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previous theoretical works that have shown that specific forms of 
mixed selectivity can be harnessed to perform computation such 
as complex sensorimotor transformations (Zipser and Andersen, 
1988; Pouget and Sejnowski, 1997; Pouget and Snyder, 2000; Salinas 
and Abbott, 2001) and to model serial working memory (Botvinick 
and Watanabe, 2007) and visuomotor remapping (Salinas, 2004a) 
(see Discussion for more details).

Rules are prescribed guides for problem solving and flex-
ible decision making and they vary in the degree of abstraction. 
Examples include conditional (arbitrary) sensorimotor associa-
tions (if red light, then stop), task rules (respond if two stimuli 
match), strategies for decision making (if win, stay; if lose, switch). 
We assumed that the rule in effect is actively maintained by a recur-
rent neural circuit. In particular we hypothesized that the neural 
correlate of a rule is a self-sustained persistent pattern of activity 
(see e.g., Miller and Cohen, 2001). Small perturbations of these 
activity patterns are damped by the interactions between neurons, 
so that the state of the network remains close to one of the patterns 
of persistent activity. Hence these patterns are stable, and they 
are called attractors of the neural dynamics. Attractor network 
models have been previously studied for associative (Hopfield, 
1982) and working memory (Amit, 1989; Wang, 2001) of sensory 
stimuli. In these models a sensory stimulus activates one of the 
strongly interacting populations of neurons and the memory of 
stimulus identity is maintained by the persistent activity of the 
activated population.

INTRODUCTION
Neurons in the mammalian brain are highly heterogeneous (Soltesz, 
2005; Marder and Goaillard, 2006) and show diverse responses 
to sensory stimuli and other events. This diversity is especially 
bewildering with regard to the prefrontal cortex, a brain structure 
that has been shown to be critically important for higher cogni-
tive behaviors in numerous lesion (Petrides, 1982; Passingham, 
1993; Murray et al., 2000), clinical (Petrides, 1985), and imaging 
(Boettiger and D’Esposito, 2005) studies. Indeed, single-neuron 
recordings from the prefrontal cortex have yielded a rich phenom-
enology: neurons have been found to respond to sensory stimuli 
and show persistent activity during working memory (Fuster and 
Alexander, 1971; Funahashi et al., 1989; Romo et al., 1999), reflect 
animals’ decisions or intended actions (Tanji and Hoshi, 2008) or 
rewards (Barraclough et al., 2004), and encode contexts, task rules 
(Wallis et al., 2001; Genovesio et al., 2005; Mansouri et al., 2006, 
2007) and abstract concepts like numbers (Nieder and Miller, 2003). 
Typically, a single prefrontal cell is not merely responsive to a single 
event but shows selectivity to a combination of different aspects of 
the task being executed (mixed selectivity). These findings naturally 
pose the question: does such diversity of responses play a construc-
tive computational role in complex cognitive tasks?

We found a computational role for the neuronal response 
diversity, which is directly related to the function of prefrontal 
cortex of actively maintaining a representation of behavioral rules 
(Goldman-Rakic, 1987; Miller and Cohen, 2001). This is in line with 
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Our intention was to extend these models to the most  general 
case in which every attractor corresponds to a particular rule, as 
assumed in studies on specific tasks (Amit, 1988; O’Reilly and 
Munakata, 2000; Xing and Andersen, 2000; Loh and Deco, 2005). 
In particular we wanted to understand how the rule can affect our 
decisions, and how external events can select the rule in effect. We 
assumed that every event generates a driving force that steers the 
neural activity toward a different stable pattern. Such a pattern 
corresponds to a new rule and depends on both the external event 
and the previous rule in effect.

In such a scenario, as we will show, the absence of neurons with 
mixed selectivity typically compromises the possibility of construct-
ing a neural network that can perform the task. These difficulties are 
almost always encountered whenever the rules for committing the 
course of action contain a dependence on the context. For example, 
they are unavoidable in the case of the Wisconsin Card Sorting 
Test (WCST), when the subject needs to switch from one rule to 
another. The next rule to be selected clearly depends not only on 
the instruction to switch, but also on the previous rule in effect 
(context). The inability to switch in a WCST is often considered 
as an indication of a damage of prefrontal cortex (Milner, 1963), 
which is a brain area with abundance of mixed selectivity (see e.g., 
Asaad et al., 1998; Cromer et al., 2010; Rigotti et al., 2010).

We will then show that neurons with mixed selectivity and diverse 
response properties not only are necessary in our scenario to per-
form context-dependent tasks, but they are also sufficient to solve 
arbitrarily complicated tasks. Mixed selectivity is readily obtained 
by connecting cells with random connections to both the neurons 
in the recurrent circuit and to the neurons representing the external 
events. We will show that this simple form of heterogeneity grants 
the neural network the ability to implement arbitrarily compli-
cated tasks. Surprisingly, it turns out that the number of  randomly 

connected neurons needed to implement a particular task is not 
much larger than the minimal number of neurons required in a 
carefully designed neural circuit. This number grows only linearly 
with the number of inner mental states encoding the rules, and the 
task-relevant events, despite the combinatorial explosion of pos-
sible mixed selectivity responses. The randomly connected neurons 
possess response properties that are more diverse than required in a 
minimal circuit, as they respond to both necessary and unnecessary 
combinations of mental states and events. Moreover, such response 
properties are predicted to be pre-existent and universal as they 
should be observable before the learning process, independently 
from the task to be learned. Our work suggests that the observed 
diversity of the neural responses plays an important computational 
role, both in the acquisition and the execution of tasks in which 
our decision or our actions depend on the context.

RESULTS
MODELINg COMpLEx COgNITIvE TaSkS: ThE gENERaL fRaMEwORk
In order to model the most general rule-based behavior, we assume 
that subjects performing complex tasks go through a series of inner 
mental states, each representing an actively maintained disposition 
to behavior or an action that is being executed. Each state contains 
information about task-relevant past events and internal cognitive 
processes representing reactivated memories, emotions, intentions 
and decisions, and in general all factors that will determine or affect 
the current or future behavior, like the execution of motor acts. In 
Figure 1A we illustrate this scenario in the case of a simplified version 
of the Wisconsin Card Sorting Test (WCST). In a typical trial, the sub-
ject sees a sample stimulus on a screen and, after a delay, he is shown 
two test stimuli. He has to touch the test stimulus matching either 
the shape or the color of the sample, depending on the rule in effect. 
The subject has to determine the rule by trial and error; a reward 

Figure 1 | A context-dependent task. (A) A typical trial of a simplified 
version of the WCST, similar to the one used in the monkey experiment 
(Mansouri et al., 2006, 2007). The subject has to classify visual stimuli either 
according to their shape or according to their color. Before the trial starts, the 
subject keeps actively in mind the rule in effect (color or shape). Every event, 
like the appearance of a visual stimulus, modifies the mental state of the 
subject. An error signal indicates that it is necessary to switch to the 

alternative rule. (B) Scheme of mental states (thought balloons) and 
event-driven transitions (arrows) that enables the subject to perform the 
simplified WCST. (C) Neural representation of the mental states shown in (A): 
circles represent neurons, and colors denote their response preferences (e.g., 
red units respond when Color Rule is in effect). Filled circles are active neurons 
and black lines are synaptic connections. For simplicity, not all neurons and 
synaptic connections are drawn.
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of the scheme of Figure 1B, whereas in the other, when starting from 
the Shape Rule, the same event determines the selection of the Color 
Rule state. In the first context the neurons of the recurrent circuit 
excite each other so as to sustain the pattern of persistent activ-
ity representing the Color Rule mental state. The overall recurrent 
input to neurons selective for Color Rule must therefore be excitatory 
enough to sustain the persistent activity state representing the Color 
Rule. On the other hand, in the Shape Rule state the overall current 
should be below the activation threshold (Figure 2A, left). In order 
to induce a rule switch, the additional synaptic input generated 
by the Error Signal should be inhibitory enough to overcome the 
recurrent input and inactivate these neurons when starting from 
the Color Rule mental state, and excitatory enough to activate them 
when starting from the Shape Rule state (Figure 2A, right). This is 
impossible to realize because the neural representation of the Error 
Signal is the same in the two contexts. This problem is equivalent to 
the known problem of non-linear separability of the Boolean opera-
tion of exclusive OR (XOR) and it plagues most neural networks 
implementing context-dependent tasks.

We illustrated the problem in a specific and schematic exam-
ple, but more in general, a non-linear separability manifests itself 
whenever the same external event must activate a neural population 
in one context, and inactivate it in another, like a flip-flop. More 
formally, consider two attractors given by the activity patterns ξ1 
and ξ2

 (Color + Left and Shape + Left of the example of Figure 2). 
These represent two mental states preceding a particular event E 
that will induce a transition to ξ3

 (Shape in the example) when 

confirms that the rule was correct, and an error signal prompts the 
subject to switch to the alternative rule. Every task-relevant event 
such as the appearance of a visual stimulus or the delivery of reward 
is hypothesized to induce a transition to a different mental state.

The neural correlate of a mental state is assumed to be a stable 
pattern of activity of a recurrent neural circuit. The same neural 
circuit can sustain multiple stable patterns corresponding to dif-
ferent mental states. Events like sensory stimuli, reward delivery, or 
error signals steer the neural activity toward a different stable pat-
tern representing a new mental state. Such a pattern will in general 
depend on both the external event and the previous mental state.

