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 synapses, although there is some experimental evidence for a 
similar  property for inhibitory GABAergic connections (Woodin 
et al., 2003; Tzounopoulos et al., 2004).

Due to its temporal resolution, STDP can lead to input selectivity 
based on spiking information at the scale of milliseconds, namely 
spike-time correlations (Gerstner et al., 1996; Kempter et al., 1999). 
To achieve this, STDP can regulate the output firing rate in a regime 
that is neither quiescent nor saturated by means of enforcing stability 
upon the mean incoming synaptic weight and in this way establish-
ing a homeostatic equilibrium (Kempter et al., 2001). In addition, a 
proper weight specialization requires STDP to generate competition 
between individual weights (Kempter et al., 1999; van Rossum et al., 
2000; Gütig et al., 2003). In the case of several similar input path-
ways, a desirable outcome is that the weight selection corresponds to 
a splitting between (but not within) the functional input pools, hence 
performing symmetry breaking of an initially homogeneous weight 
distribution that reflects the synaptic input structure (Kempter et al., 
1999; Song and Abbott, 2001; Gütig et al., 2003; Meffin et al., 2006).

In this review, we examine how the concepts described above extend 
from a single neuron (or feed-forward architecture) to  recurrent net-
works, focusing on how the corresponding weight dynamics  differs in 
both cases. The learning dynamics causes synaptic weights to be either 
potentiated or depressed. Accordingly, STDP can lead to the evolution 
of different network structures that depend on both the correlation 
structure of the external inputs and the activity of the network In par-
ticular, we relate our recent body of analytical work shortcite (Gilson 
et al., 2009a–c, 2010) to other studies with a view to illustrating how 
theory applies to the corresponding network configurations.

Models
In the present paper, we use a model of STDP that contains two key 
features: the dependence upon relative timing for pairs of spikes 
via a temporally asymmetric learning window W (Gerstner et al., 

IntroductIon
Ten years after spike-timing-dependent plasticity (STDP) 
appeared (Gerstner et al., 1996; Markram et al., 1997), a profu-
sion of publications have investigated its physiological basis and 
functional implications, both on experimental and theoretical 
grounds (for reviews, see Dan and Poo, 2006; Caporale and Dan, 
2008; Morrison et al., 2008). STDP has led to a re-evaluation by 
the research community about Hebbian learning (Hebb, 1949), 
in the sense of focusing on causality between input and output 
spike trains, as an underlying mechanism for memory. Following 
preliminary studies that suggested the concept of STDP (Levy and 
Steward, 1983; Gerstner et al., 1993), the model initially proposed 
by Gerstner et al. (1996) and first observed by Markram et al. 
(1997) based on a pair of pre- and postsynaptic spikes has been 
extended to incorporate additional physiological mechanisms and 
account for more recent experimental data. This includes, for 
example, biophysical models based on calcium channels (Hartley 
et al., 2006; Graupner and Brunel, 2007; Zou and Destexhe, 2007) 
and more elaborate experimental stimulation protocols such as 
triplets of spikes (Sjöström et al., 2001; Froemke and Dan, 2002; 
Froemke et al., 2006; Pfister and Gerstner, 2006; Appleby and 
Elliott, 2007). In order to investigate the functional implications 
of STDP, previous mathematical studies (Kempter et al., 1999; 
van Rossum et al., 2000; Gütig et al., 2003) have used simpler 
phenomenological models to relate the learning dynamics to the 
learning parameters and input stimulation. However, a lack of 
theoretical results even for the original pairwise STDP with recur-
rently connected neurons persisted until recently, mainly because 
of the difficulty of incorporating the effect of feedback loops in 
the learning dynamics. The present paper reviews recent results 
about the weight dynamics induced by STDP in recurrent network 
architectures with a focus on the emergence of network struc-
ture. Note that we constrain STDP to excitatory  glutamatergic 
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1996; Markram et al., 1997; Kempter et al., 1999), as illustrated in 
Figure 1, and upon the current strength of the synaptic weight 
(Bi and Poo, 1998; van Rossum et al., 2000; Gütig et al., 2003; 
Morrison et al., 2007; Gilson et al., 2010). In this review we will 
therefore consider the STDP learning window as a function of two 
variables: W(J

ij
,u). The spike-time difference u in Figure 1B cor-

responds to the times when the effect of the presynaptic and the 
postsynaptic spike reaches the synapse, which involves the axonal 
and back-propagation delays, respectively dij

ax and dij
b, in Figure 1A. 

Although the present theoretical framework is suited to account for 
individual STDP properties for distinct synapses (Froemke et al., 
2005), we only consider a single function W for all synapses in the 
present paper for the purpose of clarity. We note that the continuity 
of the curve for W in Figure 1B does not play any significant role 
in the following analysis.

In addition to the learning window function W, a number of 
studies (Kempter et al., 1999; Gilson et al., 2009a) have included 
rate-based terms w in and w out, namely modifications of the weights 
for each pre- and postsynaptic spike (Sejnowski, 1977; Bienenstock 
et al., 1982). This choice leads to a general form of synaptic plasticity 
(van Hemmen, 2001; Gerstner and Kistler, 2002) that incorporates 
changes for both single spikes and pairs of spikes. The choice of 
the Poisson neuron model with temporally inhomogeneous firing 
rate and with a linear input–output function for the firing rates 
makes it possible to incorporate such rate-based terms in order to 
obtain homeostasis (Turrigiano, 2008).

In order to study the evolution of plastic weights in a given net-
work configuration, it is necessary to define the stimulating inputs. 
For pairwise STDP, spiking information is conveyed in the firing 
rates and cross-correlograms, and Poisson-like spiking is often used 
to reproduce the variability observed in experiments (Gerstner et al., 
1996; Kempter et al., 1999; Song et al., 2000; Gütig et al., 2003). 
Spike coordination or rate covariation can be combined to generate 
correlated spike trains (Staude et al., 2008). The present review will 
focus on narrowly correlated inputs (almost synchronous) that are 

partitioned in pools; in this configuration, correlated inputs belong 
to a common pathway (e.g., monocular visual processing). We will 
also discuss more elaborate input correlation structures that use 
narrow spike-time correlations (Krumin and Shoham, 2009; Macke 
et al., 2009), oscillatory inputs (Marinaro et al., 2007), and spike 
 patterns (Masquelier et al., 2008). Our series of papers has also made 
minimal assumptions about the network topology, namely mainly 
considering recurrent connectivity to be homogeneous. The starting 
situation consists in unorganized (input and/or recurrent) weights 
that are randomly distributed around a given value.

Once the input and network configuration is fixed, it is neces-
sary to evaluate the spiking activity in the network in order to 
predict the evolution of the weights. The Poisson neuron model 
has proven to be quite a valuable tool (Kempter et al., 1999; Gütig 
et al., 2003; Burkitt et al., 2007; Gilson et al., 2009a,d), although 
recent progress has been made toward a similar framework for inte-
grate-and-fire neurons (Moreno-Bote et al., 2008). In the Poisson 
neuron model, the output firing mechanism for a given neuron i 
is approximated by an inhomogeneous Poisson process with rate 
function or  intensity λ

i
(t) that evolves over time according to the 

presynaptic activity received by the neuron:

λ λi ij j
n

j
n

ij ij
j n

t J t t t d d( ) ,
,

= + ( ) − − +( ) ∑0  den ax

 
(1)

where t j
n, 1 ≤ n, are the spike times for neuron j, and λ

0
 describes 

background excitation/inhibition from synapses that are not con-
sidered in detail. The kernel function ε describes the time course of 
the postsynaptic response (chosen identical for all synapses here), 
such as an alpha function. We also discriminate between axonal 
and dendritic components for the conduction delay, cf. Figure 1A. 
Although only coarsely approximating real neuronal firing mecha-
nisms, this model transmits input spike-time correlations and leads 
to a tractable mathematical formulation of the input–output cor-
relogram, which allows the analytical description of the evolution 
of the plastic weights.

