading to a different set of spike pairs. A generalization of 

protocols, including pre-STDP-era experiments, is then calculated 
by summing the impact of all spike pairs produced during induc-
tion (Figure 2B, red line segments).

Such an approach has been successfully applied to certain sys-
tems such as barrel cortex (for instance see Feldman, 2000; Allen 
et al., 2003; Feldman and Brecht, 2005). To account for further 
complexity, from this starting point an ever more intricate series 
of computational models has grown.

All pAirs Are equAl
The simplest and most common assumption is that all spike pairs 
count equally (Kempter et al., 1999; Song et al., 2000). Each spike 
pair has a given ∆t associated with it, the time between the presy-
naptic and postsynaptic spike in the pair (Figure 2B, top). Using 
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Figure 2 | Spike timing dependent plasticity as the first law of synaptic 
plasticity. (A) Measurements of synaptic plasticity for protocols in which 
presynaptic and postsynaptic action potentials are repeatedly separated in time 
by an interval ∆tij are made to construct an STDP “kernel” (see STDP as the “first 
law” of synaptic plasticity? for definition) for a given synapse type. Kernel shapes 
have been taken to be synapse-specific representations of learning rules (for 
review see Abbott and Nelson, 2000; Wittenberg and Wang, 2006). (B) Illustration 
of two common methods for using STDP kernels to predict plasticity from an 
epoch of neural activity. Left: contributions to plasticity from all pairwise 
combinations of presynaptic and postsynaptic spikes are included. Right: Only 

nearest neighbor spike pairs are included. (C) Experiments have demonstrated 
that very different kernels can be measured at a single synapse. Left: At the 
CA3–CA1 synapse pairing single presynaptic and postsynaptic action potentials 
leads to an LTD-only rule. Based on the linear STDP model illustrated in (A,B), no 
spike pattern would ever result in LTP. Middle: By adding a second postsynaptic 
action potential, LTP can be induced. This is not predicted by linear STDP. Dashed 
vertical line corresponds to the time of the first postsynaptic action potential. 
Right: By decreasing the number of pairings to 20–30, the depression window 
disappears and an LTP-only kernel is measured. From such a kernel, the existence 
of LTD would not be predicted. Data from Wittenberg and Wang (2006).
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high-frequency stimulAtion inDuces Anti-cAusAl ltp
Similarly, starting from an entirely negative STDP kernel, increasing 
the presynaptic frequency cannot convert LTD to LTP. This problem 
dates back to the first observations of STDP. Markram et al. (1997) 
showed in neocortical synapses that causal pairings with ∆t = 10 ms 
led to LTP-only when pairing was done at frequencies above 10 Hz. 
Conversely, Sjöström et al. (2001) additionally showed that at high 
enough frequencies the timing-dependent rule becomes LTP-only, 
i.e., both positive and negative timings produce LTP. Thus plasticity 
for a particular timing can adopt positive or negative sign depend-
ing on pairing frequency.

nonlineAr interActions Among postsynAptic Action 
potentiAls
At CA3–CA1 synapses, several additional mechanisms have been 
observed to convert causal timing-dependent LTD to causal timing-
dependent LTP at CA3–CA1 synapses. The first of these is a firing 
burst (Pike et al., 1999) or even a pair of spikes (Wittenberg and Wang, 
2006) in the postsynaptic neuron, both of which lead to LTP where 
single spikes lead to LTD. Thus the contribution to plasticity of post-
synaptic spikes is affected quite strongly by their arrival in bursts.

nonlineArities in plAsticity AccumulAtion
Plasticity also accumulates in a nonlinear fashion with respect to the 
number of pairings (Dudek and Bear, 1992; Yang et al., 1999; Mizuno 
et al., 2001). At CA3–CA1 synapses, under conditions that allow 
LTP – pairing presynaptic action potentials with postsynaptic bursts 
– an LTP-only rule emerges after 10 pairings, but a bidirectional rule 
requires 100 pairings (Wittenberg and Wang, 2006). Thus plasticity 
must accumulate as a nonlinear function of the number of stimuli, 
with depression accumulating more slowly than potentiation.

influence of Activity on longer timescAles
Finally, neural activity can influence later plasticity for seconds and 
minutes significantly longer than the STDP window. It has long been 
understood that neural activity that does not trigger measurable plas-
ticity may have a profound influence on the effects of subsequent neu-
ral activity on in synapse strength. A classic example is priming. Rose 
and Dunwiddie (1986) demonstrated that LTP could be induced with 
as few as four stimuli to the CA3 pathway, so long as the stimuli were 
preceded 170 ms earlier by a single priming stimulus. A single burst 
of five stimuli at 100 Hz without the priming pulse failed to generate 
plasticity. None of the variations of STDP models described above 
can explain this primed-burst potentiation. Other work supports the 
interpretation that activity on this longer timescale is a requirement 
for LTP (Larson and Lynch, 1988).