In order to construct an attractor network that is able to per-
form a certain context-dependent task we need to find the synaptic 
couplings between neurons that satisfy the mathematical condi-
tions for guaranteeing that the attractors are stable fixed points of 
the neural dynamics and that external events induce the desired 
transitions. Interestingly, we found that even in the example of very 
simple context-dependent motor tasks, these conditions cannot 
be fulfilled simultaneously, similarly to what happens in the case 
of semantic networks (Hinton, 1981). We will show that this is a 
general problem of all context-dependent tasks.

fUNDaMENTaL DIffICULTIES IN CONTExT-DEpENDENT TaSkS
To illustrate the problem caused by context dependence, consider 
a task switching induced by an error signal in the simplified WCST 
(see Figure 2A). In one context, e.g., when the Color Rule is in effect, 
the error signal induces a transition to the Shape Rule state at the top 

Figure 2 | (A) Impossibility of implementing a context-dependent task in the 
absence of mixed selectivity neurons. We focus on one neuron encoding 
Color Rule (red). In the attractors (two panels on the left), the total recurrent 
synaptic current (arrow) should be excitatory when the Color Rule neuron is 
active, inhibitory otherwise. In case of rule switching (two panels on the 
right), generated by the Error Signal neuron (pink), there is a problem as the 
same external input should be inhibitory (dark blue) when starting from Color 

Rule and excitatory (orange) otherwise. (B) The effect of an additional neuron 
with mixed selectivity that responds to the Error Signal only when starting 
from Shape Rule. Its activity does not affect the attractors (two panels on 
the left), but it excites Color Rule neurons when switching from Shape Rule 
upon an Error Signal. In the presence of the mixed selectivity neurons, the 
current generated by the Error Signal can be chosen to be consistently 
inhibitory.
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Transitions” in Appendix). This result indicates that it is very 
likely to encounter this problem every time our action or, more 
in general, our next mental state, depends on the context. We 
will show in the next sections that neurons with mixed selectiv-
ity solve the problem in the most general case and for any neural 
representation.

ThE IMpORTaNCE Of MIxED SELECTIvITy
The main problem of the example illustrated in Figure 2A is origi-
nated by the assumption that each neuron is selective either to the 
inner mental state (Color or Shape Rule) or to the external input 
(such as the Error Signal). Indeed, consider an additional neuron 
that responds to the Error Signal only when the neural circuit is in 
the state corresponding to the Shape Rule. Such a neuron exhibits 
mixed selectivity as it is sensitive to both the inner mental state and 
the external input. Its average activity is higher in trials in which 
Shape Rule is in effect compared to the average activity in Color Rule 
trials. In particular, the average activity in time intervals during and 
preceding the Error Signal is higher when starting from Shape Rule 
than when starting from Color Rule. At the same time it is also selec-
tive to the Error Signal when we average across the two initial inner 
mental states corresponding to Color and Shape Rule. Neurons with 
such selectivity are widely observed in prefrontal cortex and we now 
show that their participation in the network dynamics solves the 
context dependence problem (see Figure 2B). The mixed selectiv-
ity neuron is inactive in the absence of external events, and hence 
it does not affect the mental state dynamics. However, it responds 
differently depending on the initial state preceding a transition 
induced by the Error Signal. This allows us to design the circuit in 
such a way that the Error Signal is consistently inhibitory. In this 
way, when starting from Color Rule, the external input inactivates 
the Color neurons, as required to induce a transition to the Shape 
Rule state. When starting from the Shape Rule, the mixed selectivity 
neuron is activated by the Error Signal and its excitatory output to 
the Color neuron can overcome the inhibitory current of the Error 
Signal and activate the Color neuron. Notice that it is possible to 
find analogous solutions every time the neuron has mixed selectiv-
ity to the Error Signal and to the rule in effect. In fact, all neurons 
with mixed selectivity are activated in an odd number of cases out 
of the four possible situations (all combinations of the two rules, 
Shape or Color, in the presence/absence of the Error Signal illus-
trated in Figures 2A,B). Any of these mixed selectivity neurons can 
solve the problem, as opposed to neurons that are selective only to 
the inner mental state or only to the external input (see also The 
Importance of Mixed Selectivity in Appendix for the importance 
of mixed selectivity in the general case).

RaNDOMLy CONNECTED NEURONS ExhIbIT MIxED SELECTIvITy
A neuronal circuit can be designed to endow the neurons with the 
necessary mixed selectivity (see e.g., Zipser and Andersen, 1988; 
Poggio, 1990; Pouget and Sejnowski, 1997; Pouget and Snyder, 2000; 
Salinas, 2004b). For example, neural network learning algorithms 
like backpropagation (see e.g., Hertz et al., 1991) are designed 
to solve non-linear separability problems similar to the one that 
we found in the case of context-dependent tasks. They rely on 
the introduction of neurons (hidden units) whose synapses are 
iteratively modified by a training procedure until the problem 

starting from ξ
1
, and to a different pattern ξ4

 (Color) when start-
ing from ξ

2
 (E = Err. Signal in Figure 2). We need to impose the 

following two conditions to guarantee that the mental states are 
fixed points of the dynamics:

ξ ξ1 10E →

ξ ξ2 20E → ,

where E0 denotes the absence of any event (e.g., when the recurrent 
network receives only spontaneous activity). At the same time we 
need to impose the two conditions corresponding to the event-
driven transitions:

ξ ξ1 3E →

ξ ξ2 4E → ,

where E represents the external event. We now prove that there is 
no set of synaptic weights that satisfies all the four conditions when 
for some neuron i we have that ξ ξ ξ ξ ξ ξi i i i i i

1 2 3 1 2 4≠ ≠ ≠, , .and
We define as Ii

µ (μ = 1,2) the total synaptic current to neuron 
i when the network is in one of the initial attractors ξµ

. For sim-
plicity and without loss of generality, we assume that the external 
current in the absence of events is 0. We now consider a case in 
which the activity of neuron i is different in the two initial mental 
states (i.e., when ( )( )I Ii i

1 2 0− − <θ θ , where θ is the threshold for 
neuronal activation). When the external input is activated upon 
the occurrence of an event, an extra current H

i
 is injected into 

neuron i. The current is uniquely determined by the event and by 
the weights of the synapses connecting the external to the recurrent 
neurons. As a consequence it is the same for all initial mental states, 
that is for both attractors ξ

1
 and ξ

2
. We can now show that in the 

case in which the external event should modify the activation of 
neuron i in both attractors, it is impossible to impose all conditions 
simultaneously. Indeed, consider, without loss of generality, a case 
in which for the attractors we have Ii

1 0− >θ  and Ii
2 0− <θ . We also 

assume that the transitions require that starting from mental state 
1, the neuron is inactivated (I Hi i

1 + < θ), whereas starting from 
mental state 2 the neuron is activated (I Hi i

2 + > θ). We see that it 
is not possible to fulfill all these requirements simultaneously as 
H

i
 should be negative enough to satisfy the condition for the first 

transition [H
i
 < −(I

i
 − θ) with I

i
 − θ > 0, to satisfy the mental state 

stationarity condition], and, at the same time, positive enough to 
allow for the second transition. As the synaptic currents I I Hi i i

1 2, ,  
are determined by the given patterns of neural activity and by the 
synaptic weights, this result implies that there is no set of synaptic 
weights that can satisfy all conditions. Notice that this result does 
not depend on the specific representations of the mental states 
and external events, but only on the existence of neurons whose 
state is activated in one context and inactivated in another con-
text by the same event (see Section “Constraints on the Types of 
Implementable Context-Dependent Transitions” in Appendix for 
a geometrical representation of this problem).

The probability of not encountering such a problem decreases 
exponentially with the number of transitions and with the number 
of neurons in the network, if the patterns of activities represent-
ing the mental states are random and uncorrelated (see Section 
“Constraints on the Types of Implementable Context-Dependent 
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probability. As the threshold θ increases, an RCN responds to a 
progressively decreasing fraction f of input patterns (sparse cod-
ing). For example, an RCN that by chance is strongly connected 
to both the Shape Rule recurrent neurons and to the Error Signal 
external neurons, will have the same mixed selectivity as the neuron 
represented in Figure 2B. Indeed, for a sufficiently high thresh-
old θ, it would respond to the Error Signal only when Shape Rule 
neurons are active. It turns out that the probability that an RCN, 
as a mixed selectivity neuron, responds to an odd number of the 
possible combinations of the external input and the inner mental 
state can be as large as 1/3 when θ is small and f is close to 1/2 
(see Figure 3B and Estimating the Number of Needed RCNs in 
Appendix). Surprisingly, this result implies that the number of 
RCNs needed to solve a context-dependent problem is on average 
only three times larger than the number of neurons needed in a 
carefully designed neural circuit.

In general, the probability that an RCN is a mixed selectivity neu-
ron, depends on the coding level f

0
 (the fraction of active neurons in 

the recurrent and the external network), on the correlations between 
the representations of different mental states and different external 
inputs, and on the threshold θ that determines the coding level f of 
the RCNs. However, it does not depend on the values and the spe-

is solved. In all these cases, these additional neurons exhibit the 
mixed selectivity described in the previous section after a laborious 
training procedure.

We found that there is a simple and surprisingly general solu-
tion to the problem of context dependence that does not require 
any training. The solution is based on the observation that neurons 
which receive inputs from the recurrent network and the exter-
nal neurons with random synaptic weights (Randomly Connected 
Neurons, or RCNs) naturally exhibit mixed selectivity. Our neural 
network model exploits this fact and is composed of three popula-
tions of McCulloch–Pitts neurons (i.e., neurons that are either active 
when the total synaptic current generated by the connected neurons 
is above some threshold θ, inactive otherwise): (1) external neu-
rons representing external events, (2) recurrent neurons encoding 
the mental state, (3) RCNs (see Figure 3A). The recurrent neurons 
receive inputs through plastic synaptic connections from all the 
neurons in the three populations. The RCNs receive connections 
from both the external and the recurrent neurons through synapses 
with fixed, Gauss distributed random weights (with zero mean).