A B
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Figure 1 | (A) Schematic representation of a synapse from the source 
neuron j to the target neuron i. The synaptic weight is Jij and axonal delay dij

ax; 
dij

den  accounts for the conduction of the postsynaptic response along the 
dendritic tree toward the soma while the dij

b accounts for the back-
propagation of action potential to the synapse. Here dij

den and dij
b are 

distinguished, but they can be considered to be equal if the conduction along 

the dendrite in both directions is passive. (B) Examples of STDP learning 
window function; the vertical scale (dimensionless) indicates the change of 
synaptic strength arising from the occurrence of a pair of pre- and 
postsynaptic spikes with time difference u. The darker curves correspond to 
stronger values for the current weight, indicating the effect of 
weight dependence.
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young barn owl cannot perform azimuthal sound localization. 
Three weeks later it can. So what happens in between? The solu-
tion to the paradox involves a careful study of how synapses 
develop during ontogeny (Gerstner et al., 1996; Kempter et al., 
1999). The inputs provided by many synapses decide what a neu-
ron does but, once it has fired, the neuron determines whether 
each of the synaptic efficacies will increase or decrease, a process 
governed by the synaptic learning window, a notion that will 
be introduced shortly. Each of the terms below in Eq. 2 has a 
neurobiological origin. The process they describe is what we call 
infinitesimal learning in that synaptic increments and decrements 
are small. Consequently it takes quite a while before the organism 
has built up a “noticeable” effect. Though processes that happen 
in the long term are not fully understood yet, their effect is well 
described by Eq. 2.

For the sake of definiteness we are going to study waxing and 
waning of synaptic strengths associated with a single neuron i; cf. 
Figure 2A. Here we ignore the weight dependence to focus on the 
temporal aspect and thus use W(·,u) as the STDP learning window 
function. The 1 ≤ j ≤ N synapses provide their input at times t j

n, 
where n is a label denoting the sequential spikes. The firing times of 
the neuron are denoted by t i

m, it being understood that m is a label 
like n. Given the firing times, the change ∆J

ij
(t): = J

ij
(t) − J

ij
(t − T) 

of the weight of synapse j → i (synaptic strength) during a learn-
ing session of duration T and ending at time t is governed by 
several factors,

∆J t w w W tij

t T t t t T t t t T t t t

j

j
n

i
m

j
n
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m
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(2)

Here the firing times t i
m of the postsynaptic neuron may, and 

in general will, depend on J
ij
. We now focus on the individual 

terms. The prefactor 0 < η  1 reminds us explicitly of learning 
being slow on a neuronal time scale. This condition is usually 
referred to as the “adiabatic hypothesis.” It holds in numerous 

AnAlysIs of synAptIc weIght dynAMIcs
Before starting we quickly explain what STDP means and how 
Poisson neurons function in the present context. Then we focus on 
the asymptotics of an analytic description for the development of 
synaptic strengths by means of a set of coupled differential equa-
tions and introduce the notion of “almost-additive” STDP. In so 
doing we will also see how a population of recursively connected 
neurons influences the synaptic development in the population 
as a whole so that one gets a “grouping” of the synapses on the 
neurons. Input by itself and input in conjunction with or, more 
interestingly, versus recurrence play an important role in this 
game. Finally, we will see how the form of the learning window 
influences the neuron-to-input and neuron-to-neuron spike-time 
correlations. This is a preparation of the next section where we 
will analyze emerging network structures and their functional 
implications.

spIke-tIMIng-dependent plAstIcIty
The barn owl (Tyto alba) is able to determine the prey direction in 
the dark by measuring interaural time differences (ITDs) with an 
azimuthal accuracy of 1–2° corresponding to a temporal precision 
of a few microseconds, a process of binaural sound localization. 
The first place in the brain where binaural signals are combined 
to ITDs is the laminar nucleus. A temporal precision as low as a 
few microseconds was hailed by Konishi (1993) as a paradox – 
and rightly so since at a first sight it contradicts the slowness of 
the neuronal “hardware,” viz., membrane time constants of the 
order of 200 μs. In addition, transmission delays from the ears to 
laminar nucleus scatter between 2 and 3 ms (Carr and Konishi, 
1990) and are thus in an interval that greatly exceeds the period 
of the relevant oscillations (100–500 μs). The key to the solution 
(Gerstner et al., 1996) is a Hebbian learning process that tunes 
the hardware so that only synapses and, hence, axonal connec-
tions with the right timing survive. Genetic coding is  implausible 
because 3 weeks after hatching, when the head is full-grown, the 

A B

Figure 2 | (A) Single neuron. Spike-timing-dependent plasticity (STDP) 
refers to the development of synaptic weights Jij (small filled circles, 1 ≤ j ≤ N) 
of a single neuron (large circle) in dependence upon the arrival times of 
presynaptic spikes (input) and firing times of the postsynaptic neuron 
(output). Here the neuron receives input spike trains denoted by Sj and 
produces output spikes denoted by Si. The collective interaction of all the 

input spikes determines the firing times of the postsynaptic neuron they are 
all sitting on and in this way the input spike times at different synapses 
influence the latter’s waxing and waning. (B) Recurrently connected network. 
Schematic representation of two neurons i and j stimulated by one external 
input k with spike train Ŝk. Input and recurrent weights are denoted by K and 
J, respectively.
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then we get a pronounced periodic-like but not exactly periodic 
response. The latter property is convenient to simulate, e.g., neu-
ronal response to periodic input.

dynAMIcAl systeM And AsyMptotIc solutIon
We now turn to general pre- and postsynaptic spike trains, with 
no reference to a neuronal model or a specific input structure. 
The only assumption here is that the learning is sufficiently slow 
so that averaging over the spike trains can be performed (van 
Hemmen, 2001); note that significant weight evolution over tens 
of minutes still satisfies this requirement. For pairwise (possibly 
weight- dependent) STDP, the evolution of the mean weight aver-
aged over all trajectories (drift of the stochastic process) results in 
a learning-dynamics equation of the general form

J f J g J C d dij ij j i ij ij ij ij= ( ) + −( ); , ; , ,ν ν ax b

 
(4)

where the dependence of the variables upon time has been omit-
ted. In Eq. 4 the spiking information conveyed by the spike trains 
S

i
(t) and S

j
(t) for neurons i and j, respectively, is contained in the 

firing rates

νi it T

t

t
T

S t t( ) : ( )= 〈 ′ 〉 ′
−∫1

d
 

(5)

and the spike-time covariance coefficient
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−

−

∫

∫
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d

d SS t u tjt T

t

( ) .″ + 〉 ″
−∫ d

 