In summary, the concept of STDP as the first law of synaptic 
plasticity is inconsistent with a large body of prior and subsequent 
existing work. Many parameters other than spike timing have a 
great enough influence on synaptic plasticity as to generate timing-
dependent rules that are either LTD-only or LTP-only, even at the 
same synapse (Figure 2C).

Attempts to rescue lineAr stDp
Although linear superposition of STDP kernels fails, it has still been 
used as a starting point for making corrections or arguments. Such 
corrections have met with limited success.

“nearest neighbor takes all” is “nearest neighbor takes more,” in 
which a discount function is used to weight near spike pairs more 
heavily than distant spike pairs (Froemke and Dan, 2002). Such 
a spike suppression model adds some physiological plausibility, 
and additional degrees of freedom for fitting, and consequently 
an improved fit to data.

ADDitive vs. multiplicAtive plAsticity
Another move toward realism is the replacement of additive plastic-
ity with a multiplicative rule (van Rossum et al., 2000; Gütig et al., 
2003). LTP and LTD are known to saturate. In an additive model 
spike pairs contribute until an upper or lower bound is reached. 
In a multiplicative model the magnitude of change depends on the 
current synaptic weight, with diminishing contributions as syn-
aptic weight approaches the upper or lower limit. This provides a 
smoother form of saturation.

eviDence AgAinst stDp As A first lAw
A variety of ways in which experiments can deviate from a kernel-
style approach can be seen in an applet http://nba.uth.tmc.edu/
homepage/shouval/applets/v1/applet02.htm that explores the 
ensuing predictions. This applet allows the reader to choose a kernel 
as well as frequency and other parameters. In addition, a rich body 
of experimental work, starting before the discovery of STDP and 
continuing after it, can be used to test kernel-based superposition 
models for inconsistencies.

low-frequency stimulAtion inDuces cAusAl ltD
The first quandary, recognized almost immediately, is the need to 
explain why low-frequency stimulation of CA3 presynaptic axons 
results in CA3–CA1 LTD. An STDP kernel with equal-duration 
timing windows for potentiation and depression suggests two 
scenarios, neither of which predicts LTD: (1) Presynaptic stimu-
lation drives postsynaptic firing, in which case the timing is in 
the causal direction and should result in LTP. (2) The presynaptic 
stimulation does not drive postsynaptic firing, which should result 
in no plasticity.

In one suggested repair to the model, it was noted that if the 
postsynaptic neuron fired spontaneously and randomly, and the 
STDP depression window was larger in area than the potentiation 
window, LTD would result (Kempter et al., 1999; Song et al., 2000). 
However, this hypothesis is directly falsified by recordings of the 
postsynaptic neuron during low-frequency (1 Hz) stimulation of 
CA3–CA1 synapses in the classical protocol (Dudek and Bear, 1992; 
Mulkey and Malenka, 1992). Under this condition, all evoked post-
synaptic action potentials occurred within 25 ms after presynaptic 
stimulation yet resulted in LTD (Wittenberg and Wang, 2006). In 
fact, pairing single presynaptic and postsynaptic action potentials 
led to an LTD-only STDP kernel (Pike et al., 1999; Wittenberg and 
Wang, 2006; Figure 2C, left). Such a kernel can never generate 
LTP by superposition1. Considering that much of what is known 
about LTP arises from studies of CA3–CA1 synapses, this finding 
presents a major roadblock to the general applicability of STDP 
as a first law.

1http://nba.uth.tmc.edu/homepage/shouval/applets/v1/applet02.htm
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The CaDP model is based on three key assumptions.