If the activity threshold θ = 0, then every RCN responds on 
average to half of all possible input patterns (dense coding), as 
the total synaptic current is either positive or negative with equal 

Figure 3 | (A) Neural network architecture: randomly connected neurons 
(RCN) are connected both to the recurrent neurons and the external neurons by 
fixed random weights (brown). Each RCN projects back to the recurrent network 
by means of plastic synapses (black). Not all connections are shown. (B) 
Probability that an RCN displays mixed selectivity (on log scale) and hence 
solves the problem of Figure 2 as a function of f, the average fraction of input 
patterns to which each RCN responds. Different curves correspond to different 
coding levels f0 of the representations of the mental states and the external 

inputs. The peak is always at f = 1/2 (dense RCN representations). (C) Probability 
that an RCN has mixed selectivity as a function of f, as in (B), for different 
positive values of the overlap o between the two initial mental states, and the 
two external inputs corresponding to the spontaneous activity and the event. 
Again the peak is always at f = 1/2. The curve decays gently as o goes to 1. (D) 
As in (C), but for negative values of the overlap o, meaning that the patterns 
representing the mental states are anti-correlated. There are now two peaks, but 
notice that they remain close to f = 1/2 for all values of o.
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a gENERaL RECIpE fOR CONSTRUCTINg RECURRENT NETwORkS ThaT 
IMpLEMENT COMpLEx TaSkS
Consider our model shown in Figure 3A. Given a scheme of mental 
states and event-driven transitions like the one of Figure 1B, the 
weights of the plastic synaptic connections are modified according 
to a prescription that guarantees that the mental states are stable 
patterns of activity (attractors) and that the events steer the activ-
ity toward the correct mental state. In particular, for each attractor 
encoding a mental state, and for each event-driven transition we 
modify the plastic synapses as illustrated in Figure 4. For the example 
of the transition Shape + Left to Color induced by an Error Signal of 
Figure 4A we clamp the recurrent neurons to the pattern of activity 
corresponding to the initial state (Shape + Left). We then compute the 
activity of the RCNs. We isolate in turn all the recurrent neurons and 
we modify their plastic synapses according to the perceptron learn-
ing rule (Rosenblatt, 1962) so that the total synaptic input drives the 
neurons to the activation state they should have at time t + ∆t, after 
the transition has occurred. In case of the mental states we impose 
their stationarity by requiring that each pattern representing a men-
tal state at time t reproduces itself at time t + ∆t (see Figure 4B). In 

cific distribution of the random synaptic weights, provided that the 
synapses are not correlated to other synapses or to the input patterns. 
This means that the synaptic connections to the RCNs can be posi-
tive and negative, entirely positive (excitatory), or entirely negative 
(inhibitory), and the probability of finding a mixed selectivity neuron 
remains the same, provided that the threshold θ is properly shifted 
(see Estimating the Number of Needed RCNs in Appendix).

Dense representations of RCN patterns of activities (f = 1/2) 
are more efficient than sparse representations (f → 0 or f → 1), 
regardless of the coding level f

0
 of the representations of the men-

tal states and the external inputs. This is illustrated in Figure 3B 
where the probability that an RCN responds as a mixed selectivity 
neuron is plotted against f for three values of f

0
. The proof is valid 

for patterns representing mental states and events that are random 
and uncorrelated. All curves have a maximum in correspondence 
of f = 1/2 and they are relatively flat for a wide range of f values. 
The maximum decreases gently as f

0
 approaches 0 (approximately 

as f0
) because the overlap between different mental states and 

external inputs progressively increases, and this makes it difficult 
for an RCN to discriminate between different initial mental states, 
or different external inputs. For the same reasons, the maximum 
decreases in the same way as f

0
 tends to 1.

As the patterns representing mental states and events become 
progressively more correlated, the number of needed RCNs 
increases. In particular, in Figure 3C we show the probability of 
mixed selectivity as a function of f of the RCNs for different cor-
relation levels between the patterns representing mental states and 
external events. The degree of correlation is expressed as the average 
overlap o between the two patterns representing the initial mental 
states (the same overlap is used for the two external events). o varies 
between −1 and 1, and it is positive and close to 1 for highly similar 
patterns (Figure 3C) or negative (Figure 3D), for anti-correlated 
patterns. The overlap o = 0 corresponds to the case of uncorrelated 
patterns. As o increases, it becomes progressively more difficult to 
find an RCN that can have a differential response to the two ini-
tial mental states. This is reflected by a probability that decreases 
approximately as 1− o. For all curves plotted in Figure 3C, the 
maximum is always realized with f = 1/2. Interestingly, for anti-
correlated patterns, the maximum splits in two maxima that are 
slightly above 1/3 (see Figure 3D). The maxima initially move away 
from f = 1/2 as the patterns become more anti-correlated, but then, 
for o < −5/6, they stop diverging from the mid point. The optimal 
value for f remains within the interval [0.3, 0.7] for the whole range 
of correlations.

In all the cases that we analyzed, which cover practically all pos-
sible statistics of the patterns for the mental states and the external 
events, the probability of finding an RCN that solves the context-
dependent task is always surprisingly high, provided that the pat-
terns of activities of the RCNs are not too sparse (i.e., when f is 
sufficiently close to 1/2, within the interval [0.3, 0.7]).

In this section we analyzed the probability that an RCN solves a 
single, generic, context-dependent problem. How does the number 
of needed RCNs scale with the complexity of an arbitrary task with 
multiple context dependencies? In order to answer this question, 
we first need to define the neural dynamics and construct a circuit 
that harnesses RCNs to implement an arbitrary scheme of mental 
states and event-driven transitions.

Figure 4 | Prescription for determining the plastic synaptic weights. 
(A) For event-driven transitions the synapses are modified as illustrated in the 
case of the transition from Shape + Left to Color induced by an Error Signal. 
The pattern of activity corresponding to the initial attractor (Shape + Left) is 
imposed to the network. Each neuron is in turn isolated (leftmost red neuron 
in this example), and its afferent synapses are modified so that the total 
synaptic current generated by the initial pattern of activity (time t, denoted by 
INPUT), drives the neuron to the desired activity in the target attractor 
(OUTPUT at time t + ∆t). (B) For the mental states the initial and the target 
patterns are the same. The figure shows the case of the stable pattern 
representing the Color mental state. The procedure is repeated for every 
neuron and every condition.
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distance r
B
 > 0 from an attractor representing a mental state, then 

the network dynamics was required to relax into the corresponding 
attractor. Equivalently, every pattern of activity with an overlap 
greater than o = 1 − 2r

B
 with a given attractor pattern was required 

to evolve toward that attractor. For each set of parameters m, r, f, 
and r

B
, we computed the minimal number of required total neurons 

in the network (recurrent and RCNs), so that the r transitions are 
correctly implemented and all the m mental states have a basin of 
attraction of at least r

B
.

Figure 5A shows the required total number of neurons (recur-
rent and RCNs) as a function of the coding level f of the RCNs 
found by varying the number of neurons so that the RCNs were 
always four times as many as the recurrent neurons. The results are 
shown for r = m transitions for three different numbers of contexts, 
m = 5,10,20. Consistently with the estimates of the probability 
that an RCN solves a single context dependence problem plotted 
in Figure 3, the minimal number of required neurons is in corre-
spondence of dense RCNs patterns of activity (f = 1/2). With f = 1/2, 
we examined in Figure 5B how the minimal number of needed 
neurons depends on the task complexity, and in particular how it 
depends on the number of mental states m and transitions r. Notice 
that for the curves in Figure 5B labeled with r > m, the same event 
drives more than one transition, which is what typically happens in 
context-dependent tasks. The total number of neurons needed to 
implement the scheme of mental states and event-driven transitions 
and to keep the size of the basins of attraction constant, increases 
linearly with m and the slope turns out to be approximately pro-
portional to the ratio r/m, the number of contexts in which each 
event can appear. In other words, the number of needed neurons 
increases linearly with the total number of conditions to be imposed 
for the stability of mental states, and the event-driven transitions. 
This favorable scaling relation indicates that highly complicated 
schemes of attractor states and transitions can be implemented in 
a biological network with a relatively small number of neurons.

SCaLINg pROpERTIES Of ThE baSINS Of aTTRaCTION
The RCNs have been introduced to solve the problems originated 
by the context dependence of some of the transitions. What is 
the effect of the RCNs on the size and the shape of the basins 
of attraction? The participation of the RCNs population in the 
network dynamics effectively leads to the dilation of the space in 
which the patterns of neural activity are embedded. Specifically, 
as the number of RCNs increases, the absolute distance between 
the activity vectors representing different combinations of mental 
states and external inputs also increases. As a result, the patterns of 
activity representing the mental state and the external input become 
more distinguishable and easily separable by read-out neurons. 
This projection into a higher dimensional space is remindful of the 
support vector machines (SVM) strategy of pre-processing the data 
(Cortes and Vapnik, 1995).

The space dilation caused by the introduction of the RCNs can 
solve the non-linear separabilities generated by context dependence. 
At the same time it has the desirable property of approximately 
preserving the structure of the basins of attraction. Indeed, the 
total synaptic inputs to the RCNs have statistical properties that 
are similar to the ones of random projections. Random projections 
are simply obtained by multiplying the vectors representing the 

order to guarantee the stability of these patterns, we require that 
active neurons are driven by a current that is significantly larger than 
the minimal threshold value θ (i.e., I > θ + d, where d > 0 is known 
as a “learning margin”). Analogously, inactive neurons should be 
driven by a current I < θ − d. To avoid that the stability condition 
is trivially satisfied by inflating all synaptic weights, we require that 
the learning margin should grow with the length of the vector rep-
resenting all the synaptic weights on the dendritic tree (Krauth and 
Mezard, 1987; Forrest, 1988) (see Methods: Details of the Model for 
the details of the synaptic dynamics). When the learning procedure 
is repeated for all neurons, the patterns of activity corresponding 
to the mental states are cooperatively maintained in time through 
synaptic interaction and are robust to perturbations.

All conditions corresponding to the mental states and the event-
driven transitions can be imposed if there is a sufficient number of 
RCNs in the network. If it is not possible to satisfy all conditions 
simultaneously we keep adding RCNs and we repeat the learning 
procedure. We show that such a procedure is guaranteed to converge 
(see Estimating the Number of Needed RCNs in Appendix).