(6)

This separation of time scales (involving the averaging duration T) 
is dictated by the STDP learning window W (cf. Figure 1): typically, 
phenomena “faster” than 10 Hz (i.e., 100 ms) will be captured by 
W as spike effects through C

ij
, such as oscillatory activity (Marinaro 

et al., 2007) and spike patterns (Masquelier et al., 2008). The formu-
lation in Eq. 6 is slightly more general than that used by Gerstner 
and Kistler (2002) and Gilson et al. (2009a); it can account for 
covariation of underlying rate functions (Sprekeler et al., 2007) as 
well as (stochastic) spike coordination (Kempter et al., 1999; Gütig 
et al., 2003; see also Staude et al., 2008). Finally, we note that the 
averaging 〈…〉 in Eqs 5 and 6 comes for free as the “learning time” 
T is so large and the temporal correlations in naturally generated 
stochastic processes in Eq. 2 have so small a range that we can apply 
a law of large numbers (van Hemmen, 2001, App. A) so as to end 
up with the averages as indicated. That is, we need not explicitly 
average as it all comes, so to speak, for free.

For a given network configuration, predicting the evolution of 
the weight distribution requires the evaluation of the neuronal 
variables involved in Eq. 4 as functions of the parameters for the 
stimulating inputs. For all network neurons, the output spike trains 
are constrained by the neuron model and input spike trains: the 
key to the analysis is the derivation of self-consistency equations 
that describe this relationship for the firing rates and spike-time 
correlations. In particular, recurrent connectivity implies non-
linearity in the network input–output function for the neuronal 
firing rates. The interplay between the spiking activity and network 

biological situations and has been a mainstay of computational 
neuroscience ever since. It may also play a beneficial role in an 
applied context. If it is does not hold, a numerical implementation 
of the learning rule (Eq. 2) is straightforward, but an analytical 
treatment is not.

Each incoming spike and each action potential of the post-
synaptic neuron change the synaptic efficacy by ηw in and ηw out, 
respectively. The last term in Eq. 2 represents the learning window 
W(·,u), which indicates the synaptic change in dependence upon 
the time difference u t tj

n
i
m= −  between an incoming spike t j

n and 
an outgoing spike t i

m. When the former precedes the latter, we have 
u t tj

n
i
m< ⇔ <0 , and the result is W(·,u) > 0, implying potentiation. 

This seems reasonable since NMDA receptors, which are important 
for long-term potentiation (LTP), need a strongly positive mem-
brane voltage to become “accessible” by loosing the Mg2+ ions that 
block their “gate.” A postsynaptic action potential induces a fast 
retrograde “spike” doing exactly this (Stuart et al., 1997). Because 
the presynaptic spike arrived slightly earlier, neurotransmitter is 
waiting to obtain access, which is allowed after the Mg2+ ions are 
gone. The result is Ca2+ influx. On the other hand, if the incom-
ing spike comes “too late,” then u > 0 and W(·,u) < 0, implying 
depression – in agreement with a general rule in politics, discovered 
two decades ago: “Those who come too late shall be punished.” 
In neurobiological terms, there is no neurotransmitter waiting to 
be admitted.

poIsson neurons
Since Poisson neurons (Kempter et al., 1999; van Hemmen, 2001) 
are cardinal to obtaining analytically exact solutions and at the same 
time effortlessly reflect uncertainty in response to input stimuli, 
which we then interpret as “stochastic,” we first quickly discuss what 
“inhomogeneous Poisson” is all about.

A general Poisson process with intensity λ
i
(t) is defined by three 

properties:

(i) the probability of finding a spike between t and t + ∆t is 
λ

i
(t)∆t,

(ii) the probability of finding two or more spikes there is o(∆t),
(iii) the process has independent increments, i.e., events in 

disjoint intervals are independent.

In a neuronal context it is fair to call property (ii) a mathematical 
realization of a neuron’s refractory behavior. Property (iii) makes 
it all exactly soluble (cf. van Hemmen, 2001, App. B). When the 
“membrane potential” λ

i
(t) in Eq. 1 is high/low, the probability of 

getting a spike is high/low too. For those who like an explicit non-
linearity better, the clipped Poisson neuron with

λ λ λ ϑi i it tclipped = −[ ]( ) ( ) ,Θ 1  
(3)

where ϑ
1
 is a given threshold and Θ is the Heaviside step function 

[Θ(t) = 0 for t < 0 and Θ(t) = 1 for t ≥ 0], is a suitable substitute that 
also allows an exact disentanglement (Kistler and van Hemmen, 
2000). For λ

i
(t) ≡ λ

0
 where λ

0
 is a constant we regain the classical 

Poisson process. The information content of the single number λ
0
 

is rather restricted and so is that of a spike sequence generated by 
a classical Poisson process. If, on the other hand, λ

i
(t) is a periodic 

function with high maxima, steep slopes, and low (≈0) minima, 
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•	 a	 partial	 (homeostatic)	 equilibrium	 that	 stabilizes	 the	 mean	
incoming weight, and hence the output firing rate, through 
the constraint f J ij j i( ; , )ν ν  0 for each neuron i;

•	 competition	between	 individual	weights	based	on	 the	 spike-
time covariances embedded in g J C d dij ij ij ij( ; , )ax b− , which can 
result in splitting the weight distribution.

Note that this discrimination between rate and spike effects is valid 
irrespective of the neuron model. The following analysis, which 
is based on the Poisson neuron model, can be extended to more 
elaborate models, such as the integrate-and-fire neuron when it is 
in a (roughly) linear input-output regime.

Several features have been used to ensure a stable and realizable 
homeostatic equilibrium. That is, the mean incoming weight J

av
 

for each neuron has a stable fixed point between the bounds [J
min

, 
J

max
]. This is important so as to ensure proper weight specialization 

in that, if the fixed point is not realizable (outside the bounds) or 
unstable, all weights will tend to cluster at one of the bounds and 
no effective selection is then possible, as is illustrated by Figure 3A. 
On the other hand, in Figure 3B splitting of the weights occurs on 
each side of the stable value for the mean weight (thick black line). 
If rate-based terms can be added to obtain a polynomial form of 
f (Kempter et al., 1999; Gilson et al., 2009a,d), weight dependence 
can also be chosen to bring stability (Gütig et al., 2003; Gilson 
et al., 2010), as is illustrated in Figure 3. Such features preserve 
the local character of the plasticity rule and homeostasis is then a 
consequence of local plasticity (Kempter et al., 2001). In contrast, 
additional mechanisms such as synaptic scaling (or normaliza-
tion) can be enforced to constrain the mean incoming weight (van 
Rossum et al., 2000). In any case, only if f J ij j i( ; , )ν ν  0 for all 
synapses j → i is the weight specialization determined by the spike-
time covariance. Otherwise, firing rates are likely to take part in 
the weight competition and the dichotomy between rate and spike 
effects may not be effective.

