
Frontiers in Computational Neuroscience www.frontiersin.org July 2010 | Volume 4 | Article 22 | 1

COMPUTATIONAL NEUROSCIENCE
Original research article

published: 30 July 2010
doi: 10.3389/fncom.2010.00022

the network architecture in a way that long-lasting desynchro-
nizing effects occur which outlast the offset of stimulation. This 
approach relies on two properties or requirements of the neural 
tissue. First, the network dynamics must elicit bistability such that 
both the synchronized and the desynchronized state are stable  
(see Figure 1A). Second, there must exist a stimulation that (momen-
tarily) destroys the stability of the synchronous state such that the net-
work is driven into the desynchronized stable state (see Figure 1B).

Unfortunately, most of the work that follows this idea of thera-
peutical stimulation is based on numerical simulations (Tass 
and Majtanik, 2006; Hauptmann and Tass, 2007, 2009; Tass and 
Hauptmann, 2007) and only very little has been done analytically 
(Maistrenko et al., 2007) in order to understand what are the cru-
cial parameters that lead to the two above requirements. Here we 
consider a recurrent network model that is sufficiently simple to be 
treated analytically but still captures the desired properties.

Concretely, we consider in this paper a network dynamics that acts 
on two different time scales. On a short-time scale, neurons integrate 
the inputs from neighboring neurons and fire periodically. On a longer 
time scale, synapses can change their strength and hence influence the 
overall level of synchrony. In principle the above mentioned require-
ment on bistability can be present in either the neuronal dynam-
ics (short-time scale) or the synaptic dynamics (longer time scale). 
Since we are aiming for long-lasting effects, we focus on the bistabil-
ity in the synaptic dynamics. More precisely, we consider a synaptic 
 plasticity learning rule that depends on the precise timing of the action 

IntroductIon
High level of synchrony in neural tissue can be the cause of several 
diseases. For example, Parkinson’s disease is characterized by high 
level of neuronal synchrony in the thalamus and in the basal ganglia. 
In opposition, the same neural tissues in healthy conditions have 
been shown to fire in an asynchronous way (Nini et al., 1995). The 
Parkinsonian resting tremor (3–6 Hz) is not only related to the 
subcortical oscillations (Pare et al., 1990), but has been recently 
shown to be driven by those oscillations (Smirnov et al., 2008; 
Tass et al., 2010). In addition, the extent of akinesia and rigidity is 
closely related to synchronized neuronal activity in the beta band 
(8–30 Hz) (Kuhn et al., 2006).

A standard treatment for patients with Parkinson’s disease is to 
chronically implant an electrode typically in the sub-thalamic nucleus 
(STN) and perform a high-frequency (>100 Hz) deep brain stimu-
lation (HF-DBS) (Benabid et al., 1991, 2009). Although HF-DBS 
delivered to the STN is able to reduce tremor, akinesia, and rigidity, 
this type of stimulation, which was found empirically, does not cure 
the cause of the tremor. It merely silences the targeted neurons dur-
ing the stimulation but as soon as the stimulation is turned off, the 
tremor restarts instantaneously, whereas akinesia and rigidity revert 
back within minutes to half an hour (Temperli et al., 2003).

Recently, other types of stimulation (Tass, 1999, 2003; Tass 
and Majtanik, 2006; Hauptmann and Tass, 2007, 2009; Tass and 
Hauptmann, 2007) have been proposed which are not designed 
to ‘silence’ the neurons during the stimulation but rather reshape 
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of the pre- and postsynaptic neurons. This form of plasticity called 
spike-timing dependent plasticity (STDP) (Gerstner et al., 1996b; 
Markram et al., 1997; Bi and Poo, 1998) enhances  synapses for which 
the presynaptic spike precedes the postsynaptic one and decreases the 
synaptic strength when the timing is reversed (see Figure 3A).

Regarding the stimulation itself, several candidates have been 
proposed. For example, it has been shown that a patterned, multi-
site and timed-delayed stimulation termed as coordinated reset 
(CR) stimulation (Tass, 2003) which forces sub-populations to fire 
in a precise sequence generates transiently a nearly uniform phase 
distribution. In fact, long-lasting desynchronizing effects of CR 
stimulation have been verified in rat hippocampal slice rendered 
epileptic by magnesium withdrawal (Tass et al., 2009).

In the present study, we do not focus on a precise stimulation but 
rather assume that there exists a stimulation that desynchronizes 
transiently a given population. Furthermore a given stimulation 
rarely affects the whole population which fires in a pathological 
way but only part of it. So we consider two populations. An input 
population which is affected by the stimulation (see Figure 2A) 
and a recurrent population with plastic synapses which is driven 
by the input population.

In order to calculate the expected weight change in the recurrent 
network, we need to get an expression for the spiking covariance of 
this recurrent population. This technical step has been achieved by 

Hawkes (1971) and used by Gilson et al. (2009a,b) in the context 
of recurrent network with STDP. The present study extends the 
work of Gilson et al. (2009b) to the case of oscillatory inputs and 
highlights the conditions for which the network elicits bistability.