DENSE NEURaL REpRESENTaTIONS REqUIRE a NUMbER Of NEURONS 
ThaT gROwS ONLy LINEaRLy wITh ThE NUMbER Of MENTaL STaTES
If we follow the prescription of the previous paragraph, how many 
RCNs do we need in order to implement a given scheme of mental 
states and event-driven transitions? Not surprisingly, the answer 
depends on the threshold θ for the activation of the RCNs, and 
hence on the RCNs’ coding level f. Indeed we have shown that the 
probability that an RCN solves a single context dependence prob-
lem depends on f, and that it is maximal for dense representations. 
We expected to observe a similar dependence in the full dynamic 
neural network implementing a complex scheme of multiple men-
tal states and context-dependent event-driven transitions.

In the extreme limit of small f (ultra-sparse coding), each RCN 
responds only to a single, specific input pattern (f = 1/2N, where 
2N is the total number of possible patterns and N is the number 
of synaptic inputs per RCN). We prove in Section “Estimating the 
Number of Needed RCNs” in Appendix that for the ultra-sparse 
case, any scheme of attractors and event-driven transitions can be 
implemented and the basins of attraction can have any arbitrary 
shape. Unfortunately, the number of necessary RCNs grows expo-
nentially with the number of recurrent and external neurons. Such 
a dependence reflects the combinatorial explosion of possible pat-
terns of neural activity that represent conjunctions of events.

On the other hand, with a larger f, it is more likely that an RCN 
solves our problem, as for the mixed selectivity neuron of Figure 2B. 
To quantify this effect we devised a benchmark to estimate how the 
number of necessary RCNs scales with f and the complexity of a 
context-dependent task in the case of multiple context dependen-
cies. Specifically, we simulated a network with RCNs with coding 
level f implementing a set of r random transitions between m mental 
state attractors represented by random uncorrelated patterns. Since 
the result of a transition triggered by an external stimulus depends 
in general on the initial mental state, m can also be thought of as 
the number of distinct contexts. Additionally, in all these analyses 
we sought to make sure that the attractors representing the mental 
states had a finite basin of attraction r

B
. This means that, when-

ever the activity pattern was in an initial configuration within a 
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To summarize, the RCNs always increase the absolute distances 
between the input patterns of activity and preserve approximately 
the relative distances. The small distortions introduced by the non-
linear input–output function have the beneficial effect of solving 
the non-linear separability due to context dependence, and the 
negative effect of partially disrupting the topology of the basins 
of attraction.

The effect on the capacity are illustrated in Figures 5B–D. The 
basin of attraction for a fixed point is estimated in Figure 5C. 
Starting from the fixed point, we perturbed the neurons of the 
recurrent network, and measured the fraction of perturbed pat-
terns that relaxed back into the correct attractor. The fraction of 
correct relaxations stays at 1 when the initial patterns are close to 
the attractor and then it decreases with the fraction of perturbed 
neurons. As long as the fraction of correct relaxations is near 1, 
most of the patterns are within the basin of attraction. The different 
curves correspond to a different number of RCNs (at fixed number 

 patterns in the original space by a matrix with random uncorrelated 
components. These projections preserve vectors similarities with 
high probability if the projection space is large enough (Johnson 
and Lindenstrauss, 1984). As a consequence random projections 
preserve the structure of the basins of attraction, because all points 
surrounding the attractor in original space are mapped onto points 
which maintain the same spatial relation.

Because of the non-linearity due to the sigmoidal neuronal 
input–output relation, the RCNs distort the space and preserve 
similarities only with some degree of approximation. For instance, 
small distances are on average amplified more than large distances. 
However, similarly to what happens for random projections, the 
ranking of distances is preserved (again, on average). In other 
words, if pattern B is more similar to A than C, also the corre-
sponding RCN representations will be likely to preserve the same 
similarity relations. This is an important property for preserving 
the topology of the basins of attraction.

Figure 5 | (A) Distributed/dense representations are the most efficient: total 
number of neurons (recurrent network neurons + RCNs) needed to implement 
r = m transitions between m random attractor states (internal mental states) as 
a function of f, the average fraction of inputs that activate each individual RCN. 
The minimal value is realized with f = 1/2. The three curves correspond to three 
different numbers of mental states m (5,10,20). The number of RCNs is 4/5 of 
the total number of neurons. (B) Total number of needed neurons to implement 
m random mental states and r transitions which are randomly chosen between 
mental states, with f = 1/2. The number of needed neurons grows linearly with 
m. Different curves correspond to different ratios between r and m. The size of 

the basin of attraction is at least rB = 0.03 (i.e., all patterns with an overlap larger 
than o = 1 − 2rB = 0.94 with the attractor are required to relax back into the 
attractor). (C) The size of basins of attraction increases with the number of 
RCNs. The quality of retrieval (fraction of cases in which the network dynamics 
flows to the correct attractor) is plotted against the distance between the initial 
pattern of activity and the attractor, that is the maximal level of degradation 
tolerated by the network to still be able to retrieve the attractor. The four curves 
correspond to four different numbers of RCNs. In all these simulations the 
number of recurrent neurons was kept fixed at N = 220 and m = r = 48. (D) 
Same as (B), but for larger basins of attraction, rB = 0.10.
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rate-based model neurons with excitation mediated by AMPA and 
slow NMDA receptors, and inhibition mediated by GABA

A
 recep-

tors. Figure 6A shows the simulated activities of two rule selective 
neurons during two consecutive trials after a rule shift. The rule in 
effect changes from Color to Shape just before the first trial, causing 
an erroneous response that is corrected in the second trial, after the 
switch to the alternative rule. Although the two neurons shown in 
Figure 6A are always selective to the rule, their activity is modulated 
by other events throughout all the epochs of the trials. This is due 
to the interaction with the other neurons in the recurrent network 
and with the RCNs. Figure 6B shows the activity of three RCNs. 
They typically have a rich behavior exhibiting mixed selectivity that 
changes depending on the epoch (and hence on the mental state). 
Two features of the simulated neurons have already been observed 
in experiments: (1) neurons show rule-selective activity in the inter-
trial interval, as observed for a significant fraction of cells in PFC 
(Mansouri et al., 2006); (2) the selectivity to rules is intermittent, 
or in other words, neurons are selective to a different extent to the 
rules depending on the epoch of the trial. This second feature is 
analyzed in detail in the next section.

ObSERvED pROpERTIES Of MIxED SELECTIvITy NEURONS: 
INTERMITTENT SELECTIvITy IN SIMULaTIONS aND ExpERIMENTS
To analyze more systematically the selectivity of simulated mixed 
selectivity cells and to compare it to what is observed in prefron-
tal cortex, in Figure 7B we plotted for 70 cells whether they are 
significantly selective to the rule for every epoch of the trial. The 
cells are sorted according to rule selectivity in different epochs, 
starting from the neurons that are rule selective in the inter-trial 
interval. Whenever a cell is rule selective in a particular epoch, 
we draw a black bar. In the absence of noise, all cells would be 
selective to the rule, as every mental state is characterized by a 
specific collective pattern of activity and the activity of each neuron 
is unlikely to be exactly the same for two different mental states. 
However we consider a cell to be selective to the rule only if there 
are significant differences between the average activity in Shape 
trials and the average activity in Color trials. The results depend 
on the amount of noise in the simulated network, but the general 
features of selectivity described below remain the same for a wide 
range of noise levels.

The selectivity clearly changes over time, as the set of accessible 
mental states for which the activity is significantly different, changes 
depending on the epoch of the trial. This intermittent selectivity 
is also observed in the experimental data (Mansouri et al., 2006) 
reproduced in Figure 7C. More recently it has been observed also 
in (Cromer et al., 2010). The experimental selectivity is in general 
less significant than in the simulations for several reasons. In the 
experiment the neural activity is estimated on a limited number of 
trials from spiking neurons and hence the noise can be significantly 
higher than in the simulations. However there might be a more 
profound reason for the discrepancy between experiments and 
simulations, which is related to the fact that the monkey might be 
using a strategy that is more complicated than the one represented 
in Figure 1B. If, indeed, we assume that the monkey keeps actively 
in mind not only the rule in effect, but also some other information 
about the previous trial that is not strictly essential for performing 
the task, then the number of accessible states during the inter-trial 

of recurrent neurons) and it is clear that the introduction of RCNs 
expands the basin of attraction, although the number of required 
neurons seems to grow exponentially with the size of the basin.

However, when the complexity of the task increases, the depend-
ence of the number of RCNs on the number of mental states and 
the number of transitions remains linear for all the different sizes 
of basins of attraction that we studied. In order to preserve this 
scaling, we increased in the same proportion the number of neu-
rons of the recurrent network and the RCNs, so that the RCNs can 
solve the non-linear separabilities, but at the same time they do not 
distort too much the distances in the original space of the recur-
rent network. In Figure 5D we show how the number of required 
neurons (recurrent neurons + RCNs) scales with the number of 
mental states for the benchmark of Figure 5B. The two figures differ 
in the required sizes for the basins of attraction. For Figure 5B the 
basin of attraction had to be large enough to guarantee that initial 
patterns with a perturbation as high as 3% (i.e., the probability of 
changing the state of each neuron is r

B
 = 0.03) would all relax back 

in the attractor. In Figure 5D the requirement about the basin of 
attraction was that initial patterns with a 10% perturbation would 
all relax back in the attractor. In both cases the number of needed 
neurons is linear in both the number of mental states m and the 
number of transitions r. In particular, if N

r
 is the total number of 

required neurons, we have that:

N
r
 ∼ α(r/m)m,

where α is a function of the number of transitions per state (r/m). 
In our case, α = βr/m, where β depends on the size of the basins 
of attraction. It is practically constant for r

B
 = 0.03, 0.10 (β  60) 

and it increases rapidly for larger basins with r
B
 = 0.20 (β  200, 

not shown in the figures). Our simulations show in all cases that 
the number of needed neurons increases linearly with the number 
of conditions to be imposed (i.e., the number of attractors plus the 
number of event-driven transitions), regardless of the size of the 
basin of attraction.