Lack of proper homeostatic stability can lead to dramatic changes 
in the spiking activity when slightly modifying some parameters 
in simulations, such as an “explosive” behavior where the neuron 
saturates at a very high firing rate (Song et al., 2000). Non-linear 
activation mechanisms (e.g., sigmoidal rate function, integrate-
and-fire) may play a role in the weight dynamics and possibly affect 
the correlograms. In particular, stable homeostatic equilibrium can 

connectivity, where the latter is modified by plasticity on a slower 
time scale, is crucial to understanding the effect of STDP. A network 
of Poisson neurons with input weights K and recurrent weights J 
as in Figure 2B leads to the following system of matrix equations 
(Gilson et al., 2009a,d):

ν λ ν= − +− ∧
[ ] [ ],1 1

0J Ke  (7)

F u J K C u( , ) [ ] ( ),⋅ = − − ∧
1 1 ψ

C u J K C u K J( , ) [ ] ( ) [ ] .⋅ = − −− ∧ −1 11 1ζ T T

The vector of neuronal firing rates ν is expressed in terms of the 
input firing rates ν̂ and the weight matrices K and J. Vector e has all 
element equal to ones and the superscript T denotes the transposi-
tion. Matrices C and F respectively contain the neuron-to-neuron 
and neuron-to-input spike-time covariances, cf. Eq. 6. Only their 
dependence upon u is considered here and they are expressed in 
terms of the input-to-input covariance matrix Ĉ convolved with 
the following functions (indicated by the superscript):

ψ( ) ,u u d dij ij  − + +( )ax den

 
(8)

ζ( ) ( ) ( ) ,u u r r r  +∫ d

where  is the postsynaptic response kernel for the Poisson neuron; 
cf. Eq. 1. The dependence upon time t has been omitted, as the time-
averaged firing rates and spike-time covariances practically only vary 
at the same pace as the plastic weights. In this framework, the effect 
of the recurrence is taken into account in the inverse of the matrix 
1 − J in Eq. 7. For the rates ν and the neuron-to-input covariances F, 
this leads to a linear feedback, whereas the dependence is quadratic-
like for the neuron-to-neuron covariances C. These equations allow 
the analysis of the learning equation (Eq. 4) for recurrent weights 
J, as well as an equivalent expression for input weights K with the 
neuron-to-input spike-time covariance F in place of C.

For both a single neuron and recurrently connected network, the 
learning equation (Eq. 4) can lead to a double dynamics that oper-
ates upon the incoming synaptic weights for each neuron (Kempter 
et al., 1999; Gilson et al., 2009a,d, 2010):
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Figure 3 | evolution of synaptic weights. In each plot individual weights are 
represented (gray traces) as well as their overall mean Jav (thick solid black line) and 
the two means over each input pool (thick dashed and dashed-dotted black lines). In 
the simulations, one pool had spike-time correlation while the other had none while 

w in = w in = 0. (A) Case of non-realizable (but stable) fixed point Jav
* < 0. (B) Stability 

of the mean incoming weight (0 0 06= < < =J J Jmin av max
* . ) and competition 

between individual weights when using almost-additive STDP. (C) Similar plot to (B) 
with medium weight dependence, which implies weaker competition.
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a purely axonal delay shifts the curve to the left (dashed-dotted line) 
and thus toward more depression since ∆d

ij
 < 0. A previous analysis 

of this effect (Gilson et al., 2010) assumed d dij ij
den b=  but the conclu-

sions can be straightforwardly adapted to the more general case; the 
respective roles played by the delays in determining the spike-time 
correlations and learning dynamics is highlighted below.

The weight dependence ensuing from STDP modulates the weight 
specialization. This can lead to either a unimodal or bimodal dis-
tribution at the end of the learning epoch (van Rossum et al., 2000; 
Gütig et al., 2003; Gilson et al., 2010); see Figures 3C,B, respectively. 
We will refer to almost-additive STDP in the case where the weight-
dependence is small, i.e., small values of the μ > 0 parameter of Gütig 
et al. (2003). Almost-additive STDP can generate effective weight 
competition including partial stability whenever the weight depend-
ence leads to more depression and/or less potentiation for higher 
values of the current weight and the homeostatic equilibrium (Gilson 
et al., 2010). In general, stronger weight dependence implies more 
stability for both the mean incoming weight and individual weights, 
whereas competition is more effective for almost-additive STDP.

Input versus recurrent connectIons
An interesting example illustrates the difference in the weight 
dynamics when stepping from a single neuron to a recurrently 
connected network. We consider neurons that are excited by 
external synaptic inputs with narrow spike-time correlations (i.e., 
almost-synchronous spiking), as illustrated in Figure 4A. We also 
assume homogeneous input and recurrent connectivity, which can 

be obtained without use of rate-based terms win and wout for additive 
STDP through integrate-and-fire neurons (this is not possible with 
Poisson neuron), but the range of adequate learning parameters, 
in particular the value of W

~
, was found to be smaller (Song et al., 

2000) than when using rate-based plasticity terms (Kempter et al., 
1999; Gilson et al., 2009a).

After the homeostatic equilibrium has been reached, spike-
time correlations become the dominating term in the learning-
dynamics equation (Eq. 4) and hence determine the subsequent 
weight specialization. The rule of thumb for the weight splitting 
after reaching the homeostatic equilibrium is that synapses j → i 
with larger coefficients g J J C d dij ij ij ij( ; , ) av

ax b* −  will be potentiated 
at the expense of the others. The function g involves the convolu-
tion of the correlogram C

ij
, such as those in Figures 4B,C, with the 

STDP function W

g J C d W J u d C t u uij ij ij ij ij ij; , , ( , ) .∆ ∆( ) = +( )
−∞

+∞

∫ d
 

(9)

This implies that the STDP learning function W is shifted by the 
difference between the axonal and the dendritic back-propagation 
delays ∆d

ij
 in Eq. 4,

∆d d dij ij ij: .= −ax b

 
(10)

Hence a purely dendritic delay implies ∆d
ij
 < 0, which is  equivalent to 

shifting the STDP learning window function (solid line) in Figure 4D 
to the right (dashed line), i.e., toward more potentiation. Conversely, 
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Figure 4 | Spike-time correlograms between (A) two inputs, (B) an 
input and a neuron, and (C) two neurons. These three plots correspond to 
Eq. 6 for randomly chosen pairs of inputs/neurons in a network of 100 
neurons excited by 100 inputs (30% probability of connection; no learning 
was applied) and simulated over 1000 s with the sum of delays 
d dij ij

ax den+ = 4 ms; the time bin is 2 ms. (D) Learning window function W J u( , )*
av  

with no delay (solid line, ∆dij = 0 ms), purely dendritic delay dij
b = 4 ms (dashed 

line, ∆dij = −4 ms) and purely axonal delay dij
ax = 4 ms (dashed-dotted line, 

∆dij = 4 ms). (e,F) Theoretical curves of ψ and ζ corresponding to 
approximation at the first order of the correlograms in (B,C), respectively, 
with short (4 ms, solid lines) and large (10 ms, dashed lines) values for 
d dij ij

ax den+ ; cf. Eq. 8. The two curves (for 4 and 10 ms) are superimposed for ζ 
and the thin lines represent the corresponding predictions when incorporating 
a further order in the recurrent connectivity. The agreement with the 
spreading and amplitude of the curves in (B,C), which correspond to 4 ms, is 
only qualitative.
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extensIon of results to More elAborAte stdp rules
The analysis presented above does not depend on precise quantitative 
values, but rather the conclusions depend on qualitative properties, 
namely the signs of functions within some range. The methods are 
also valid for non-strictly pairwise STDP. For restrictions on the spike 
interactions that contribute to STDP (Sjöström et al., 2001; Izhikevich 
and Desai, 2003; Burkitt et al., 2004), an effective correlogram can be 
evaluated to be convolved with the STDP window function W. When 
the interaction restrictions do not modify the global shape of the cor-
relograms, the predicted trends for the weight specialization should 
still hold and the effect of parameters such as dendritic/axonal delays 
should be similar for more elaborate STDP rules.