(1) Calcium elevation in spines determines the sign, magnitude 
and rate of synaptic plasticity. A moderate elevation in cal-
cium results in LTD whereas a large elevation in calcium 
levels results in long-term potentiation (LTP) (Figure 3A, 
left). We also assume that the rate of plasticity is a mono-
tonically increasing function of calcium, η (Figure 3A, 
middle).

 The calcium assumption is based on experimental evidence 
(Cummings et al., 1996; Yang et al., 1999) and has been pre-
viously suggested in models of calcium-dependent kinase-
phosphatase systems in postsynaptic spines (Lisman, 1989). 
Mathematically it is described by the equation:

dw

dt
wi

i i i= −( )η Ω λ([ ] ) ([ ] )Ca Ca

 where w
i
 is the synaptic efficacy of synapse i, [Ca]

i
 is 

the calcium concentration at synapse i, and λ is a decay 
time constant. The functions Ω and η (Shouval et al., 
2002) determine the sign and rate of synaptic plasticity 
and are depicted in Figure 3A. Ω is a function of calcium 
concentration and is defined by two thresholds θ

d
 and θ

p 

(Figure 3A) that control the sign and magnitude of synap-
tic plasticity.

(2) The source of calcium is influx through NMDA receptors 
which pass calcium and are gated by both glutamate and 
voltage. NMDA receptors can therefore report the coin-
cidence of presynaptically released glutamate and postsy-
naptic depolarization by allowing calcium into a dendritic 
spine. NMDA receptors are relatively slow-gating receptors, 
with time constants in the range of 50–200 ms, a scale com-
parable to time windows for timing-dependent plasticity.

(3) Back-propagating action potentials (BPAP) in the postsynap-
tic neuron leave a lingering post-action potential current in 
the dendrite. The BPAP is the source of depolarization. The 
assumption of a lingering tail is necessary in order to explain 
a time window for LTD when the postsynaptic spike precedes 
the presynaptic spike.

The results of this model depend on a variety of parameter 
assumptions. Although we will focus on accounting for CA3–CA1 
plasticity rules, parameters can be adjusted to account for plasticity 
properties at other synapses.

two timing winDows for ltD
In Figure 3B we show induction of STDP with the CaDP model. 
The functions for Ω, η, and the voltage response of the back-
 propagating action potential are depicted in Figure 3A, and the 
NMDA receptor conductance for calcium ions (G

NMDA
) is set at 

an appropriate value. These assumptions produce a three-peaked 
learning rule (Figure 3B): post-pre LTD, pre-post LTP, and pre-post 
LTD at larger values of ∆t. This second LTD window is seen at some 
synapses (Nishiyama et al., 2000; Woodin et al., 2003; Wittenberg 
and Wang, 2006) whereas it is absent or less prominent in neocorti-
cal synapses examined to date.

Spike suppression models (Froemke and Dan, 2002; Froemke 
et al., 2006) were constructed to account for the failure of lin-
ear superposition of spike pairs to account for spike triplets and 
quadruplets in experiments in visual cortex. Although this model 
does improve fits to data in neocortical slices, it cannot account 
for the qualitative failures we have described. In particular, if low-
frequency pairings lead to a depression-only rule (Markram et al., 
1997; Sjöström et al., 2001; Wittenberg and Wang, 2006), the spike 
suppression model does not explain the emergence of LTP when 
the pairing frequency is increased or when bursts of postsynaptic 
spikes are used.

In the case of hippocampal cultures (Wang et al., 2005), results 
measured using spike triplets have led to a further correction to 
the linear STDP model. The spike suppression model accounts 
for the fact that a pre-post-pre spike sequence produces LTP, but 
not the fact that a post-pre-post sequence can do the same. The 
patch to the model is an additional rule in which LTP wins over 
LTD if LTP is triggered first. The generalization of this rule to more 
complex spike patterns with multiple presynaptic and postsynaptic 
spikes, resulting in interleaved LTP and LTD epochs, is unclear. A 
related, more rigorous approach includes higher-order multispike 
kernels (Pfister and Gerstner, 2006), which by virtue of having more 
parameters can account for more of the variance in a data set. The 
multispike kernel method has been separately applied to hippoc-
ampal culture data (Wang et al., 2005) and to some neocortical data 
(Sjöström et al., 2001) but has not been applied, to our knowledge, 
to triplet and quadruplet data in visual cortical slices (Froemke 
and Dan, 2002) or to data from hippocampal slices (Nishiyama 
et al., 2000; Wittenberg and Wang, 2006). This approach requires 
a new fit for every system, and constitutes a descriptive approach 
for summarizing the findings at a particular synapse. Also, several 
problems – nonlinear accumulation and long-timescale effects such 
as priming – remain unexplained. More rules could undoubtedly 
be created. 