The introduction of RCNs increases the absolute distances 
between the input patterns, and also has the beneficial effect of 
speeding up the learning process. Indeed the convergence time of 
the perceptron algorithm that we use to impose all the conditions 
for attractors and transitions decreases with an increasing number 
of RCNs, as shown in Section “The Number of Learning Epochs 
Decreases with the Number of RCNs” in Appendix, Figure 8. This 
is true also when we impose that the basins of attractions must 
have a given fixed size, or in other words, that the generalization 
ability of the network remains unchanged for different numbers 
of RCNs.

MODELINg RULE-baSED bEhavIOR ObSERvED  
IN MONkEy ExpERIMENTS
The prescription for building neuronal circuits that implement a 
given scheme of mental states and event-driven transitions is general, 
and it can be used for arbitrary schemes provided that there is a suf-
ficient number of RCNs. To test our general theory, we applied our 
approach to a biologically realistic neural network model designed 
to perform a rule-based task which is analog to the WCST described 
in Figure 1 (Mansouri et al., 2006, 2007), whose scheme is repro-
duced in Figure 7A. We implemented a network of more realistic 
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indicating rule selectivity. Obviously, there is no cell that is selective 
to the sample stimulus before it is presented (inter-trial interval), but 
in the remaining part of the trial the pattern of red bars seems to be 
as complex as the one for rule selectivity. Notice that some cells are 
selective to both the rule and the color in some epochs.

pREDICTED fEaTURES Of MIxED SELECTIvITy: DIvERSITy,  
pRE-ExISTENCE, aND UNIvERSaLITy
The RCNs and the recurrent neurons show mixed selectivity that 
is predicted to exhibit features that are experimentally testable. In 
particular:

1. Mixed selectivity should be highly diverse, in time, as poin-
ted out in the previous section (see also Lapish et al., 2008; 
Sigala et al., 2008), and in space, as different neurons exhibit 
significantly different patterns of selectivity. Such a diversity 
is predicted to be significantly higher than in the case of alter-
native models with hidden units, in which the synaptic con-
nections are carefully chosen to have a minimal number of 
hidden units. According to our model, neurons with selectivity 

interval can be significantly larger, and this can strongly affect the 
selectivity pattern of Figure 7B. This is illustrated in Figures 7D–F, 
where we assumed that the monkey remembers not only the rule in 
effect, but also the last correct choice (see e.g., Barraclough et al., 
2004 for a task in which the activity recorded in PFC contains 
information about reward history). In such a case the activity in 
the inter-trial interval is more variable from trial to trial and the 
pattern of selectivity resembles more closely the one observed in 
the experiment of Mansouri et al. (2006).

The statistics of the black bars depends on the structure of the 
neural representations of the mental states and on the statistics of 
the random connections to the RCNs. In particular, the correlations 
between mental states can generate correlations between patterns of 
selectivity in different epochs, and across neurons. The fact that rule 
selectivity is not a property inherent to the cell is a general feature of 
our network which will be demonstrated also for different types of 
selectivity, such as a stimulus feature or reward delivery (observed in 
the experiment of Mansouri et al., 2006). For example, the simula-
tions in Figure 7F show for the same cells of Figure 7E the selectivity 
to the color of the sample stimulus (red bars), on top of the bars 

Figure 6 | Simulation of a Wisconsin Card Sorting-type Task after a rule 
shift. (A) Simulated activity as a function of time of two sample neurons of the 
recurrent network that are rule selective. The first neuron (red) is selective to 

“color” and the second (green) to “shape”. The events and the mental states for 
some of the epochs of the two trials are reported above the traces. (B) Same as 
(A), but for three RCNs.
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show the activity of a few neurons as a function of time. The tone 
is a new event, and it is initially ignored by the network collective 
dynamics and the behavior is still controlled by the old scheme of 
mental states and event-driven transitions. In other words, the tone 
is unable to induce any transition from one mental state to another. 
In general the behavior would be unaffected by any distractor that 
is sufficiently dissimilar from the relevant sensory stimuli. This 
resistance to distractors has been observed in prefrontal circuits 
(Sakai et al., 2002).

Although the tone does not initially induce any transition from 
one mental state to another, the activity of individual neurons is 
visibly affected by it, and there are clearly cells that are already 
selective to the conjunction of tone and mental states even before 
the meaning of the tone is learned. The selectivity to the tone is 
shown in the four bottom panels of Figures 8B,C, in which we 
plot the activity of a few representative RCNs in the presence (red) 
and in the absence of the tone (blue). These neurons clearly show 
a selectivity to the conjunction of tone and mental states (see yel-
low stripes).

This kind of behavior reflects an efficient form of gating that 
allows the neural network to perform correctly the task, but, at the 
same time, to encode transiently in its activity the occurrence of a 
new event (the tone).

It important to notice that these neurons that respond to con-
junctions of tone and rule encoding mental states are irrelevant for 
the simplified WCST, but they are anyway present in the  network 

to  behaviorally irrelevant conjunctions of events and mental 
states are predicted to be observable at any time (see Rigotti 
et al. (2010) for preliminary experimental evidence in orbito-
frontal cortex and amygdala).

2. Mixed selectivity should pre-exist learning: neurons that are 
selective to behaviorally relevant conjunctions of mental sta-
tes and events are predicted to be pre-existent to the learning 
procedure of a task.

3. Mixed selectivity should be “universal”: the neurons of the net-
work have the necessary mixed selectivity to solve arbitrarily 
complicated tasks that involve the present and future mental 
states. Were we able to impose artificially an arbitrary pattern 
of activity representing a future mental state, we would observe 
neurons that are selective to conjunctions of that mental state 
and familiar or unfamiliar events, even before any learning 
takes place.

These three features are illustrated in Figure 8 where we make 
specific predictions in the case in which the simplified WCST 
illustrated in Figure 1 and analyzed in the previous section is 
modified to produce a rule switch whenever a tone is heard. We 
consider the situation in which the subject has already learned and 
is correctly performing the WCST. At some point, a new sensory 
stimulus (e.g., a tone) signals a rule switch, and the task is modi-
fied as indicated in Figure 8A. We now analyze the behavior of the 
simulated network before the new task is learned. Figures 8B,C 

Figure 7 | (A) Minimal scheme of mental states and event-driven transitions 
for the simplified WCST (same as in Figure 1B). (B) Rule selectivity pattern for 
70 simulated cells: for every trial epoch (x-axis) we plotted a black bar when 
the neuron had a significantly different activity in shape and in color blocks. The 
neurons are sorted according to the first trial epoch in which they show rule 
selectivity. (C) Same analysis as in (B), but for spiking activity of single-units 

recorded in prefrontal cortex of monkeys performing an analog of the WCST 
(Mansouri et al., 2006). (D) Scheme of mental states and event-driven 
transitions with multiple states during the inter-trial interval (e) Same as (B), 
but for the history-dependent scheme in (D). (F) Same as (e), but for the 
selectivity to the color of the sample (red bars). Short black bars indicate rule 
selectivity.
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that exhibit mixed selectivity to rules and tone, and that can greatly 
facilitate the learning process (see discussion in Asaad et al., 1998 
and Rigotti et al., 2010).

DISCUSSION
Heterogeneity is a salient yet puzzling characteristic of neural activ-
ity correlated with high level cognitive processes such as decision 
making, working memory, and flexible sensorimotor mapping. 
Usually models are built to reflect the way we believe the brain 
solves a certain problem, and neurons with particular functional 
properties are carefully chosen to make the system work. In some 
cases these systems are tested to see whether they remain robust in 

and observable (high diversity feature). As it turns out, they are 
essential for rule switching induced by the tone, as they solve the 
context dependence problem of the task to be learned, and they 
are already present before the learning process takes place (pre-
existence feature). The mixed selectivity of the RCNs is also uni-
versal, as it would solve any other task with elevated probability 
(universality feature). The statistics of the selectivity to rules and 
to the tone of 62 RCNs is shown in Figure 8D. The black bars 
represent selectivity to rules, as in Figures 7B,C,E, and the red 
ones represent selectivity to the tone. In both cases, the selectivity 
in the different epochs is shown before the learning process takes 
place. Figure 8D shows that there is a large proportion of RCNs 

Figure 8 | Diversity, pre-existence and universality of neurons with mixed 
selectivity. (A) Extended WCST (eWCST): task switch is driven not only by an 
error signal, but also by a tone (green arrow). (B,C) All necessary mixed 
selectivities are pre-existent (i.e., they exist before learning). The simulated 
network is trained on the WCST of Figure 1D. We show the neural activity in trials 
preceding learning of eWCST. The neurons in the top panels of (B,C) encode the 
rule in effect and the motor response Right, as in Figure 6. (B) Shows one trial in 
which Color Rule is in effect, (C) a trial in which Shape Rule is in effect. The other 
plots represent the activity of four cells during the same trial in the absence (blue) 

and in the presence (red) of the tone. Some neurons are selective to the rule, but 
not to the tone (top). Some others have mixed selectivity to the tone and the rule 
(two central panels) even when the conjunctions of events are still irrelevant for 
the task (the network is not trained to solve eWCST). See in particular the neuron 
in the top central panel, that responds to the tone only when Color Rule is in 
effect. Finally, there are neurons that are selective to the tone but not to the rule. 
(D) Selectivity to the rule in effect (black) and to the tone (red) before learning of 
the eWCST (cf. Figure 7F). There are many neurons with the mixed selectivity that 
are necessary to solve the eWCST before any learning takes place.
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state encoding the context and to the sensory stimulus. Similarly to 
what we did with the RCNs, he also chose a random permutation 
of gain functions to generate these neurons. However, in contrast 
with what we did, the author decided not to model explicitly the 
neural circuit that maintains actively the context representation and 
produces the neurons with mixed selectivity. Moreover, and most 
importantly, he presented an interesting case study, but he did not 
study  systematically the scaling properties of his neural system.