In other words, only non-linearities that would significantly 
change the qualitative properties of the correlograms in Figure 4 
are important; for example, those that alter their (non-)symmetri-
cal character. It has been shown that the rate-based contribution 
for STDP can be significantly affected by the restriction scheme 
(Izhikevich and Desai, 2003; Burkitt et al., 2004); STDP can then 
exhibit a BCM-like behavior (Bienenstock et al., 1982) with respect 
to the input firing rate and lead to depression below a given thresh-
old and potentiation above that threshold.

Further work is necessary to understand the implications of inter-
action restrictions for an arbitrary correlation structure. More bio-
physically accurate plasticity rules that exhibit a STDP profile for spike 
pairs (Graupner and Brunel, 2007; Zou and Destexhe, 2007) are also 
expected to exhibit qualitatively similar behavior when stimulated by 
spike trains with pairwise spike-time correlations. The rule proposed 
by Appleby and Elliott (2006) is an exception where higher-order 
correlations are necessary to obtain competition. Other synaptic plas-
ticity rules involving a temporal learning window, such as “burst-time-
dependent plasticity” that corresponds to the longer time scale of a 
second (Butts et al., 2007), can be analyzed using the same framework 
and similar dynamical ingredients are expected to participate to the 
weight evolution (stabilization and competition).

eMergence of network structure And  
functIonAl IMplIcAtIons
Finally, we illustrate how the interplay between STDP, connectivity 
topology, and input correlation structure can lead to the emergence 
of synaptic structure in a recurrently connected network. First we 
describe how the weight dynamics presented above can shape syn-
aptic pathways using the simple example of narrowly (or delta) 
correlated inputs. Second we extend the analysis to more elaborate 
input structures, such as oscillatory spiking activity. We also discuss 
the link between these results and the resulting processing of spiking 
information performed by trained neurons and networks.

orgAnIzIng synAptIc pAthwAys
We start by focusing on a specific configuration of the external 
stimulating inputs, viz., two pools of external inputs that can 
have within-pool, but no between-pool spike-time correlations; 
see Figure 6 where filled bottom circles indicate input pools with 
narrowly distributed spike-time correlations, in a similar fashion 
to Figure 3. Each pool represents a functional pathway and the 
spiking information is mainly contained in the spike-time cor-
relations between pairs of neurons. This scheme has been used in 
many studies to examine input selectivity, such as how a neuron 

be partial. We compare the effect of STDP for an input connection 
from an external input to a given network neuron on the one hand, 
and a recurrent connection between two neurons on the other 
hand. In so doing we recall that a positive (resp. negative) value for 
the convolution in Eq. 9 implies potentiation (depression) of the 
more correlated input pathways (Gilson et al., 2009a) and outgoing 
recurrent connections for more correlated neuronal groups (Gilson 
et al., 2009d). Typical correlograms are illustrated in Figures 4B,C 
for input and recurrent connections, respectively. For the input 
connection the distribution is clearly non-symmetrical, whereas 
it is roughly symmetrical for recurrently connected neurons (in 
a homogeneous network). The shifted STDP curve W in Figure 
4D depends on the delays dij

ax and dij
b, which we assumed to be of 

the same order as dij
den. The correlograms in Figures 4B,C can be 

evaluated with first-order approximations by the following func-
tions ψ and ζ in Eq. 8, respectively. In Figure 4E, the theoretical 
correlogram ψ that corresponds to Figure 4B is shifted to the left 
by the sum of the delays d dij ij

ax den+ ; it follows that the curve always 
overlaps with the potentiation side of W, irrespective of the axonal/
dendritic ratio (assuming dij

den and dij
b to be of the same order). 

However, for the recurrent connection in Figure 4F, the delays affect 
only higher-order approximations of the correlogram ζ in Eq. 8, 
namely by increasing the spread of the distribution (thin lines); the 
distribution of φ remains symmetrical and similar to the simulated 
distribution in Figure 4C, while the convolution with W can give a 
positive or negative value, depending upon the shift of W.

The effect of the delay difference ∆d
ij
 upon the dynamical evolu-

tion of the input and recurrent weights induced by STDP becomes 
clearer in Figure 5, where the dashed and dashed-dotted curves rep-
resent the convolutions in Eq. 9 for the two corresponding correlo-
grams plotted as a function of ∆d

ij
. For an input connection (dashed 

curve), delays do not qualitatively change the specialization scheme 
for input plastic connections, viz., the sign of the dashed curve in the 
range of ∆d

ij
 considered (between −4 and 4 ms here). Delays, however, 

are found to crucially determine the sign of the dashed-dotted curve 
for recurrent weights (dashed-dotted curve) around ∆d

ij
 = 0: a pre-

dominantly dendritic component (∆d
ij
  0) favors strengthening of 

feedback connections for synchronous neurons. On the other hand, 
predominantly axonal delays (∆d

ij
  0) lead to decorrelation, viz., 

weakening of self-feedback connections. Note that these conclusions 
apply to positively correlated input spike trains.

The shape of W around 0 is also important to determine the sign 
of the convolution in Eq. 9: stronger potentiation than depression 
strengthens self-feedback for correlated groups of neurons and thus 
favors synchrony, as illustrated in Figures 5A,B. In general this effect 
is more pronounced when using a non-continuous W function since 
the discrepancies around u = 0 are larger; see Figures 5C,D. In con-
clusion, a suitable typical choice for W involves a longer time constant 
for depression but higher amplitude for potentiation, which is in 
agreement with previous experimental results (Bi and Poo, 1998).

Another difference between plasticity for input and recurrent 
connections lies in stability issues for the spiking activity: (“soft” 
or “hard”) bounds on the weights must be chosen such that recur-
rent feedback does not become too strong (in particular, at the 
 homeostatic equilibrium). Otherwise, potentiation of synapses may 
lead to an “explosive” spiking behavior, where all neurons saturate 
at a high firing rate (Morrison et al., 2007).
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two STDP modes can be distinguished depending on the strength of 
weight dependence: Either the competition is sufficiently strong to 
induce a splitting of the weight distribution (additive-like STDP) or 
the asymptotic weight remains unimodal (Gütig et al., 2003).

The limit between the above two classes of behavior also depends 
on the strength of the input correlation, so there exists a parameter 
range for which proper weight specialization only occurs when 
there is spiking information in the sense of spike-time correlations 
for two or more input pools (Meffin et al., 2006; Gilson et al., 2010). 
During this symmetry breaking of initially homogeneous input 
connections, recurrent connections may play a role ( irrespective 
of their plasticity) so that recurrently connected neurons with 
excitatory synapses tend to specialize preferably to the same input 
pathway (Gilson et al., 2009b); this effect is more pronounced 
for stronger recurrent connections. In Figure 6B, only one of the 
two input correlated pools is selected (with 50% probability in 
the case of two pools). This group specialization is important to 

can become sensitive to only a portion of its stimulating inputs, 
hence specializing to a given pathway (Kempter et al., 1999; Song 
and Abbott, 2001; Gütig et al., 2003).