At this point, the initial appeal of the STDP concept has started 
to dim. The intricacy of the approach is starting to resemble the 
tax code of a developed country. Does another framework exist in 
which rules for plasticity arise more naturally?

the mechAnistic AlternAtive: A biochemicAl 
messenger-bAseD moDel
Here we present an approach based on known biochemical interme-
diates in the induction of plasticity. In this approach, a mechanistic 
model is constructed by converting known biological mechanisms 
to assumptions that are formulated mathematically. These assump-
tions constitute a model that can be simulated or analyzed under 
different conditions. The model is constrained by matching the 
output of the model to experimental results.

As an example we present the calcium-dependent plasticity 
model (CaDP) of (Shouval et al., 2002). The CaDP model can 
explain several observed experimental nonlinearities and can be 
easily modified by adding components that may account for fur-
ther experimental observations. Such a model can also be used to 
simulate various slice plasticity protocols (Shouval et al., 2002; Cai 
et al., 2007) and receptive field plasticity in vivo (Yeung et al., 2004; 
Yu et al., 2008). Here we focus on STDP-style experiments that are 
hard to explain by linear superposition models.
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Figure 3 | The CaDP model can account for various forms of spike timing 
dependent plasticity. (A) The key functions controlling the CaDP model. Left: 
The Ω function controls the sign and magnitude of calcium-dependent synaptic 
plasticity, the gray shading marks the LTD region. Center: the η function controls 
the calcium-dependent rate of plasticity. Right: the shape of the back-
propagating action potential with its long tail current. (B) The results of an STDP 
induction protocol, simulating the CaDP model with GNMDA = 1/420 (μM/mV). 
Left: the calcium transients for baseline, ∆t = −10 ms, 0 ms and 30 ms. Here the 

LTD threshold is θd = 0.35 and the LTP threshold is θp = 0.55. The LTD region is 
indicated by the gray shading. Right: the complete STDP curve, which exhibits, 
post-pre LTD, pre-post LTP and also pre-post LTD. (C) The same as (B) but with 
GNMDA = 1/600 (μM/mV). Here all values of ∆t produce LTD. (D) The same as (C) 
but with two postsynaptic spikes. The timing of the two postsynaptic spikes is 
indicated by the vertical lines, and the time between the two post spikes is 
10 ms. Here we get a complete STDP curve with one LTP window and two 
LTD windows.
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although parsimony argues against adding all the mechanisms 
described at once, one or more mechanisms could be incorporated 
for a particular need.

Additional mechanisms that may influence learning rules fall into 
three broad categories: (a) additional properties of calcium signaling 
and other messengers, which may influence the dependence of plas-
ticity on temporal activity on time scales of seconds; (b) dendritic 
excitation and other locally spreading signals, which may influence 
the dependence of plasticity on the spatial location and pattern of 
synaptic input; and (c) additional properties of plasticity such as 
saturable, binary, and irreversible changes in synaptic strength, which 
may contribute to very long time scale rules, such as metaplasticity. 
We describe some of these mechanisms and their consequences.

cAlcium AnD other messengers
Additional sources of calcium may shape timing-dependence
Although the existing CaDP model assumes that calcium rises 
only from NMDA receptor opening, calcium may be elevated by 
calcium-permeable AMPA receptors, voltage-gated calcium chan-
nels, and calcium release from internal stores (Higley and Sabatini, 
2008). Each of these sources is known to contribute to the induc-
tion of synaptic plasticity, and may shape the rule. For exam-
ple, calcium entry through AMPA receptors would be relatively 
timing- independent and therefore broaden timing windows for 
plasticity. At cerebellar parallel fiber-Purkinje cell synapses timing-
 dependence of LTD (Wang et al., 2000a; Safo and Regehr, 2008) may 
arise from the properties of calcium release driven by the second 
messenger IP

3
 (Sarkisov and Wang, 2008).