In the works discussed above, the neurons with mixed selectiv-
ity are the result of specific, prescribed synaptic weights. However, 
there are also more general learning rules to find the weights to 
hidden units that have the needed mixed selectivity. A classical 
example is the Boltzmann machine (Ackley et al., 1985), which 
has been designed to solve similar problems, in which attractors 
corresponding to non-linearly separable patterns are stabilized by 
the activity of hidden units. Recent extensions of the Boltzmann 
machine algorithm (O’Reilly and Munakata, 2000; Hinton and 
Salakhutdinov, 2006) can also deal with event-driven transitions 
from one attractor to another. Our approach is similar because 
our RCNs are analogous to the hidden units of the Boltzmann 
machines. However, in our case the synaptic connections to the 
RCNs are not plastic and we do not need to learn them.

We would like to stress that what we propose is not a real learn-
ing algorithm, but rather a prescription for finding the synaptic 
weights. A real, biologically plausible learning algorithm would 
probably require a significantly more complicated system, with 
many of the features discussed in O’Reilly and Munakata (2000). 
However we believe that it is important to notice that our network 
can implement arbitrarily complicated schemes of attractors and 
event-driven transitions with a very simple prescription to find 
the desired synaptic configuration. This might greatly simplify and 
speed up a real learning algorithm. Moreover, mixed selectivity 
neurons that are predicted to be present even before the learning 
procedure starts, can be used to learn mental states that  represent 
rules or other abstract concepts. One example is the creation of 
mental states corresponding to different temporal contexts as con-
sidered in Rigotti et al. (2010). Recently, it has also been shown 
(Dayan, 2007) that mixed selectivity neurons implemented with 
multilinear functions can play an important role in neural systems 
that implement both habits and rules during the process of learning 
of complex cognitive tasks. Multilinearity implements conditional 
maps between the sensory input, the working memory state, and 
an output representing the motor response.

We assumed that the RCNs have fixed random synapses, but this 
does not imply that our network requires the existence of synapses 
that are not plastic. It might be possible that the statistics of the 
random synaptic weights varies on a timescale that is significantly 
longer than the timescales over which the tasks are learned. We still 
do not know whether the introduction of this form of learning 
can improve the performance of the network and to what extent, 
although we know that in general learning on multiple timescales 
can be greatly beneficial for memory performance (Fusi et al., 2005). 
We know that there are forms of learning rules that modify the 
synaptic weights of neurons that are initially randomly connected 
without disrupting the performance of the network. This is the 
case of multilayer perceptrons with synapses that are initialized at 
random values, as discussed below.

spite of the presence of disorder and the diversity observed in the 
real brain. Instead, here we showed that heterogeneity actually plays 
a fundamental computational role in complex, context-dependent 
tasks. Indeed, it is sufficient to introduce neurons that are randomly 
connected in order to reflect a mixture of neural activity encod-
ing the internal mental state and the neural signals representing 
external events. The introduction of these cells in the network is 
sufficient to enable the network to perform complex cognitive tasks 
and facilitates the process of learning. One of the main results of 
our work is that the number of necessary randomly connected 
neurons is surprisingly small and typically is comparable to the 
number of cells needed in carefully designed neural circuits. The 
randomly connected neurons have the advantage that they provide 
the network with a large variety of mixed selectivity neurons from 
the very beginning, even before the animal can correctly perform 
the task. Moreover, when the representations are dense, they are 
“universal” as they are likely to participate in the dynamics of mul-
tiple tasks.

OThER appROaChES baSED ON hIDDEN UNITS wITh MIxED 
SELECTIvITy
Mixed selectivity has already been proposed as a solution to similar 
and different problems. For example, mixed selectivity to the retinal 
location of a visual stimulus and the position of the eyes can be 
used to generate a representation of the position of external objects 
and then determine the changes in joint coordinates needed to 
reach the object (Zipser and Andersen, 1988; Pouget and Sejnowski, 
1997; Pouget and Snyder, 2000; Salinas and Abbott, 2001). Neurons 
with these response properties have been observed in the parietal 
cortex of behaving monkeys. Neurons with mixed selectivity to the 
identity of a visual stimulus and its ordinal position in a sequence 
have been used to model serial working memory (Botvinick and 
Watanabe, 2007). Mixed selectivity to stimulus identity and to a 
context signal have been used to model visuomotor remapping 
(Salinas, 2004a). More in general, complex non-linear functions 
of the sensory inputs like motor commands, can be expressed as 
a linear combination of basis functions (Poggio, 1990). These 
non-linear functions can be implemented by summing the inputs 
generated by neurons with mixed selectivity to all possible com-
binations of the relevant aspects of the task (e.g., different features 
of the sensory stimuli). One of the unresolved issues related to this 
approach is that the number of needed mixed selectivity neurons 
increases exponentially with the number of relevant aspects of the 
task (combinatorial explosion). This should be contrasted with the 
linear scaling of our approach based on RCNs.

The solution that we propose is based on the introduction of 
additional neurons that are randomly connected and that modify 
the representation of inner mental states in the presence of external 
inputs. As discussed, our solution is simple and it reproduces the 
response properties of neurons recorded in prefrontal cortex. A simi-
lar solution to the context dependence problem has been proposed 
by Salinas (2004a,b), who harnessed gain modulation to solve the 
non-linear separabilities. His approach is similar to the basis func-
tion approach that was just discussed, in Section “Introduction,” as 
he introduces neurons whose activity depends on the product of a 
function of the identity of the stimulus and a function of the context 
signal. These neurons have mixed selectivity to the inner mental 
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The optimal fraction f for solving context dependence problems 
is 1/2, and this is not surprising as such a fraction would maximize 
the amount of information that can be stored in the neural patterns 
of activity of the RCNs. Indeed RCNs have to provide the net-
work with patterns of activities that contain the information about 
both the inner mental states and the external inputs. However, 
the observed f might be smaller than the optimal value 1/2 for at 
least two reasons. The first one is related to metabolic costs, as it is 
clear that sparser representations (small f ) would require a lower 
neural activity and hence a lower energy consumption. The second 
one concerns the interference between different mental states. The 
same network has probably to solve also non-context-dependent 
tasks or subtasks, like simple one-to-one mappings. In such a case, 
elevated values of f can degrade the performance because of the 
interference of the memorized representations of the mental states, 
as already shown by several works on the importance of sparseness 
for attractor neural networks (see e.g., Amit, 1989). Fortunately, 
Figure 3B show that the probability that an RCN solves a context-
dependent problem is nearly flat around the maximum at f = 1/2, 
and it decreases rapidly only for significantly sparse representations. 
The optimal f when all these factors are considered, is more likely 
to be in an interval like 0.1 − 0.5.

STOChaSTIC TRaNSITIONS
In our simulations of a WCST-type task, a transition from one rule 
to another was induced deterministically by an Error Signal or by 
the absence of an expected reward. However the parameters of the 
network and the synaptic couplings can be tuned in such a way that 
certain transitions between states occur stochastically with some 
probability (see Stochastic Transitions Between Mental States in 
Appendix). Such a probability might depend on the production of 
neuromodulators like acetylcholine or norepinephrine, which have 
been hypothesized to signal expected and unexpected uncertainty 
(Yu and Dayan, 2005). In uncertain environments, where reward is 
not obtained with certainty even when the task is performed cor-
rectly, the animal should accumulate enough evidence before switch-
ing to a different strategy. Such a behavior could be implemented by 
assuming that an independent system keeps track of recent reward 
history and produces a neuromodulator controlling the probability 
of making a transition between the mental states corresponding 
to alternative strategies. This scenario could explain the observed 
behavior of the monkeys in the WCST-type task (Mansouri et al., 
2006, 2007) in which, when task rule switching was signaled by 
change of reward contingencies, they switched to a different rule 
with a probability close to 50%. A detailed analysis of the monkey 
behavior in the particular experiment that we modeled would be 
very interesting but goes beyond the scope of this work.

why aTTRaCTORS?
One of the limitations on the number of implementable tran-
sitions in the absence of mixed selectivity units is due to the 
constraints related to the assumption that initial states are stable 
patterns of persistent activity, or, in other words, attractors of the 
neural dynamics. This is based on the assumption that rules are 
encoded and maintained internally over time as persistent neural 
activity patterns (Goldman-Rakic, 1987; Amit, 1989; Miller and 
Cohen, 2001; Wang, 2001). Given the price we have to pay, what 

OThER MODELS baSED ON RaNDOMLy CONNECTED NEURONS
Networks of randomly connected neurons have been studied since 
the 1960s (Marr, 1969; Albus, 1971). In these works the authors, 
inspired by the ideas by P. H. Greene (Greene, 1965), realized that 
random subsets of input patterns can provide an efficient, compact 
representation of the information contained in the patterns. At 
the same time, these representations can be less correlated than 
the original patterns, and hence they can facilitate learning and 
memorization. In the neural circuit that we propose, we basically 
create with the RCNs a compressed representation of the inner 
mental state and the external input, and in this sense the RCNs 
play a similar role to the neurons of Greene (1965), Marr (1969), 
and Albus (1971). Moreover, the non-linearity introduced by the 
f–I curve of the RCNs contributes to increase the distances between 
highly correlated patterns, similarly to the non-linearities intro-
duced in the cited works. It is important to notice that the RCNs 
provide our recurrent circuit with an explicit dynamical process 
that decorrelates the patterns representing the mental states and 
the external inputs and, at the same time, it the distances are dilated 
without disrupting the structure of the basins of attraction (see 
Scaling Properties of the Basins of Attraction). Simplified models 
in which the patterns of activity are assumed to be random and 
uncorrelated do not explicitly address the issue of how the original 
representations are decorrelated, and whether the topology of the 
basins of attraction is preserved (see e.g., Hopfield, 1982 for a classic 
example and Cerasti and Treves, 2010 for a more recent application 
of the same idea to the feed-forward pre-processing performed by 
the dentate-gyrus).