For a single neuron, input pathways with a narrow spike-time 
correlation distribution are potentiated by Hebbian STDP (Kempter 
et al., 1999; Song et al., 2000), as explained in Section “Input Versus 
Recurrent Connections.” This conclusion still holds when we train 
input connections for recurrently connected neurons, as illustrated 
in Figure 6A. When the spike-time correlations have a broader dis-
tribution, their widths matter and the more peaked pool is selected 
(Kistler and van Hemmen, 2000).

When two input pathways have similar correlation strengths, 
additive-like STDP induces sufficient competition to lead to a winner-
take-all situation where only one pool is selected (Song and Abbott, 
2001; Gütig et al., 2003). When using STDP without the rate-based 
terms w in and wout, a stricter condition on the weight dependence has 
been found to ensure a similar behavior (Meffin et al., 2006). Then 
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Figure 5 | Four illustrative plots of the STDP learning window W (gray solid 
line) and its convolutions in eq. 9: W*ψ for input connections (dashed line) 
and W*ζ for recurrent connections (dashed-dotted line). The theoretical 
spike-time correlograms ψ and ζ in Eq. 8 can be found in Figures 4e,F, respectively. 
The sign of the function resulting from the convolution for the argument ∆dij predicts 
the weight evolution. The curves correspond to delays such that d dij ij

ax den+ = 4 ms 

and the effect of ∆dij can be read on the horizontal axis (technically, it should be read 
−4 ≤ ∆dij ≤ 4). Comparison between an STDP learning window W J u( , )*

av  that induces 
(A) more potentiation than depression for small values of u and (B) the converse 
situation. We note that the integral is negative in both cases, which means more 
overall depression (for uncorrelated inputs), which is required for stability. (C,D) 
Similar plots to (A,B) with a discontinuous curve W in u = 0.
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The above conclusions describe conditions on the parameters 
for which the results presented by Song and Abbott (2001) are valid: 
the rewiring of recurrent connections corresponded to favoring 
groups that receive more correlated inputs; cf. Figures 6C(⇒),D. 
In a more realistic network with different populations of neurons, 
such as one with excitatory and inhibitory connections (Morrison 
et al., 2007) but with different delay components for distinct sets of 
connections (e.g., dendritic for short-range connections and axonal 
for medium-range ones), a combination of synchronization and 
decorrelation between neurons, depending on their spatial location, 
may well be obtained.

When input and recurrent connections are both plastic, it is 
possible to arrive at input selectivity as well as specialization of 
recurrent connections as described above (Gilson et al., 2010). 
This requires weight-dependent STDP in order to stabilize the 
mean weights for both input and recurrent connections, and relates 
to the fact that all incoming plastic weights compete with each 
other, irrespectively of their input or recurrent nature, and firing 

obtain  consistent input selectivity within areas with strong local 
feedback, and not “salt-and-pepper” organization where neurons 
would become selective independently of each other.

Specialization within a network with recurrent connections requires 
that neurons receive different inputs in terms of firing rates and correla-
tions (Gilson et al., 2009d), which can be obtained after the emergence 
of input selectivity. As mentioned above, different learning parameters 
can lead to a strengthening or weakening of feedback within neuro-
nal groups when they receive correlated input. This phenomenon is 
illustrated in Figure 6C by the right and left arrows (⇒ and ⇐) that 
correspond to Figures 5A,B, respectively. In other words, for recurrent 
delays, a prominent dendritic component favors emergence of strongly 
connected neuronal groups, whereas a prominent axonal component 
leads to the converse evolution. Likewise, parameters corresponding to 
strengthening feedback lead to dominance by the group that receives 
stronger correlated input than the “other” neurons, which results in 
the emergence of a feed-forward pathway in an initially homogeneous 
recurrent network, as illustrated in Figure 6D.

A B

C

D E

Figure 6 | Self-organization scheme in a network (top circles) stimulated by 
two correlated pools of external inputs (bottom circles). The diagrams 
represent the connectivity before and after learning (indicated by the block arrows, 
⇒ and ⇐). For initial configurations, thin arrows represent fixed connections while 
thick arrows denote plastic connections. After learning, very thick (resp. dashed) 

arrows indicate potentiated (depressed) weights. In case (C) two different network 
topologies that can emerge are represented, depending on the particular learning 
and neuronal parameters. A mathematical analysis of the weight dynamics for 
configurations in (A), (B), (C,D), and (e) can be found in Gilson et al. (2009a), Gilson 
et al. (2009b), Gilson et al. (2009d), and Gilson et al. (2010), respectively.
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in Figure 7. We can thus predict the synaptic-weight evolution 
using the convolution of the STDP learning window W and 
an idealization of such correlograms, in a similar fashion to 
Figure 5, since the periodicity overpowers other correlation 
effects in the recurrent network, even for medium coupling 
between them.

For a global “pacemaker” activity with a low frequency (below 
the time scale of STDP, say, 10 Hz), the effect of delays is similar 
to the exposition in Section “Input Versus Recurrent Connections” 
in that purely dendritic delays lead to an increase of within-group 
connections (Morrison et al., 2007) whereas purely axonal delays 
can cause STDP to decouple neurons during population bursts 
(Lubenov and Siapas, 2008). Comparison between the situations 
where input/output spike trains are uncorrelated and time-locked 
(i.e., highly correlated) shows that STDP can behave as a BCM 
rule (Bienenstock et al., 1982) for a single neuron (Standage et al., 
2007). Frequency may play a similar role for oscillations, although 
this does not appear to have been studied in detail. When the 
intrinsic properties of neurons subject to oscillations determine a 
specific phase response that tend to desynchronize these neurons 
(e.g., positive phase-response curve), a network with axonal delays 
can become partitioned into groups that have no self-feedback, 
but connections between some of them (Câteau et al., 2008); cf. 
Figure 6C(⇐).

In an all-to-all connected network of heterogeneous oscillators, 
STDP tends to break coupling between neurons, which can result in 
asymmetry in the sense of the emergence of feed-forward pathways 
(Karbowski and Ermentrout, 2002; Masuda and Kori, 2007), in a 
similar fashion to Figure 6D. When this happens, the neuron with 
highest frequency may end up driving of the rest of the population 
of oscillators at its own frequency (Takahashi et al., 2009). The 
propensity of STDP for such time locking is supported by a study 
of Nowotny et al. (2003b) using a real neuron and a simulated 
plastic synapse, which showed that STDP can compensate intrinsic 
neuronal mechanisms to enable synchronization with a stimulat-
ing pacemaker. UP and DOWN states of network spiking activity 
consist in depolarization and hyperpolarization, respectively, for 
a large portion of the neurons; they can be related to two levels of 
correlation at the scale of the network. A recurrently connected 
network with spontaneous UP and DOWN states can organize in a 

rates may play a role here too. For additive STDP the learning 
dynamics causes the sets of input and recurrent weights to diverge 
from each other (Gilson et al., 2010). Splitting of weight distribu-
tions, however, is impaired for medium weight dependence (Gütig 
et al., 2003; Gilson et al., 2010). There is thus a trade-off between 
stability and competition to obtain proper weight specialization 
in the sense of separating input weights into distinct groups. In 
Figure 6E, the input structure consisting of the two pools lead 
the network neurons to organize into two groups in a similar 
manner to Figure 6B, each specialized to only one pool; in addi-
tion, the recurrent connections within each neuronal group are 
strengthened at the expense of the between-group connections, 
cf. Figure 6C (⇒). An interesting point here is that such self-
organization does not require a prerequisite network topology 
since STDP alone can cause neurons to separate into two groups 
and preserve the consistency of the two input pathways. By this we 
mean that the information of both input pathways is represented 
by the synaptic structure after learning and processed by the two 
resulting neuronal groups.