Materials and Methods
neuronal dynaMics
Let us consider an input population consisting of M neurons and 
a recurrent population containing N neurons (see Figure 2A). 
Let x(t) = (x

1
(t),…,x

M
(t)) denote the input spike trains at time 

t with x t t tj t j
j

( ) ( )= ∑ −pre

preδ  being the Dirac delta spike train of 
the jth input neuron. Let xt = {x(s), 0 ≤ s < t} describe the whole 
input spike pattern from 0 to t. Similarly, let y(t) = (y

1
(t),…,y

N
(t)) 

denote the spike trains of the recurrent (or output) population, i.e., 
y t t ti t i

i

( ) ( )= ∑ −post

postδ  denotes the Dirac delta spike train of the ith 
neuron in the recurrent population at time t. yt = {y(s), 0 ≤ s < t} 
represents the output spike train from 0 to t.

Let us assume that the input spike trains x(t) have instantaneous 
firing rates r(t) = (r

1
(t),…,r

M
(t)) = 〈x(t)〉

x(t)
 which are assumed 

to be periodic (i.e., r(t) = r(t + T), see Figure 2B) and a spatio-
temporal covariance matrix ∆C(τ) given by

∆C
T

x t x t dtT

x t x t

T
T

( ) ( ) ( )
( ), ( )

τ τ ρρ
τ

= − −
−∫1

0  
(1)
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Figure 1 | Bistability for therapeutical stimulation. (A) Before stimulation, both 
the pathological state (strong weights, high neuronal synchrony) and the healthy 
state (weak weights, low neuronal synchrony) are stable, i.e., they are local minima 

of an abstract energy function. (B) During stimulation, the pathological state 
becomes unstable and the network is driven towards the healthy state. After 
stimulation has stopped, the network stays in the healthy state.
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Figure 2 | (A) Network architecture. (B) The input spike train xk(t) (bottom) of neuron k has an instantaneous firing rate rk(t) (top) which is oscillating around an 
averaged firing rate ρk .
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where 1 denotes the N×N identity matrix,  J D w( ) ( ) ,ω ω= ′  


K D h( ) ( ) .ω ω= ′  The tilde symbol ( )  denotes the Fourier trans-
form, i.e., ∆ ∆ν ν( ) exp( ) ( ) .ω ω= ∫ −−∞

∞
i t t dt  The recurrent popu-

lation is said to be highly synchronous if ∆ν( )ω0  is large where 
ω

0
 = 2π/T. It is well known that coupled Kuramoto oscillators do 

synchronize if the coupling exceeds a certain threshold (Kuramoto, 
1984)2. Here, because we do not consider phase oscillators (such 
as the Kuramoto oscillators) as neuronal models, this result does 
not apply directly. However, as we can see in Eq. 7 the stronger the 
recurrent weights w, the bigger the amplitude of the output oscil-
lation ∆ν( ).ω0  Let ∆Q(τ) be the spiking covariance matrix of the 
recurrent population:

∆Q
T

y t y t dtT
T

y t y t

T( ) ( ) ( )
( ), ( )

τ τ ν ν
τ

= − −∫
−

1

0  

(8)

Note that ∆Q(τ) contains an atomic discontinuity at 
τ = 0, i.e., ∆Q(0) = Dδ(0) with D = diag( ).ν  As can be seen in 
“Spiking Covariance Matrices” in Appendix, it is easier to cal-
culate this covariance matrix in the frequency domain, i.e., 
∆ ∆Q i t Q t dt( ) exp( ) ( )ω ω= ∫ −−∞

∞
 rather than in the time domain. 

So the Fourier transform of this output covariance matrix yields

∆      Q J K C K D JT T( ) ( ) ( ) ( ) ( ) ( )ω ω ω ω ω ω= −( ) ∆ − +{ } − −( )− −
1 1

1 1

 
(9)

where ∆ ∆C i t C t dt( ) exp( ) ( )ω ω= ∫ −−∞
∞

 denotes the Fourier trans-
form of the input covariance matrix.

synaptIc dynaMIcs
In the previous section, we assumed that all the weights were con-
stant in order to calculate the output covariance matrix. Let us 
now allow the recurrent weights w to change very slowly (w.r.t. the 
neuronal dynamics) and keep the input weights h fixed. Because 
of this separation of time scales, we can still use the results derived 
so far.

In the same spirit as Kempter et al. (1999), Gerstner and Kistler 
(2002), Gilson et al. (2009b), we can express the weight change as a 
Volterra expansion of both the pre- and postsynaptic spike trains. 
If we keep terms up to second order we get for all i ≠ j:

w a w y t a w y t

y t W s w y t s ds

ij ij j ij i

i ij j

= ( ) + ( )
+ ( ) −

pre post( ) ( )

( ) , ( ) ++ −( ) −
∞ ∞

∫ ∫y t W s w y t s dsj ij i( ) , ( )
0 0

 

(10)

Since we do not allow for self-coupling, we will set wii = 0. apre(w) 
(and apost(w)) denote the weight change induced by a single presyn-
aptic (resp. postsynaptic) spike. W(s,w) denotes the STDP learning 
window (see Figure 3A) and W w( , )ω  its Fourier transform (see 
Figure 3B):

where ρ ρ= ∫−T t dtT1
0 ( )  is the mean firing rate averaged over 

one period T. Note that the input covariance matrix ∆C(τ) has 
an atomic discontinuity at τ = 0, i.e., ∆C( ) ( ) ( ).0 0= diag ρ δ  Let 
u t u t u tN( ) ( ( ), , ( ))= …1  denote the membrane potential of all the 
neurons in the recurrent population (see the Spike-Response Model 
in Gerstner and Kistler, 2002):

u t hx t wy t( ) ( ) ( )= + 

 (2)

where the superscript  denotes a convolution1 with the EPSP ker-
nel (s), i.e., x t s x t s ds ( ) ( ) ( )= ∫ −∞