More recently randomly connected neurons have been used to 
generate complex temporal sequences and time varying input–
output relations (Maass et al., 2002; Jaeger and Haas, 2004; Sussillo 
and Abbott, 2009) and to compress, transmit and decompress 
 information (Candes and Tao, 2004). In many other cases they 
also have been used implicitly in the form of random initial weights. 
For example in the case of gradient descent learning algorithms 
like backpropagation (Zipser and Andersen, 1988). As proved in 
our manuscript, much of the needed mixed selectivity to solve 
non-linear separabilities might be already present in the initial 
conditions when the synaptic weights of hidden units start from 
a random configuration. We suspect that in many situations the 
learning rules would not need to modify these synapses to achieve 
a similar performance.

hOw DENSE ShOULD NEURaL REpRESENTaTIONS bE?
Our results show that in order to solve the problems related to 
context dependence, the optimal representations for mental states, 
external inputs and for the patterns of activities of the RCNs 
should be dense. This means that the majority of the neurons is 
expected to respond to a large fraction of aspects of the task, and 
in general to complex conjunctions of events and inner mental 
states. Despite the lack of systematic studies providing a direct 
quantitative estimate of the average coding level f, dense repre-
sentations have been widely reported in prefrontal cortex (Fuster 
and Alexander, 1971; Funahashi et al., 1989; Miller et al., 1996; 
Romo et al., 1999; Wallis et al., 2001; Nieder and Miller, 2003; 
Genovesio et al., 2005; Mansouri et al., 2006, 2007; Tanji and 
Hoshi, 2008).
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We then implemented a more complex, realistic, rate-based neural 
network model to simulate a version of the Wisconsin Card Sorting 
Test (Figures 6A,B, 7B,E,F, 8, and A9).

ThE SIMpLIfIED fIRINg-RaTE NETwORk
Network architecture
The architecture of the neural network is illustrated in Figure 3A. 
There are three populations of cells: (1) the recurrent neurons, 
whose patterns of activity encode the inner mental state, (2) the 
external neurons, encoding the events that drive the transitions 
from one mental state to another, and representing the input 
neurons that are presumably in different brain areas and (3) the 
Randomly Connected Neurons (RCN), that provide the network 
with mixed selectivity neurons. The recurrent neurons receive input 
from themselves and the other two populations and project back to 
themselves and the RCNs. The RCNs receive input from both the 
external neurons and the recurrent network, and project back to 
the recurrent neurons, but, for simplicity, they are not connected 
among themselves. The external neurons do not receive any feed-
back from the other two populations.

All connections to the neurons in the recurrent network are 
plastic, whereas the connections to the RCNs are fixed, random 
and uncorrelated. The random connections to an RCN are Gauss 
distributed with zero mean and with a variance equal to 1/N, where 
N is the number of pre-synaptic neurons.

Neural dynamics
The recurrent neurons are simplified McCulloch–Pitts-like neu-
rons whose activity is described by a continuous valued variable 
which varies between −1 and 1. Their dynamics is governed by 
the equation:

τ ν ν φ θd

dt
I i Ni

i i i= − + −( ) = …, , , ,1
 

(1)

where τ = 5 ms, φ(x) = tanh(x), θ
i
 is a threshold, and I

i
 is the total 

synaptic current generated by all the afferent neurons (recurrent, 
RCNs and external):

I J J J i Ni ij
r

j
j

ij j
j

ij
x

j
x

j

= + + = …∑ ∑ ∑ν ν νrcn rcn , , , .1

Here Jr is the matrix of the plastic recurrent connections, Jrcn are the 
plastic connections from the RCNs to the recurrent network, and Jx 
is the matrix of the plastic synaptic connections from the external 
neurons to the recurrent neurons. Notice that for these simplified 
neurons both the neural activity ν

i
 and the synaptic connections can 

be positive or negative. The activity of the RCNs and of the exter-
nal neurons are denoted by ν νj j

xrcn and , respectively. The dynamics 
of the RCNs is governed by the same differential equation as the 
recurrent neurons, with the only difference that the total synaptic 
current is given by I K Ki j ij

r
j j ij

x
j
xrcn = +Σ Σν ν , where Kr and Kx are the 

afferent random connections from the recurrent network and from 
the external neurons, respectively. The integration time τ plays a 
role analogous to the transmission delays used in Sompolinsky and 
Kanter (1986) to implement transitions in temporal sequences of 
patterns of neural activities.

is the computational advantage of representing mental states with 
attractors? One of the greatest advantages resides in the ability 
to generalize to different event timings, for instance to main-
tain internally a task rule as long as demanded behaviorally. In 
most tasks, all animals have a remarkable ability to disregard the 
information about the exact timing when such an information 
is irrelevant. For example when they have to remember only the 
sequence of events, and not the time at which they occur. The 
proposed attractor neural networks with event-driven transitions 
can generalize to any timing without the necessity of re-training. 
Generalizing to different timings is a problem for alternative 
approaches that encode all the detailed time information (Maass 
et al., 2002, 2007; Jaeger and Haas, 2004) or for feed-forward 
models of working memory (Goldman, 2009). The networks 
proposed in Maass et al. (2002), Jaeger and Haas (2004), and 
Goldman (2009) can passively remember a series of past events, in 
the best case as in a delay line (Ganguli et al., 2008). The use of an 
abstract rule to solve a task requires more than a delay line for at 
least two reasons: (1) Delay lines can be used to generate an input 
that encodes the past sequence of recent events and such an input 
can in principle be used to train a network to respond correctly 
in multiple contexts. However, the combinatorial explosion of all 
possible temporal sequences would make training costly and inef-
ficient as the network should be able to recognize the sequences 
corresponding to all possible instantiations of the rules. (2) Even 
if it is possible to train the network on all possible instantiations 
of the rule, it is still extremely difficult if not impossible to train 
the network on all possible timings. A delay line would consider 
distinct two temporal sequences of events in which the event 
timings are different, whereas any attractor based solution would 
immediately generalize to any timing.

Models of working memory based on short term synaptic plastic-
ity (Hempel et al., 2000; Mongillo et al., 2008) can operate in a regime 
that is also insensitive to timing, but they require the  presence of 
persistent activity and the imposition of the stability conditions on 
the synaptic matrix, similarly to what we proposed in our approach. 
Moreover, these attractor networks do not act like fast switches 
between steady states, instead they are endowed with slow recurrent 
dynamics and exhibit transients such as quasi-linear ramping activity 
on the timescale of up to a second (Wang, 2002, 2008).

CONCLUSION
Mixed selectivity allows the network to encode a large number of 
facts, memories, events, intentions and, most importantly, vari-
ous combinations of them without the need of an unrealistically 
large number of neurons when the representations are dense. The 
necessary mixed selectivity can be easily obtained by introducing 
neurons that are connected randomly to other neurons, and they 
do not require any training procedure. The present work suggests 
that the commonly observed mixed selectivity of neural activity 
in the prefrontal cortex is important to enable this cortical area to 
subserve flexible cognitive behavior.

METhODS: DETaILS Of ThE MODEL
To examine the scaling behavior of our network in the limit of a 
large number of neurons, we used a network of simplified firing-rate 
model neurons. This model was used to generate Figures 5 and A7. 
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In order to have attractors, the fixed points should also be 
stable. This can be achieved by requiring that the total synaptic 
currents not only satisfy the desired conditions, but also that 
they are far enough from the threshold θ (Krauth and Mezard, 
1987; Forrest, 1988). In this way, small perturbations of the input 
modify the total synaptic current, but not the state of activation 
of the neurons. The distance from the threshold is usually named 
learning margin, which we will denote by d. The synapses are 
updated until

ν
i
(t + ∆t)(I

i
(t) − θ

i
) > d > 0,

where I
i
(t) is the total synaptic current to neuron i, θ

i
 is its firing 

threshold, and ν
i
(t + ∆t) is the desired output activity. In other 

words, synapses are updated as long as I
i
(t) does not surpass θ

i
 + d 

when neuron i is required to be active at time t + ∆t. Analogously, 
the synapses are modified until I

i
(t) goes below θ

i
 − d when the 

desired output is inactive (ν
i
(t + ∆t) = −1).

These conditions can be easily satisfied by scaling up all synap-
tic weights by the same factor. For example, consider the case in 
which ν

i
(I

i
 − θ

i
) = d′ < d. If all synapses are multiplied by a factor 

a, then I
i
 → aI

i
, and there is always an a such that the condition 

ν
i
(aI

i
 − θ

i
) > d is satisfied. This implies that it is possible to satisfy 

the condition also in situations when stability is not guaranteed. To 
avoid this problem we block synaptic updates only when (Krauth 
and Mezard, 1987; Forrest, 1988)

ν θ γi i i ij
j

t t I t J( )( ( ) ) ,+ − > ∑∆ 2

 

(2)

where γ is the stability parameter, and the J
ij
s are the synapses that 

are afferent to neurons i. The stability parameter γ is chosen to be 
maximal, i.e., we progressively increase γ until the algorithm stops 
converging within a reasonable number of learning epochs (we 
chose 500). Such a procedure is similar to one of the γ-margin 
modified perceptron algorithms presented in Korzen and Klesk 
(2008), and allows us to approximately maximize the size of the 
basin of attraction of the stable patterns of activities corresponding 
to the mental states (Forrest, 1988). Summarizing, the equation for 
updating a synaptic weight J

ij
 is:

J J t t t t t I t Jij ij i j i i i ij
j

→ + + − + − +








∑λν ν ν θ γ( ) ( ) ( )( ( ) ) ,∆ Θ ∆ 2

where Θ is the Heaviside function and the learning rate λ is set 
to 0.01.