Calcium buffering and release suggest longer timescale rules
Synaptic plasticity is regulated by activity on time scales longer than 
the width of measured STDP kernels. In this regard it is interesting 
to note that calcium signals are buffered and therefore attenuated 
by intracellular binding molecules. Some of these molecules are 
proteins such as calbindin and parvalbumin, which have binding 
kinetics on the order of 0.1–1 s and saturate at moderate levels 
of calcium. They are found in hippocampal CA1 pyramidal neu-
rons, cerebellar Purkinje neurons, and many interneurons. A high-
 frequency pairing requirement for LTP could arise from saturation 
of buffer proteins. Accumulated calcium also could trigger further 
calcium release, again leading to a dependence on long time scales. 
For example, in primed-burst LTP, in which LTP induction depends 
on activity at the 5 Hz theta frequency at the CA3–CA1 synapse 
(Rose and Dunwiddie, 1986; Larson and Lynch, 1988; Wittenberg 
and Wang, 2006) calcium accumulated during the priming activity 
might saturate buffers or enhance calcium-induced calcium release 
during the subsequent burst (Schiegg et al., 1995).

Intermediate messengers beyond calcium
Measured calcium dynamics alone are insufficient to account for 
the direction of synaptic plasticity in the basal dendrites of layer 
2/3 pyramidal neurons of the somatosensory cortex (Schultz, 
2002; Nevian and Sakmann, 2006). This finding suggests that flu-
orescence measurements may not capture the key variables that 
predict plasticity, such as fine spatial and temporal calcium dynam-
ics, or because messengers apart from calcium play a significant 
role. Indeed, calcium entry through voltage-gated channels may 

If the NMDA conductance is reduced by 30%, single  postsynaptic 
spikes no longer produce LTP at low pairing frequencies (Figure 3C). 
Now if a burst of two postsynaptic spikes or more is paired with 
each presynaptic spike, a three-peaked timing-dependent plasticity 
curve again results (Figure 3D). This rule resembles the triphasic 
rule that is possible at CA3–CA1 synapses (Nishiyama et al., 2000; 
Wittenberg and Wang, 2006). This is illustrated in the CaDP applet 
available at: http://nba.uth.tmc.edu/homepage/shouval/applets/v1/
applet01.htm. Other proposed mechanistic models also generate 
a second LTD window (Kitajima and Hara, 2000; Abarbanel et al., 
2002; Karmarkar et al., 2002).

Yet neocortical synapses have multiple mechanisms for LTD 
including metabotropic glutamate receptor or cannabinoid 
receptor- dependent signaling (van Rossum et al., 2000; Sjöström 
et al., 2003; Bender et al., 2006) but lack a prominent second LTD 
window. Biochemical veto mechanisms have been proposed that 
can overrule the second LTD window in neocortical synapses 
(Rubin et al., 2005) but allow it to be expressed at CA3–CA1 
synapses. A difference could also be based on biological hetero-
geneity, for instance the relative abundance of calcium release 
in CA1 neurons compared with neocortical pyramidal neurons 
(Nakamura et al., 2000). Finally, stochastic properties of synaptic 
transmission in conjunction with the CaDP model may signifi-
cantly reduce the magnitude of the second LTD window (Shouval 
and Kalantzis, 2005).

frequency-DepenDence of ltp inDuction by postsynAptic 
spikes AnD bursts
In neocortical synapses, LTP results from single postsynap-
tic spikes at high pairing frequencies, but not at low pairing 
frequencies (Markram et al., 1997; Sjöström et al., 2001). 
At high enough frequencies LTD is eliminated entirely. This 
frequency- dependence is qualitatively consistent with results 
at CA3–CA1 synapses (Wittenberg and Wang, 2006). Such a 
transition from bidirectionality to all-LTP falls naturally from 
the function Ω.