0  and y t s y t s ds ( ) ( ) ( ) .= ∫ −∞
0  

Without loss of generality, we will assume that the EPSP kernel 
is such that ∫ =∞

0 1( ) .s ds  More precisely, we take (s) = (τ − τ
s
)−1 

(exp(−s/τ) − exp(−s/τ
s
))Θ(s), where Θ(s) is the Heaviside step func-

tion. The N × M matrix h denotes the weight matrix between the 
input and the recurrent population. w is a N × N matrix denoting 
the recurrent weights (see Figure 2A).

In this model, output spikes are generated stochastically, i.e., 
the higher the membrane potential the more likely a spike will 
be emitted. Formally a spike is generated in neuron i at time t 
with an instantaneous probability density g u t y ti i y t x yi

t t( ( )) ( )
( )| ,

= 〈 〉  
given by

g u t g u g u u t ui i i i i( ( )) ( ) ( )( ( ) ) + ′ −  (3)

where ′ = =g u dg u dui u ui
( ) ( )/ |  with u T u t dti

T
i x yt t= ∫ 〈 〉−1

0 ( )
,

 denot-
ing the expected membrane potential of neuron i averaged over 
a period T, and u u uN= …( , , )1  its vectorial representation. The 
expected output firing rates ν( ) ( ) ( )( ) ( )| , ,

t y t y ty t y t x y x yt t t t= 〈 〉 = 〈〈 〉 〉  at 
time t is therefore given by

ν ρ ν( ) ( ) ( ) ( )t g u D h t w t u= + ′ + −( ) 

 
(4)

where D′ = diag(g′(ū)). Note that from Eq. 2, the averaged 
expected membrane potential ū can be expressed as u h w= +ρ ν, 
where ν ν= ∫ =−T t dt g uT1

0 ( ) ( ) is the averaged output firing rate. 
Combining those two expressions, we get a self-consistent equation 
for the averaged output firing rate ν :

ν ρ ν= +( )g h w  (5)

Note that if the transfer function g(u) is linear, i.e., g(u) = u, we 
have ν ρ= − −( ) .1 w h1  Let ∆ν ν ν( ) ( )t t= −  denote the amplitude of 
the oscillation in the recurrent population:

∆ ∆ ∆ν ρ ν( ) ( ) ( )t D h t w t= ′ +( ) 

 
(6)

where ∆ = −ρ ρ ρ( ) ( )t t  denotes the amplitude of the input oscil-
lation and ∆ρ ρ ( ) ( ) ( ) .t s t s ds= ∫ −∞

0  Since ∆ν(t) appears on the 
l.h.s of Eq. 6 and in a convolved form on the r.h.s, we can Fourier 
transform this equation in order to express explicitly the amplitude 
∆ν of the oscillation in the recurrent population as a function of 
the angular frequency ω:

∆ ∆

 

ν ρ( ) ( ) ( ) ( )ω ω ω ω= −( )−
1 J K

1

 
(7)

1Each component of x(t) is convoluted with (s), i.e., x t s x t s dsk k
 ( ) ( ) ( ) ,= ∫ −∞

0  
k = 1,…,M.

2Other types of coupled oscillators have the property that strong coupling may de-
stroy synchronization under particular conditions, e.g., in a population of identical 
diffusively coupled Rössler oscillators (Heagy et al., 1995) or in a system of two cou-
pled chaotic non-invertible maps (Maistrenko et al., 1998). However, such models 
do not apply to the pathophysiology considered here. Furthermore, these models 
do not contain STDP, and it remains to be shown whether such phenomena persist 
in the presence of STDP.
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w a w a w

W w W s w Q s ds

ij ij j ij i

ij i j ij ij

 pre post( ) + ( )
+ ( ) + ( )∆

ν ν

ν ν , ( )
−−∞

∞

∫  

(14)

where W w W s w dsij ij( ) ( , )= ∫−∞
∞

 denotes the area under the STDP curve 
for a given weight w

ij
. Since it is easier to express this covariance matrix 

in the frequency domain we can rewrite Eq. 14 (in matrix form) as3:


  





w a w a w W w

W w

T T T= ( ) + ( ) +




+ −

φ ν ν ν ν

π

pre post( ) ( ) ( )

( , )

1 1

1

2
ω ∆ Q d( )ω ω

−∞

∞

∫ 

  

(15)

where ∆ Q( )ω  is given by Eq. 9 and the ‘’ operator denotes the poin-
twise matrix multiplication (also known as the Hadamard product). 
The operator φ sets to zero the diagonal elements and keep the off-
diagonal elements unchanged. This implements the fact that we are 
not allowing autapses. 1 = (1,…,1) is a vector containing N ones.

sInusoIdal Inputs
Let us now assume that the input population is exciting the recur-
rent population with independent Poisson spike trains of sinusoidal 
intensity ρ ρ ρ( ) sin( )t t= + ∆ 0 0ω  where ω