All typical weight evolution scenarios described in this sec-
tion hold when applying STDP to homogeneous initial weights. 
The initial weight distribution can also be of importance, at least 
for additive-like STDP (Gilson et al., 2009a,c); it was observed in 
numerical simulation that even weak weight dependence can lead 
to palimpsest behavior, where previous weight specialization is 
forgotten after some duration of stimulation using uncorrelated 
inputs (Gilson et al., 2010).

externAl stIMulAtIon usIng oscIllAtory And  
“pAceMAker” ActIvIty
We now consider two types of stimulating input that have been 
widely used in conjunction with STDP in recurrent networks, 
viz., pacemaker-like and oscillatory activity. One reason for their 
success is that these global periodic phenomena (applied on a 
whole network, not locally) constrain the spike-time correlo-
grams and, consequently, a global trend for the weight evolution 
can be sketched. For two neurons chosen arbitrarily in a network 
with homogeneous and partial connectivity, the stimulating sig-
nals we just described induce strong neuron-to-neuron correla-
tion with peaks corresponding to the frequency, as illustrated 
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Figure 7 | Spike-time cross-correlograms Cij(·,u) for 2 out of 100 recurrently connected neurons with 30% probability that receive (A) oscillatory stimulation 
at 100 Hz and (B) pacemaker-like activity (regular pulse train at 25 Hz). Both input and recurrent delays were chosen equal to 4 ± 1 ms (uniformly distributed in the 
interval [3,5] ms).
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the neurons involved in the burst are not the same for each burst. 
Then no causal (feed-forward) network structure emerges since 
synchronization does not involve a growing population of neurons 
(Lubenov and Siapas, 2008); cf. Figure 6C(⇐) for different neuro-
nal subgroups of the network at each burst time. In agreement with 
the theory in Section “Input Versus Recurrent Connections,” the 
time constants of the STDP learning window can also determine 
whether the network is constrained to synchronized (e.g., suc-
cessive firing of several groups) or asynchronous activity (Kitano 
et al., 2002).

In the case of inhomogeneous delays in a recurrent network, 
STDP can lead to distributed synchronization over time for neu-
ronal groups at the microscopic scale (Izhikevich, 2006). This 
concept has been coined as polychronization and consists of 
neuronal groups whose firing is time locked in accordance to 
the synaptic delays of the connections between these neurons. 
In a network, such functional groups of, say, tens of neurons 
then fire sequences of spikes; note that a neuron can take part in 
several groups and the synaptic connections for a given group 
may be cyclic or not. A group is tagged as active when a large 
portion (e.g., 50%) of its members fires with the corresponding 
timing. Such self-organization can occur even without external 
stimulation, but then one crucial feature in obtaining stable func-
tional groups that persist over time is the degree of coupling 
between individual neurons. Such spike-time precision can also 
be obtained in parallel to oscillatory spiking activity at the scale 
of a population of neurons, hence providing two different levels 
of synchrony (Shen et al., 2008).

Input representAtIon And ApplIcAtIons
The same dynamical ingredients highlighted above have been 
used to train single neurons and networks for classification and/
or detection tasks, many of which involved more elaborate input 
spike trains than the pools of narrowly correlated spikes consid-
ered above (although most of these studies where done using 
numerical simulations). We briefly review some of these studies 
as an illustration of applications for the theoretical framework 
presented above.

Note that learning based on the covariance between firing rates 
has been used to extract most significant features (in the sense of 
a principal component analysis) within input stimuli (Sejnowski, 
1977; Oja, 1982). In the case of STDP, such features mainly relate to 
spike-time correlations (van Rossum and Turrigiano, 2001; Gilson 
et al., 2009a,d). When input spike trains have reliable spike times 
down to the scale of a millisecond, they convey temporal information 
that can be picked up by a suitable temporal plasticity rule (Delorme 
et al., 2001). It has been demonstrated that STDP can train a single 
neuron to detect a given spike pattern with no specific structure once 
the pattern is repeatedly presented among noisy spike trains that 
have similar firing rates (Masquelier et al., 2008). This propensity 
of STDP to capture spiking information and generate proper input 
selectivity can explain the storage of sequences of spikes and their 
retrieval using cues (namely the start of the sequences) using a net-
work with (all-to-all) plastic recurrent connections (Nowotny et al., 
2003a). Similarly, patterns relying on oscillatory spiking activity 
have also been successfully learnt in a recurrent network of oscil-
latory neurons (Marinaro et al., 2007). STDP can also be used for 

more a feed-forward structure (Kang et al., 2008). Interestingly, the 
synaptic structure that emerged preserved the transitions between 
the two states.

eMergIng synchronIzAtIon between recurrent neurons
Synchronous firing activity has been discussed as a basis of neu-
ronal information, although a comprehensive understanding of 
such a mechanism is yet to be elucidated. Since STDP is by essence 
sensitive to temporal coordination in spike trains, its study is an 
important aspect of such correlation-based neuronal coding. As 
evidence of its synchronizing properties, STDP has been demon-
strated to shape spike-time correlograms both for a single neuron 
(Song et al., 2000) and within a recurrent network (Morrison et al., 
2007), in contrast to other (non-temporally asymmetric) versions 
of Hebbian learning (Amit and Brunel, 1997). In a population of 
synapses with varying properties, STDP can perform delay selec-
tion (Gerstner et al., 1996; Kempter et al., 2001; Leibold et al., 2002; 
Senn, 2002). Here we review recent results on the implications at 
different topological and temporal scales.

At the mesoscopic scale in a recurrent network, the weight spe-
cialization as described in Figure 6C can be related to the increase 
or decrease of synchronization when the recurrent delays d dij ij