In this simple example we have not included the effects of short-
term synaptic dynamics (Tsodyks et al., 1998). In models, short-
term facilitation and depression can alter the frequency-dependence 
of plasticity (Cai et al., 2007) and may account for properties of 
the plasticity induced by multi-spike protocols (Froemke and Dan, 
2002; Wang et al., 2005).

future Directions: moving towArDs A 
comprehensive leArning rule
Models that are based on biophysical mechanisms show prom-
ise in capturing the fullness of real learning rules. The simple 
CaDP model described here can account for a number of key 
aspects of the observed malleability of STDP. In this final section 
we survey some salient experimental observations that suggest 
ways in which the CaDP model could be amended and improved. 
Incorporation of additional mechanism-based rules can move 
modeling efficiently toward a more complete representation of 
synaptic learning rules. The point of view of modeling biophysi-
cal mechanisms goes beyond calcium: in synapses where other 
second messengers drive plasticity (Huang et al., 1994; Salin et al., 
1996), calcium is not the appropriate target for modeling. Finally, 
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to further change without inducing plasticity. This effect lasts 
approximately 10 min and requires the phosphorylation of Ras, 
a calcium-dependent G protein that regulates MAP kinase. They 
also demonstrated that the priming effect can spread about 10 μ, 
thereby sensitizing neighboring spines to an induction stimulus 
that would otherwise not lead to plasticity.

Such spreading signals are not limited to synaptic plasticity, nor 
are they always local. An old phenomenon somewhat unappreci-
ated in models is the fact that the induction of plasticity is typically 
accompanied by changes in the excitability of the postsynaptic neu-
ron. It has also been shown that activity can lead to local changes in 
dendritic excitability on a scale of microns (Johnston et al., 2003; 
Sjöström et al., 2008) comprising a form of information storage 
(Narayanan and Johnston, 2007).

These complexities suggest that molecular mechanisms of 
plasticity may account for priming on a location and proximity-
 dependent basis. In one attractive hypothesis, co-activation of 
nearby inputs on an excitable dendrite could serve to drive plas-
ticity in a group of synapses. In this scenario, functionally related 
inputs could become clustered if the plasticity signal drives LTP 
(Mehta, 2004; Larkum and Nevian, 2008). Conversely, LTD driven 
by large calcium signals, which occurs at parallel fiber-Purkinje cell 
synapses, might lead to repulsion of related inputs from one another 
and thus sparse mapping on the dendritic arbor.

sAturAble, binAry, AnD irreversible chAnges in  
synAptic strength
Binary and saturable synapses
The CaDP model described here produces graded synaptic 
weights. However, the induction of plasticity appears experi-
mentally to be sudden and discrete, and possibly even a two-state 
system of binary strength (Petersen et al., 1998; O’Connor et al., 
2005b). Several models have taken the observations of discrete 
plasticity states into account (Abarbanel et al., 2005; Graupner 
and Brunel, 2007; Clopath et al., 2008). Possible substrates for 
discrete states include CaMKII autophosphorylation (Lisman 
and Zhabotinsky, 2001) and other maintenance mechanisms are 
also likely to form discrete states (Aslam et al., 2009). Such binary 
changes have been observed on time scales of tens of minutes; 
on longer time scales, the levels of such states could change. 
For instance, the “high” state could be defined by the number 
of slots for AMPA receptor insertion (McCormack et al., 2006), 
which could change via metaplastic and homeostatic mechanisms 
(Rioult-Pedotti et al., 2007).

Metaplasticity
Stepwise, saturable change in synaptic strength has two conse-
quences. First, the saturation of plasticity suggests that even for a 
fixed rule for mapping calcium to plasticity, the measured learning 
rule will depend on the initial synaptic strength. This can account 
for the finding that after saturation of LTD, a potentiation-only 
learning rule results, and vice versa, a simple form of change in a 
learning rule over time, or metaplasticity (O’Connor et al., 2005a). 
Second, when the number of active synapses is small, as occurs 
between pairs of neurons, the amount and sign of plasticity can vary 
considerably based on counting statistics alone. Saturable change at 
individual terminals could even account for the observation that a 

be needed for plasticity in the absence of a measurable calcium 
 signal (Yasuda et al., 2003). Additionally, some signal transduction 
pathways activated during plasticity might depend on other mes-
sengers such as cAMP (Huang et al., 1994; Salin et al., 1996) and 
endocannabinoids (Safo and Regehr, 2008).