0
 = 2π/T is the angular 

frequency. Because of the independence assumption, the input 
correlation matrix yields

W t w

A w t

t

A w t

W w
A w

t

t

( , )

( )

( )

( , )
(

/

/

=
>
=

− <
⇒ =

+
− +

−
−

+

e

e

τ

τ

if

0 if

if

0

0

0

 ω
)) ( )τ
τ

τ
τ

+

+

− −

−+
−

−







 1 1i

A w

iω ω

 
(11)

Consistently with the modeling literature on STDP (van 
Rossum et al., 2000; Gütig et al., 2003; Morrison et al., 2007, 
2008) both the potentiation factor A+  and the depression  factor 
A w−( ) are assumed to depend on the weight. Here, the precise 
dependence on the weights corresponds to the one used by Gütig 
et al. (2003):

A w A w w+ += −( )( ) / max
0 1

µ

 
(12)

A w A w w− −= ( )( ) / max
0 µ

 
(13)

where the parameter µ ∈[ , ]0 1  controls the dependence upon the 
weight. If μ → 0, the rule is additive and therefore independent on 
the weight w. Conversely, if μ → 1, the rule becomes multiplica-
tive. Unless specified otherwise, we set μ = 0.05. In addition to this 
learning rule, hard bounds for the weights (0 ≤ w

ij
 ≤ w

max
, ∀i ≠ j) 

are required if the factors apre(w) and apost(w) are independent of 
the weights (which we will assume here) or if they do not con-
tain implicit soft bounds. Because of the separation of time scales 
assumption, we can replace the recurrent weights by their expected 
value averaged over one period T, i.e., w t T w s dst T

t

ys( ) ( )← ∫ 〈 〉−
−

1  
and get:
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Figure 3 | Properties of the STP learning window. (A) STDP learning window 
evaluated at w = wmax/2. A+

−= ⋅0 51 10 , A−
−= ⋅0 50 3 10. , τ+ = 17 ms, τ− = 34 ms. 

(B) LTP factor A+(w) (solid lines) and LTD factor A−(w) (dot-dashed lines) as a 
function of the weight. See Eqs 12 and 13. (C) Real part of the Fourier transformed 

learning window (solid lines) as a function of the weight w at the angular frequency 
ω0 = 2π/T, with T = 200 ms. Dot-dashed lines: integral of the learning window 
W w W w( ) ( ( , ))= ℜ  0  as a function of the weight w. (D) Real part of the Fourier 
transformed learning window as a function of the oscillation frequency f = ω/2π.

3The last term in Eq. 15 is obtained by defining A t W s t w Q s dsij ij ij( ) ( , ) ( ) ,= ∫ − ∆−∞
∞

 
then taking the Fourier transform  

A W w Qij ij ij( ) ( , ) ( )ω ω ω= − ∆  and finally taking the 
inverse Fourier transform A t i t A dij ij( ) ( ) exp( ) ( )= ∫−

∞
∞

2 1π ω ω ω  and evaluate it at t = 0.
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





 

w a a W w

W w

T T T

T

 φ ν ν ν ν

ν ν

pre post1 1+ +{
+ −( ) ∆ ( )∆ −(

( )

,
1

2 0 0 0R ω ω ω ))( )
  

(19)

where R(x) takes the real part of x. Here, we assumed that both apre 
and apost are independent of the recurrent weights w. Furthermore, 
if g(u) = u, then the diagonal matrix D′ = 1 (which is present in J  
and K ) is independent of the recurrent weights w.

results
So far, we derived analytically the neuronal dynamics of a recurrent 
population that is stimulated by an oscillatory input. Furthermore 
we calculated the synaptic dynamics of such a recurrent network 
when synapses are governed by STDP. This rich synaptic dynamics 
has several interesting properties that are relevant for therapeutical 
stimulation and that we describe below.

Firstly, under some conditions that will be detailed below, 
the synaptic dynamics can elicit bistability (see Figures 4A,B). 
Concretely, if synapses are initialized above a critical value w*, 
they will grow and reach the upper bound w

max
. Conversely, if they 

are initialized below w*, they will decrease down to their minimal 
value. As a consequence, because the amplitudes of the oscillations 

∆ ∆ ∆C T( ) cos ( ) ( )τ τ ρ ρ ρ δ τ= ( ) +1

2 0 0 0ω diag
 

(16)

and its Fourier transform yields

∆ ∆ ∆C T( ) ( )ω ω ω ω ω= π δ δ ρ ρ ρ
2 0 0 0 0−( ) + +( )( ) + diag

 
(17)

By using this expression of the input correlation, we get an 
explicit expression for the output covariance matrix ∆ Q( )ω  (see 
Eq. 9) which can be approximated as:

∆ ∆ ∆

 Q T( ) ( ) ( )ω ω ω ω ω ω ω
π ν ν δ δ
2 0 0− −( ) + +( ){ }

 
(18)

with ∆ ∆

 ν ρ( ) ( ( )) ( ) ;ω ω ω= − −1 J K1
0  see Eq. 7. This approximation 

is valid in the limit of large networks (M >> 1, N >> 1) where 
the terms involving diagonal matrices can be neglected. Indeed 
the term which depends on diag( )ρ  scales as M−1 and the term 
which depends on D = diag( )ν  scales as N−1 if the output firing 
rate ν  is kept constant. For a detailed discussion, see Kempter 
et al. (1999), Gilson et al. (2009b). By inserting Eq. 18 into 
Eq. 15, we get:
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Figure 4 | The bistability of the recurrent network with STDP can be 
exploited for therapeutical stimulation. (A) Evolution of the recurrent weights wij 
as a function of time for M = N = 100. Black lines: individual weights in a numerical 
simulation. Red line: Evolution of the averaged recurrent weight w N wij ijav = ∑−2  
obtained analytically (see Eq. 20) Thick black line: extent of stimulation. (B) Phase 
plane analysis of the averaged weight wav. In the presence of a stimulation that 
annihilates the oscillations in the input (red: stim. ON, ∆r0 = 0 Hz) the averaged 

recurrent weight tends towards the lower bound wmin = 0. In the absence of the 
stimulation (black: stim. OFF, ∆σ0 = 10 Hz), w increases up to the upper bound if it is 
bigger than a critical value w*  4.5 · 10−3. Black and red lines: analytical result, black 
and red circles: numerical simulation. (C) Evolution of the averaged output firing 
rate ν νav( ) ( )t N tj j= ∑−1  before (red) and after (black) stimulation. The parameters 
are: τ = 10 ms, τs = 0 ms, apre = 0, apost =  − 1.7·10−6, h = 1/N, ρ = 10Hz. Parameters 
of the learning window same as in Figure 3.
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The small discrepancy between the numerics and analytics can be 
attributed to two factors. First, Eq. 20 assumes the limit of large 
networks, i.e., N, M → ∞ whereas in the numerical simulations, 
we used N = M = 100. Secondly, Eq. 20 is valid in the limit of small 
recurrent weights, i.e., w

av
 << 1/N (here we used Nw

max
 = 0.75). 

As we can see on Figure 4B, the smaller averaged weights w
av

, 
the better the correspondence between the numerical simulation 
and the analytical calculations. Even, for large recurrent weights 
(w

av
 w

max
), the discrepancy between numerics and analytics is 

remarkably small.

condItIons for bIstabIlIty
So far, we discussed a scenario in which the stimulation effectively 
acted as a therapeutical stimulation because it shifted the network 
state from the highly synchronous (and therefore pathological) 
state to the low synchronous state. In order to have this property, 
the network must satisfy two conditions:
•	 C1.	 Bistability	 condition.	 In	 the	 absence	 of	 stimulation,	 the	

network must elicit bistability such that both the synchronized 
and the desynchronized state are stable. Formally this gives

∃ ∈[ ] ( ) = ( ) >∗ ∗ ∗w w F w F wav av av such that  and 0 0 0, max ′
 

(C1)

•	 C2.	Desynchronizing	stimulation	condition.	In	the	presence	of	
a desynchronizing stimulation, the highly synchronous state 
looses its stability and the network is driven to the low syn-
chronous state. This can be expressed as:

F w w wav av avwith( ) < ∀ ∈ =0 0 0[ , ]max ∆ρ
 

(C2)

In order to keep the discussion reasonably simple, let us make 
several assumptions. First, let us consider the near-additive learning 
rule i.e., μ  0. Indeed in the case of a multiplicative learning rule 
(i.e., μ >> 0), the potentiation factor A+(w) and the depressing factor 
A−(w) have a strong stabilization effect and therefore no bistability 
can be expected; see Figure 5A with μ = 0.5. This is consistent with 
the findings of Gütig et al. (2003) who showed that there is a sym-
metry breaking in feedforward networks with weight-dependent 
STDP for μ bigger than a critical value.

in the recurrent population depend on the strength of the recurrent 
weights (see Eqs 7 and 22), then this bistability at the level of the 
weights implies a similar bistability at the level of the oscillation 
amplitude of the recurrent population (see Figure 4C).

Secondly, the presence of the desynchronizing stimulation, 
which is modeled by setting the amplitude of the oscillatory input 
∆r

0
 to 0, removes the bistability and pushes all the weights to their 

minimal value (see Figures 4A,B). Once the stimulation is removed 
the recurrent weights stay at their minimum value because it is a 
fixed point of the dynamics.

hoMogeneous case
Because the analysis of the non-linear dynamical system given by 
Eq. 19 can be challenging, let us consider the dynamics of the aver-
aged recurrent weight w N wi j ijav = ∑−2

,  in the homogeneous case.
More precisely, we assume here that all the mean input firing 

rates ρj are close to their averaged value ρ ρav = ∑−M j j
1 , and that the 

input weights h
ij
 are close to their averaged value h hij ijav MN= ∑−( ) .1  

If we further assume that the initial values of the recurrent weights 
w

ij
(0) are close to w

av
, then, as long as the individual weights do not 

diverge too much, the dynamics of the averaged recurrent weight 
w F wav av= ( ) can be approximated as4:







w a a W w

W w

av
pre post

av av av
2

av av

 +( ) + ( )
+ ( )( ) ∆ ( )

ν ν

ν1

2 0R ω ω, | |0
22

 
(20)

If the transfer function is linear, i.e., g(u) = u, the averaged out-
put firing rate ν νav = ∑−N j j

1  and the oscillation amplitude of the 
recurrent population ∆νav can be approximated as:

ν ρav av av av 1
1−( )−

Nw Mh
 

(21)