ax den+  
are small. Depending on the learning parameters, neurons that 
receive synchronously correlated input tend to reinforce or elimi-
nate their coupling, which then determines the probability of firing 
at almost coincident times. In this way a number of studies (cited 
below) have aimed at understanding how the spiking activity of 
recurrently connected neurons can be constrained by synaptic 
plasticity. An increase in synchrony arises from the strengthening 
of within-group recurrent connections when receiving correlated 
input (Gilson et al., 2009d), cf. Figure 6C(⇒). Typical connectiv-
ity matrices before and after a learning epoch are represented in 
Figures 8A,B, respectively. The corresponding spike-time correlo-
grams in the absence of external stimulation (i.e., intrinsic to the 
recurrent connectivity) show stronger “coincident” firing within 
a range of several times the postsynaptic response (here tens of 
milliseconds) for two neurons that do not have direct connec-
tions but belong to the same group, as illustrated in Figure 8C. 
Likewise, when the network receives external stimulation from 
two correlated input pools as in Figure 6C, the neuronal spike-
time correlation is higher for stronger recurrent connections, see 
Figure 8D. This can also be related to a reduction in the vari-
ability of the neural response for a single neuron due to STDP, as 
analyzed using information theory techniques (Bohte and Mozer, 
2007). Global synchrony has been obtained by repeatedly stimulat-
ing recurrently connected neurons with given spike trains, which 
resulted in the network behaving as a pacemaker. This evolution of 
network structure is also related to the concept of synfire chains, 
where neuronal groups successively activate one another within a 
feed-forward architecture (Hosaka et al., 2008); see Figures 8E,F 
for an illustrative example with three groups. Similarly, the repeat-
ing stimulation of a group of neurons can lead to a synfire chain 
structure in an initially homogeneous recurrent network provided 
the divergent growth of outgoing connections due to potentiation 
by STDP is prevented from taking over the whole network (Jun 
and Jin, 2007). In contrast, a population of neurons can become 
decorrelated through synchronous stimulation, as happens when 
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phase coding in networks with oscillatory activity (Lengyel et al., 
2005; Masquelier et al., 2009). Such theoretical studies are further 
steps toward a better understanding of recent experimental findings 
with neurons in the auditory pathway known to experience STDP: 
these neurons can change their spectrum responses after receiving 
stimulation using combinations of their preferred/non-preferred 
frequencies (Dahmen et al., 2008).

Self-organizing neural maps provide an interesting example of how 
networks can build a representation of many input stimuli, though they 
need not always rely on neuronal characteristics (Kohonen, 1982). STDP 

has been shown capable of generating such a topological unsupervised 
organization in a recurrent neuronal network with spatial extension; 
for example, to detect ITDs (Leibold et al., 2002) and to reproduce an 
orientation map similar to that observed in the visual cortex (Wenisch 
et al., 2005). Training lateral (internal recurrent) connections crucially 
determines the shape of orientation fields in such maps (Bartsch and 
van Hemmen, 2001). When several sensory neuronal maps have been 
established, STDP can further learn mappings between these maps 
(Davison and Frégnac, 2006; Friedel and van Hemmen, 2008), in this 
way performing multimodal integration of sensory stimuli.
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Figure 8 | Typical connectivity matrices for recurrent connections (A) before 
and (B) after a learning epoch during which the weight specialization due to STDP 
corresponds to Figure 6C(⇒). Darker pixels indicate stronger weights. (C) 
Resulting spike-time correlograms for two neurons within the same emerged 
group in the recurrently connected network that only receives spontaneous 
(homogeneous) excitation before (dashed curve) and after (solid curve) the above 

mentioned weight specialization. These neurons do not have direct synaptic 
connections between each other. (D) Similar to (C) with external stimulation from 
two delta-correlated pools similar to Figure 6C. (e) Connectivity matrix 
corresponding to three groups forming a feed-forward loop. (F) Spike-time 
correlogram (averaged over several neurons) between two successively 
connected groups when the first group receives correlated external stimulation.
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Another abstract concept to learn and detect general spiking 
signals has appeared recently, which does not rely on an emerg-
ing topological organization. For instance, in the liquid-state 
machine a recurrently connected network behaves as a reservoir 
that performs many arbitrary operations on the inputs, which 
allows simple supervised training to discriminate between dif-
ferent classes of input (Maass et al., 2002). Recent studies have 
shown that STDP applied on the recurrent network can boost 
the performance of the detection by such a system, by tuning 
the operations performed by the reservoir, which can be seen 
as a projection of the input signals onto a large-dimensional 
space (Henry et al., 2007; Carnell, 2009; Lazar et al., 2009). The 
resulting information encoding is then distributed, but hid-
den, in the learned synaptic structure, which can be analyzed 
in the spiking activity at a fine time scale, e.g., by polychronized 
groups (Paugam-Moisy et al., 2008). Altogether, STDP is capable 
of organizing a recurrent neuronal network to exhibit specific 
spiking activity depending on the presentation of input stimuli, 
as illustrated in Figure 9.

Finally, a number of studies focused on linking STDP 
to more abstract schemes of processing neuronal (spiking) 
information. A plasticity rule with probabilistic change for 
the weights has been found to modulate the speed of learning/
forgetting (Fusi, 2002). A similar concept of non-determin-
istic modification in the weight strength for STDP proved to 
be fruitful in terms of capturing multi-correlation between 
input and output spike trains (Appleby and Elliott, 2007). 
STDP has also been demonstrated to be capable of training 
a single neuron to perform a broad range of  operations for 
input–output mapping on the spike trains (Legenstein et al., 
2005). Recently, STDP has been used to perform an independ-
ent  component analysis on input signals that mimic retinal 
influx (Clopath et al., 2010). Using information theory, STDP 
has been related to optimality in supervised and unsupervised 
learning (Toyoizumi et al., 2005, 2007; Pfister et al., 2006; Bohte 

and Mozer, 2007). These contributions are important steps 
toward a global picture of the functional implications of STDP 
at a higher level of abstraction.

conclusIon
Spike-timing-dependent plasticity has led to a re-evaluation of our 
understanding of Hebbian learning, in particular by discriminating 
between rate-based and spike-based contributions to synaptic plas-
ticity for which temporal causality plays a crucial role. The resulting 
learning dynamics appears richer than what can be obtained by 
rate-based plasticity rules, in the sense that STDP alone can generate 
a mixture of stability and competition on different time scales. For 
neurons communicate through spikes and not rates, a procedure 
such as STDP is quite natural, whereas rates are an afterthought.

In a recurrently connected neuronal network, the weight evolu-
tion is determined by an interplay between the STDP parameters, 
neuronal properties, input correlation structure and network topol-
ogy. The functional implications of the resulting organization, 
which can be unsupervised or supervised, have been the subject 
of intense research recently. For both single neurons and recur-
rent networks, it has been demonstrated how STDP can generate a 
network structure that accurately reflects the synaptic input repre-
sentation for a broad range of stimuli, which can lead to neuronal 
sensory maps or implicit representation in networks. In particular, 
the study of the emerging (pairwise or higher-order) correlation 
structure has started to uncover some interesting properties of 
trained networks that are hypothesized to play an important role 
in information encoding schemes.

It is not yet clear, however, what underlying algorithm on the 
stimuli signals is performed through the weight dynamics, and 
how STDP encodes the input structure into the synaptic weight. 
This research may establish links between physiological learning 
mechanisms and the more abstract domain of machine learning, 
hence expanding our understanding of the functional role of syn-
aptic plasticity in the brain.

A B C

Figure 9 | (A) Single neuron (open circle) excited by external input 
neurons (filled circles) that correspond to specific spike-time correlation 
structure, such as oscillatory activity and spike patterns. The four 
thumbnail sketches on the LHS of the plot represent two different types 
of input correlation structure: inputs containing a repeated spike patterns 
(top two thumbnails) and inputs with an oscillating firing rate (bottom two 

thumbnails). (B) Strengthening of some input and recurrent connections 
(thick arrows) for several such neurons. (C) Resulting specialization of some 
areas (neighbor neurons) in the network to some of the presented stimuli 
(thumbnails), which implies differentiated topological spiking activity 
depending on the presented stimulus. External inputs are not 
represented in (C).
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