Spike timing dependent plasticity is also modulated by neu-
romodulatory neurotransmitters. Recently Seol et al. (2007) have 
shown that in slices of visual cortex, β-adrenergic receptors are 
necessary for inducing spike timing dependent LTP and mus-
carinic (M1) receptors are essential for inducing LTD, results that 
are consistent with in vivo observations. Neuromodulation may 
translate behavioral state into a capacity for change: for instance, 
dopamine may act as a reward signal to drive reinforcement learn-
ing (Schultz, 2002). Dopamine is capable of subsecond dynam-
ics (Gonon, 1997) providing a substrate for rapid regulation of 
learning rules (Pawlak and Kerr, 2008). Such effects may be mod-
eled by including messenger molecules such as cyclic AMP, or 
perhaps simply the neurotransmitters themselves. Recent obser-
vations have shown that in cultured synapses, dopamine acting 
through D1 receptors can convert an antisymmetric STDP rule 
to a potentiation-only rule with broad timing-dependence that 
spans both sides of the zero timing condition (Zhang et al., 2009). 
Such a phenomenon is consistent with enhancements in dendritic 
excitability, NMDA receptor function, or other calcium signaling 
or detection machinery.

locAlly spreADing signAls
Dendritic excitability suggests dependence on local spatial and 
temporal activity patterns
In spike pair-generated plasticity, the sign and amount of change is 
known to depend on the dendritic location of the synapse (Froemke 
et al., 2005). Thus even in a simple case, dendrites are electrically 
inhomogeneous. In addition, dendrites show a rich range of excitable 
properties (Sjöström et al., 2008). Dendritic spikes are commonly 
evoked by sufficiently dense excitation to activate voltage-gated 
channels (Miyakawa et al., 1992; Wang et al., 2000a) (Larkum and 
Nevian, 2008; Sjöström et al., 2008) or NMDA receptors them-
selves (Schiller and Schiller, 2001; Major et al., 2008). Consequently, 
plasticity can be evoked via local dendritic spikes independent of 
somatic firing (Hartell, 1996; Golding et al., 2002).

Such observations can naturally be incorporated into CaDP 
models as upstream steps that regulate the amount of calcium 
entry. This requires modeling of active dendritic conductances, 
or identification of rules that map cellular activity to patterns 
of change in dendritic voltage. Such models should be able to 
account for the properties of plasticity driven by dendritic spikes 
(Larkum and Nevian, 2008; Sjöström et al., 2008). Dendritic exci-
tation may also account for locally spreading heterosynaptic LTP 
and LTD, in which synaptic activity can cause plasticity at near 
(Johnston et al., 2003) by synapses (Engert and Bonhoeffer, 1997; 
Wang et al., 2000b).

Spreading signals and local priming in dendrites
Signaling molecules may spread from active to inactive synapses. 
Svoboda and colleagues (Yasuda et al., 2006; Harvey and Svoboda, 
2007; Zhong et al., 2009) have demonstrated that activity at one 
synapse on a CA1 neuron can increase the sensitivity of that  synapse 
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(Civillico et al., 2010) and optogenetic manipulation of identified 
neuron types (Gradinaru et al., 2007) enable many connections to 
be probed on a high-throughput basis. These experimental direc-
tions promise to provide quantities of data necessary to constrain 
models better. As progress in these areas continues, the ability to 
sample the parameter space will improve.

Biophysically oriented models of plasticity may also eventually 
be useful in network models in order to predict the properties of 
circuit structure. For example, standard STDP models favor the 
elimination of reciprocal connections between cortical neurons 
because any given timing would lead to LTP in one direction and 
LTD in the other direction. This is contradicted by the fact that early 
experiments (Markram et al., 1997) were done at reciprocally con-
nected pairs, as well as the well-known phenomenon that distant 
neocortical areas are often reciprocally connected (Felleman and 
Van Essen, 1991). Of interest is recent work (Clopath et al., 2010) 
presenting a phenomenological model of plasticity that includes 
additional aspects of plasticity such as frequency-dependence, and 
that allows both unidirectional and bidirectional connections to 
develop. Additional rules such as these come easily from mecha-
nistic considerations, suggesting that a biophysical approach can 
eventually help account for circuit-level phenomena.

Ultimately we should strive to create biophysically based sys-
tem levels model of neuronal circuits. Such models will enable us 
to connect the molecular and cellular level basis of plasticity to 

given amplitude of calcium transient can evoke either LTP or LTD 
(Nevian and Sakmann, 2006) without revoking assumption (1) of 
the CaDP model.