∆ ∆
 ν ρav av av av 1 0

1

0− ( )( ) ( )−
N w Mh ω ω

 
(22)

with ∆ ∆ρ ρav = ∑−M j j
1

0 . The dynamics of the averaged recurrent 
weight w

av
 given by Eq. 20 is remarkably consistent with numerical 

simulations performed with spiking neurons (see Figures 4A,B). 

wav

ẇ
av

wav

ẇ
av

A B

Figure 5 | Conditions for the absence of bistability. (A) Phase plane analysis similar to the one in Figure 4B, but for μ = 0.5. There is no bistability because the 
weight-dependent factors A−(w) and A+(w) play here a dominant role. (B) Same as in Figure 4B, but with an overall negative learning window, i.e., all parameters 
identical except A−

−= ⋅0 50 7 10.  and apost = 0.1·10−5.

4Note that from the definition of the Fourier transform we have R (W(–ω
0
, w

av
)) =  

R (W(ω
0
, w

av
)).
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In summary, in order to satisfy both conditions C1 and C2, the 
learning rule must be nearly additive (μ  0), the learning window 
must be overall positive ( )W > 0  and the sum of the coefficients 
tuning the effect of single spikes (apre and apost) must be negative 
with upper and lower bounds set by Eq. 29.

Note that the bistability conditions derived above are valid for 
the averaged recurrent weight and do not apply for the individual 
weights of the recurrent population. As a consequence, this bist-
ability condition does not necessarily imply a bimodal weight dis-
tribution. Indeed, if we consider the same set-up as in Figure 4, 
but draw the initial weights from a uniform distribution, between 0 
and w

max
, then all the weights will eventually settle into a unimodal 

distribution, around w = 0 (data not shown).
A bimodal weight distribution has been shown to occur in 

recurrent networks with additive STDP learning rule (Gilson et al., 
2009b) favoring neurons that receive correlated inputs. For the 
sake of simplicity we considered in the simulations identical (and 
uncorrelated) inputs but the recurrent weight dynamics described 
by Eq. 15 remains valid for any type of inputs.

dIscussIon
In this paper, we developed a model of a recurrent network with 
plastic synapses that is sufficiently simple to be treated analyti-
cally but that still yields the desired properties. In particular, we 
showed that when (a) the STDP learning rule is near additive 
and (b) the learning window is overall positive and (c) the terms 
in the learning rule involving single spikes (apre + apost) have a 
depressing effect (within some bounds), then a desynchronizing 
stimulation favors long-term depression in the recurrent synapses 
and therefore drives the network from a highly synchronous state 
to a desynchronous state. In this way, our study confirms pre-
viously performed simulation studies (Tass and Majtanik, 2006; 
Hauptmann and Tass, 2007, 2009; Tass and Hauptmann, 2007) 
and, in particular, contributes to a theoretically sound founda-
tion for the development of desynchronizing and, especially, anti-
kindling brain stimulation techniques.

The concept of anti-kindling, i.e., of an unlearning of pathologi-
cal synchrony and connectivity by desynchronizing stimulation, 
has been introduced by Tass and Majtanik (2006). For this, STDP 
was incorporated into a generic network of phase oscillators, and 
both kindling and anti-kindling processes were studied numerically. 
To approach a more microscopic level of description, a network 
of bursting neurons has been introduced as a simple model for an 
oscillatory population in the STN (Tass and Hauptmann, 2006, 
2007; Hauptmann and Tass, 2007). With this model different aspects 
of kindling and anti-kindling processes have been studied numeri-
cally, such as the effect of inhibition vs. excitation (Hauptmann and 
Tass, 2007), the impact of weak and particularly short stimuli (Tass 
and Hauptmann, 2006), post-stimulus transients and cumulative 
stimulation effects (Hauptmann and Tass, 2009) as well as the dif-
ferential effects of different sorts of desynchronizing stimulation 
protocols (Tass and Hauptmann, 2009). These questions are highly 
relevant for the clinical application of desynchronizing stimulation 
to the therapy of diseases with abnormal synchrony, e.g., Parkinson’s 
disease. In forthcoming studies, more microscopic models will be 
studied. However, apart from this type of numerical simulation 
analysis, we aim at establishing a thorough, analytical framework 

With this additivity assumption and the linear transfer function 
assumption (g(u) = u), the averaged recurrent weight dynamics can 
be simply expressed from Eq. 20 combined with Eqs 21 and 22:





w
Nw Nw Nw

av
av av av


α α α1 2

2
3

0

21 1 1−
+

−( )
+

− ( ) ω
 

(23)

where α ρ1 = +( ) ,a a Mhpre post
av av  α ρ2

2 2 2= WM hav av  and 
α ρ3 0

2 2 2 2
0 2=| |

( ) ( ( ))/ω ωM h Wav av∆ R  are constant and do not 
depend on the averaged recurrent weight w

av
.

Another greatly simplifying assumption is to consider the low 
oscillatory frequency regime, i.e., ω

0
τ << 1 which gives ( )ω0   1.

Bistability condition C1
With these assumptions, the fixed point wav

∗  expressed in the 
 bistability condition C1 yields

w
Nav

∗ + +






1

1 2 3

1

α α
α  

(24)

Because this fixed point has to be between 0 and w
max

, we have 
− < + < −1 12 3 1( )/ ,maxα α α Nw  or equivalently

− < + ( )( ) ∆



 +

< −1
1

2
10

2

2
W W

Mh

a a
NwR  ω

ρ
ρ

ρav

av

av av
pre post max

 

(25)

If we push the low-frequency assumption further such that 
ω

0
τ+ << 1 and ω

0
τ− << 1, we have W W ℜ( ( )) ω0  (see Figure 3C). 

In this case, Eq. 25 yields a simple necessary condition: apre + apost and 
the integral of the learning window W  must be of opposite sign:

sgn sgna a Wpre post+( ) = − ( )
 

(26)

Finally, the fact that the fixed point wav
∗  must be unstable (see 

condition C1), we have F w′( )av
∗ > 0 which gives α1 0< .  By using the 

expression of wav
∗  given in Eq. 24 we have α

2
 + α

3
 > 0 and therefore 

with Eq. 26, we get:

W a a> + <0 0and pre post

 
(27)

which is consistent with the parameters used in Figures 3 and 4. Note 
that in Figure 5B, we violated this condition and as a  consequence 
the bistability property is lost.

Desynchronization stimulation condition C2
In the presence of the desynchronization stimulation (i.e., 
∆r

av
 = 0), the condition C2 implies that α

1
(1 − Nw

av
) + α

2
 < 0. 

Because α
1
 < 0 (see Eq. 27), this condition is satisfied for all w

av
 if 

α
1
(1 − Nw

max
) + α

2
 < 0. By introducing the values for α

1
 and α

2
, 

we get:

a a W
Mh

Nw
pre post av av+ < −

−
ρ

1 max  
(28)

By combining the conditions C1 and C2, α
1
 has to obey

− +
−

< < −
−

− +( )





α α α α α α2 3
1

2
2 31 1Nw Nwmax max

min ,
 

(29)
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Appendix
Spiking covAriAnce mAtriceS
input–output covAriAnce mAtrix
In order to express the output spiking covariance matrix ∆Q as a 
function of the input spiking covariance matrix ∆C, we need first 
to define the input–output covariance matrix ∆P:

∆P
T

y t x t dtT
T

y t x t

T( ) ( ) ( )
( ), ( )

τ τ νρ
τ

= − −∫ −

1
0  

(30)

By rewriting the average 〈 〉⋅ −y t x t( ), ( )τ  involved here and by using 
Eqs 1, 2, and 3, the input–output covariance matrix can be expressed 
in a self-consistent way as:

∆P
T

y t x t dt
y t x y x t

T
T

x y x t
t t

t t
( ) ( ) ( )

( ) , , ( ) , , ( )
τ τ νρ

τ τ
= − −

− −∫1
0

〈 〉
|

TT

T
T

x y x tT
D hx t wy t u x t dt

D h C

t t
= + ′ + −( ) −

= ′

∫ −

1
0

ν τ
τ

( ( ) ( ) ) ( )
, , ( )

 

∆  ( ) ( ) ( )τ τ+ ′D w P∆ 31

where D′ = diag(g′(ū)) is a diagonal matrix with ′ = ′D g uii i( ).  Here 
the  superscript denotes as before the convolution with (s), i.e., 
∆ ∆C s C s ds ( ) ( ) ( )τ τ= ∫ −∞

∞
 and ∆ ∆P s s P s ds ( ) ( ) ( ) .= ∫ −∞

∞ τ  In 
order to get an explicit expression of this input–output covariance 
matrix, we can Fourier transform Eq. 31 and therefore turn the 
convolution into a product in the angular frequency domain ω:

∆ ∆   P J K C( ) ( ( )) ( ) ( )ω ω ω ω= − −1 1

 (32)

where 1 denotes the N × N identity matrix,  J D w( ) ( ) ,ω ω= ′  


K D h( ) ( ) .ω ω= ′  As before the tilde symbol ( )  denotes the Fourier 
transform, i.e., ∆ ∆C i t C t dt( ) exp( ) ( ) .ω ω= ∫ −−∞

∞

output covAriAnce mAtrix
We recall here for convenience the definition of the output covari-
ance matrix (see Eq. 8):

∆Q
T

y t y t dtT
T

y t y t

T( ) ( ) ( )
( ), ( )

τ τ ν ν
τ

= − −∫ −

1
0

 (33)

For τ ≥ 0, we have:

∆Q
T

y t y t dt D

T
D

y t x y

T

x y

T
T

t t
t t

( ) ( ) ( )
, ,

τ τ ν ν δ τ

ν

= − − +

= + ′

∫1

1

0
〈 ( )〉

( )|

hhx t wy t u y t dt

D

D h P

T

x y

T

T

T

t t

 



( ) ( ) ( )

( )

(

,
+ −( )( ) −

− +

= ′ −

∫ τ

ν ν δ τ

τ

0

∆ )) ( ) ( )+ ′ +D w Q D∆  τ δ τ

 (34)

with D = diag(g(ū)). Since the above identity is only valid for τ ≥ 0, 
we can not simply Fourier transform this expression and extract 
the output covariance matrix in frequency domain. We will use 
here the same method as proposed by Hawkes (1971). Let B(τ) be 
a supplementary matrix defined as:

B D h P w Q D QT( ) ( ) ( ) ( ) ( )τ τ τ δ τ τ= ′ − +( ) + −∆ ∆ ∆ 

 
(35)

for the anti-kindling concept. As a first step into that direction, we 
presented here an analytical analysis of a simple network model 
which we validated by numerical analysis.