For both Hebbian rate-based learning rules and linear STDP-
based rules, runaway synaptic plasticity can occur (Bienenstock 
et al., 1982; Oja, 1982). The problem is not solved by imposing 
upper and lower bounds on synaptic weights, since synaptic weights 
can still saturate, leading to nonselective cells that respond equally 
to many input patterns. This problem of linear STDP models is 
associated with causality, which tends to result in presynaptic neu-
rons firing slightly before postsynaptic neurons, and thus producing 
LTP. Therefore, synaptic saturation observed in linear STDP can be 
addressed by using an STDP kernel with slightly more LTD than 
LTP (Kempter et al., 1999; Song et al., 2000).

Mechanistic models, which try to account for system level phe-
nomena, like rate-based models, require stabilization mechanisms 
(Yeung et al., 2004; Yu et al., 2008; Clopath et al., 2010). It has been 
suggested that synaptic scaling (Turrigiano et al., 1998) might result 
in overall homeostatic change that reduces change in total synaptic 
strength on a neuron, which can prevent runaway plasticity.

Such stabilization mechanisms seem related to metaplasticity 
observed experimentally (Abraham and Bear, 1996). Metaplasticity 
is at times used as a catch-all term for changes in learning rule. It 
is feasible that metaplasticity and synaptic scaling (Yeung et al., 
2004) may arise naturally from cellular mechanisms that have a 
stabilizing influence. Synaptic plasticity models should therefore 
incorporate biophysical implementations of stabilization mecha-
nisms for comparison to experiment.

Irreversible locking-in of plasticity
Experimentally, LTP is not the same on all time scales. For example, 
the late phase of LTP (L-LTP) has elements of consolidation, lasting 
for hours or longer, and requires protein synthesis and stronger activa-
tion than most LTP induction protocols (Frey et al., 1993). On shorter 
time scales, a related phenomenon, is the irreversibility of LTP under 
stimulation conditions more intense than the minimum needed to 
induce potentiation (Stäubli and Chun, 1996; O’Connor et al., 2005a). 
Such a “lock-in” (O’Connor et al., 2005a) concept has been modeled 
using deeper levels of plasticity (Stäubli and Chun, 1996; Fusi et al., 
2005; O’Connor et al., 2005b). This approach has not yet been com-
bined with spike timing-dependent models of learning.

epilogue
This review has focused on bringing a directed dose of mechanistic 
complexity to theoretical models, moving beyond the initial notion 
that STDP is essentially a first law of synaptic plasticity. We advo-
cate the use of simple biophysical models of plasticity that can be 
constrained both by the realism of their mechanistic assumptions 
and by comparison with experiment.

Although the high dimensionality of the parameter space govern-
ing synaptic plasticity appears daunting (Figure 4), new approaches 
may be helpful. At present, sampling this parameter space typically 
requires monitoring the electrophysiological response of one post-
synaptic cell for up to an hour. Simultaneous patching of multiple 
neurons can increase the number of experiments which can be 
performed in parallel, but this approach is not scalable. However, 
technologies such as patterned and spatially resolved uncaging 

Figure 4 | Spike timing is merely one dimension in the high-
dimensional synaptic learning rule. A conceptual illustration of a learning 
rule in three dimensions is shown. Depending on the choice of activity 
parameters other than spike timing, many different STDP rules can be 
measured at a synapse (from Wittenberg and Wang, 2006). The second axis 
represents the transition from parameters that more strongly activate 
depression (D-rule) to parameters that more strongly activate potentiation 
(P-rule). By choosing parameters that activate only a single rule, the spike 
timing-dependence of LTP and LTD can be measured separately. At the 
CA3–CA1 synapse, potentiation is initiated by as few as 20 causal pairings of 
presynaptic action potentials with postsynaptic bursts repeated at 5 Hz or 
higher. Depression does not require high-frequency stimulation or 
postsynaptic bursts but requires more pairings than LTP. Stimulus conditions 
that satisfy the temporal requirements for both the potentiation rule and the 
depression rule lead to a bidirectional spike-timing-dependent plasticity curve. 
In neocortex one can shift along the P–D axis by changing the pairing 
frequency (Sjöström et al., 2001), or by neuromodulator concentration (Seol 
et al., 2007).
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