Different types of neurons and, hence, different target areas in 
the brain may be associated with different types of STDP learning 
rules. Accordingly, brain stimulation approaches might be opti-
mized with respect to a particular type of STDP learning rule in 
order to achieve superior therapeutic effects.

This work is not the first one to treat STDP in oscillatory recur-
rent network. Karbowski and Ermentrout (2002) consider neurons 
as formal phase oscillators and therefore do not consider spiking 
neurons as such. Furthermore Karbowski and Ermentrout (2002) 
consider a learning window with identical potentiation and depres-
sion time constants which limits the potential output of the study. 
Maistrenko et al. (2007) describe as well neurons as phase oscil-
lators, but they allow potentiation and depression time constants 
to be different. Interestingly they find multistability depending on 
those time constants and on the weight upper bound. Morrison 
et al. (2007) consider a STDP learning rule with multiplicative 
depression and power-law dependence for potentiation and showed 
numerically that this STDP rule decouples synchronous inputs 
from the rest of the network.

Our present model can be seen as an extension of the work of 
Gilson et al. (2009a,b) in several aspects. First, and most impor-
tantly, we consider here oscillatory input whereas Gilson et al. 
(2009b) assume stationary inputs. In this way we are able to discuss 
the conditions on the learning parameters to get a bistable regime 
with high and low synchrony. Secondly, our approach does not 
require to calculate the inverse Fourier transform of the spiking 
covariance matrix. In this way we do not need to make the (unre-
alistic) assumption that the EPSP time constant is much smaller 
than potentiation time constant in the learning window. Finally, we 
consider a larger class of neuronal model since we do not restrict 
ourself to linear neurons, but consider instead (locally linearized) 
non-linear neurons.

There are several ways in which we can extend the present model. 
It is known that propagation delays play an important role in the 
neuronal synchrony (Gerstner et al., 1996a; Cassenaer and Laurent, 
2007; Lubenov and Siapas, 2008). Our framework can be easily 
extended to incorporate those propagation delays. A systematic 
analysis of the influence of those delays is out of the scope of the 
current study but would be definitely relevant. According to the 
arguments of Lubenov and Siapas (2008), one could expect that 
the bigger the synaptic delays, the stronger the effective amount 
of depression. This can potentially change the stability of highly 
synchronous states.

Another way to extend the current model is to consider learn-
ing rules that depend on high order statistics of the pre- and 
postsynaptic neuron. For example, it is known that a triplet 
learning rule which considers 1 pre- and 2 postsynaptic spikes 
(Pfister and Gerstner, 2006a,b; Clopath et al., 2010) is more 
realistic in terms a reproducing experimental data than the 
pair-based STDP considered here. Another extension would 
be to consider second order terms in the Taylor expansion of 
the transfer function. Both of those extensions would require a 
substantial amount of work since the results of Hawkes (1971) 
could not be used anymore.
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 ( ) exp( )t t< −0 η

| |B t B t( ) exp( )< 0 η  
(39)

We can show that both ( )ω  (and hence J( )ω ) is regular for 
(ω) < η and B( )ω  is regular for (ω) > −η. Let H(ω) be defined 
as the l.h.s. of Eq. 38 for (ω) < η and the r.h.s of Eq. 38 when 
(ω) > −η. In this way H(ω) is regular everywhere and since we 
have H(ω) → 0 when |ω| → ∞, we know from Liouville’s theorem 
that H(ω) = 0. In particular, from the r.h.s of Eq. 38, we can express 
the supplementary matrix as:

  B DJ JT( ) ( )( ( ))ω ω ω= − − − − −1 1

 
(40)

If we insert this expression back into Eq. 36, we get:

∆ ∆     Q J K C K D JT T( ) ( ( )) ( ) ( ) ( ) ( )ω ω ω ω ω ω= − − +{ } − −( )− −
1 11 1

 (41)
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Because this supplementary matrix is defined ∀τ, we can Fourier 
transform it and express the output covariance matrix in frequency 
domain:

∆ ∆    Q J K P D BT( ) ( ( )) ( ) ( ) ( )ω ω ω ω ω= − − + −( )−1 1

 
(36)

From the definition of the output covariance matrix 
∆Q(τ) in Eq. 33, we have ∆Q(−τ) = ∆QT(τ) and hence 
∆ ∆ Q QT( ) ( ).− =ω ω  By using this property and the fact that
( ( )) ( ) ( ) ( ) ( )( ( )) ,1 1− − − ∆ = ∆ − −− −

     J K P P K JT T Tω ω ω ω ω ω1 1  we have

( ( )) ( ( )) ( ) ( )1− − − − = −( ) +( )− −
   J D B D B JT Tω ω ω ω1 1

1
 

(37)

or, equivalently

     B J DJ J B J DT T T( ) ( ) ( ) ( ( )) ( ) ( )− −( ) + = − − + −ω ω ω ω ω ω1 1
 

(38)

In order to express B( ),ω  Hawkes (1971) used a regularity 
argument which goes as follows. Let us assume (t) and |B(t)| are 
bounded as follows:
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