DEfINITION Of ThE SIzE rB Of ThE baSIN Of aTTRaCTION
An attractor has a basin of attraction of size at least r

B
, if the net-

work dynamics evolves toward the attractor whenever it starts from 
activity patterns within a distance r

B
 from the attractor. In the sim-

plified firing-rate network, we verify whether an attractor has a size 
r

B
 with the following procedure. For each attractor ξµ

i , (i = 1,…,N) 
we set the initial activity of the recurrent network to a pattern ξ0 
which differs from ξµ by a fraction r

B
 of neurons: ξ ξµ

i i
0 = −  for 

r
B
N randomly chosen indices i (ξ ξµ

j j
0 =  for the remaining (1 − r

B
)

N neurons). Flipping the pattern of activity of the recurrent net-
work, also causes some RCNs to flip. Once the recurrent network 
is set to the perturbed pattern of activity (ν ξi i( )0 0=  for i = 1,…,N) 

In the absence of any stimulus, the νi
x values are set to a fixed 

pattern of neural activities ν νi
x

i
x= 0 chosen at random with the same 

statistics of the patterns representing an external event. We will 
name νi

x0 “spontaneous” activity pattern. When an external event 
occurs, the νi

x values are set to the pattern representing the event 
for a duration of 2τ, and then are set back to ν νi

x
i
x= 0.

ThE pRESCRIpTION fOR DETERMININg ThE SyNapTIC wEIghTS
The plastic connections Jr, Jrcn and Jx are determined by imposing 
the mathematical conditions that ensure both the stability of the 
patterns of activity representing the mental states and the correct 
implementation of the event-driven transitions.

The first step is to analyze the task to be performed and con-
struct a scheme of mental states and event-driven transitions like 
the one of Figure 1B. Notice that in general there are multiple 
schemes corresponding to different strategies for performing the 
same task. The second step is to choose the patterns of neural activi-
ties representing the mental states (for recurrent neurons) and the 
external events (for the external neurons). The structure of these 
patterns is normally the result of a complex procedure of learn-
ing whose analysis is beyond the scope of this work. However the 
prescription for constructing the neural network applies to any 
neural representation. The patterns we chose were all vectors with 
components ν

i
 = ±1.

The third step is to go iteratively over all mental state attractors 
and event drive transitions and modify the weights of the plastic 
synaptic connections until all mathematical conditions for the sta-
bility of the attractors and the event-driven transitions are satisfied. 
The algorithm is illustrated in Figures 4A,B where we show two 
snapshots of neural activity that are contiguous in time. For each 
transition from one initial attractor to a target attractor we set 
the external input to the pattern of activity that corresponds to 
the triggering event (see Figure 4A). At the same time we impose 
the pattern of activity of the initial attractor on the recurrent net-
work. We then compute the activity of the RCNs at fixed external 
and recurrent neuronal activity. For each neuron in the recurrent 
network we compute the total synaptic current generated by the 
activity imposed on the other neurons and we modify the synapses 
in such a way that the current drives the neuron to the state of 
activation at time t + ∆t. In particular the synaptic currents at time 
t will generate an activity pattern, under the assumption that the 
post-synaptic neurons will fire if and only if the total input currents 
are above the firing threshold θ. The synaptic weights are updated 
only if the synaptic currents do not match the output activities in 
the target attractor (i.e., the pattern of activity at time t + ∆t), as in 
the perceptron learning algorithm (Rosenblatt, 1962). If they need 
to be modified, the synaptic weights are increased by a quantity 
proportional to the product of the pre-synaptic activity at time t 
and the desired post-synaptic activity (i.e., the pattern of active and 
inactive neurons at time t + ∆t in the figure). The stationarity of the 
patterns of activity corresponding to the mental states is imposed 
in a similar way, by requiring that the pattern at time t generates 
itself at time t + ∆t (see Figure 4B). Such a procedure is iterated 
until all conditions are simultaneously satisfied, guaranteeing that 
the patterns of activity of the desired attractors are fixed points of 
the neural dynamics and that the transitions are implemented in 
a one-step dynamics.
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generated by the population of neurons y and injected into popula-
tion x (x,y = E,I where E and I indicate excitatory and inhibitory 
neurons respectively). The time development of the synaptic cur-
rents is governed by:

τ φ νxy
i
xy

i
xy

ij
xy

xy j
y

j

dI

dt
I J= − + ∑ ( ),

 

(4)

where Jxy is a matrix of synaptic weights. The synaptic currents from 
excitatory to excitatory neuron (xy = EE) are mediated by NMDA 
receptor channels with a slow timescale τ

EE
 = τ

NMDA
 = 100 ms. They 

saturate at high frequencies ν
j
s of the pre-synaptic spikes due to 

the saturation of the open channels with slow decay rate (Wang, 
1999; Brunel and Wang, 2001):

φ ν ν τ
ν τEE i
i EE

i EE
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Currents from excitatory to inhibitory neurons (xy = IE) are mediated 
by fast excitatory AMPA synapses with τ

IE
 = τ

AMPA
 = 5 ms and φ

IE
(ν

i
) = ν

i
. 

Finally, for xy = II (inhibitory self-couplings) and xy = EI (inhibitory 
to excitatory) we have GABA synapses with τ

xy
 = τ

GABA
 = 2 ms and 

φ
xy

(ν
i
) = ν

i
. The synaptic matrices JIE, JII, JEI have been chosen so that the 

total inhibitory current to the excitatory population is proportional 
to I Ji

EI
i= − −ν , where J− is the most negative synapse obtained by the 

learning procedure. This condition can be expressed as:

J− = −JEI(1 + |JII|)−1JIE.

Given a set of excitatory synaptic weights JEE, it is always possible to 
compute a JII large enough so that all fixed points are stable. Then the 
product JEIJIE is determined by the above expression for a given J−. We 
chose without any loss of generality JEI = 1 and JIE = −J−(1 + |JII|).

The network is set to its initial conditions simply by clamping 
the firing rates νi

E of the recurrent and of the external neurons to the 
pattern of activity representing the desired starting attractor and the 
“spontaneous activity” stimulus pattern, respectively, and letting all 
the currents and firing rates variables of the other neurons evolve 
according to Eqs 4 and 3 until a stationary state is reached.

External events are simulated by changing the activities of the 
external neurons to the pattern representing the event for a time 
∆t = 2τ

NMDA
, where τ

NMDA
 is the longest synaptic time scale, and then 

setting them back to the spontaneous activity pattern.
Additionally, we introduced a multiplicative noise term that 

modifies the firing rate of the excitatory neurons νi
E. This term is 

meant to capture finite-size fluctuations widely studied in networks 
of integrate-and-fire neurons (Brunel and Hakim, 1999). Formally 
this is expressed by the following change in Eq. 3:

ν ν σ ηi
E

i
Et t t( ) ( ) ( ) ,→ +( )1 2

 (5)

where η(t) is a Gaussian process with unitary variance and 
σ2 = 0.01.

appENDIx
CONSTRaINTS ON ThE TypES Of IMpLEMENTabLE  
CONTExT-DEpENDENT TRaNSITIONS
A geometrical representation of the context dependence problem
We now go back to consider the rule-selective neuron i in the recur-
rent network of Section “Fundamental Difficulties in Context-
Dependent Tasks”. The implementation of a context-dependent 

and the RCN network is set to the corresponding pattern, we run 
the neural dynamics (Eq. 1) for a time T = 10τ. We then verify 
whether the recurrent network evolved toward the attractor ξµ by 
calculating the overlap oμ(T) at time T between ξµ and the resulting 
activity of the recurrent network ν( )T . The overlap is defined as 
o T N Ti

N
i i

µ µν ξ( ) / ( )= =1 1Σ . We count the initial pattern ξ0 as being in 
the basin of attraction of ξµ if and only if this overlap is higher than 
0.99. This procedure was typically repeated for 20–100 randomly 
chosen initial patterns ξ0 , all at distance r

B
 from ξμ. If all resulted as 

being in the basin of attraction of ξμ, then we defined ξμ as having 
a basin of attraction of size at least r

B
.

bIOLOgICaLLy REaLISTIC fIRINg-RaTE MODEL
Figures 6A,B show simulations of a biologically more realistic 
 firing-rate model, in which separate excitatory and inhibitory neu-
rons are connected through NMDA, AMPA, and GABA mediated 
synaptic currents. We started by training the synaptic weights of a 
simplified neural network of McCulloch–Pitts neurons, as described 
in the previous section. For the simulations of Figure 6 we imple-
mented the scheme of mental states and transitions of Figure 1B. 
For the neural representations of mental states and external inputs, 
we used Nr = 8 neurons for the recurrent network, 2 encoding the 
rule (color, shape), 4 for the identity of the sample stimulus (2 
colors and 2 shapes), and 2 for the motor responses (touch left, 
or touch right). These representations result in highly correlated 
patterns of mental states. The external stimuli are represented by 
Nx = 14 neurons: four indicating the color and the shape of the 
Sample stimulus, eight representing the color and shape of the two 
Test stimuli, and two representing either the Reward or NoReward. 
We used 384 RCNs, that is slightly more than a 16-fold amount of 
the total number of recurrent and external neurons.

After convergence of the learning prescription for the chosen rep-
resentations of states and scheme of transitions, we obtained a matrix 
J of synaptic weights, which in general can be both positive and nega-
tive. To enforce Dale’s law, we separated excitation and inhibition by 
introducing a population of inhibitory neurons whose activity is a 
linear function of the total synaptic input generated by the excitatory 
neurons. In practice we rewrote the synaptic matrix J as:

J J Jij ij= −+ − ,

where J− is the absolute value of the most negative synapse and 
the Jij

+’s are all positive. J− can be interpreted as the product of the 
synaptic strengths from excitatory to inhibitory and from inhibitory 
to excitatory neurons when the transfer function for the inhibitory 
neurons is linear. We followed a similar procedure for the RCNs, by 
replacing each of them with an excitatory neuron, and introducing 
a second inhibitory population that allows the connections project-
ing from the neurons replacing the RCNs to be always positive.

The activity of the excitatory and inhibitory neurons are denoted 
by the firing rates νi

E and νI, respectively. The equations governing 
the dynamics of these firing rates are:

τ ν ν τ ν νE
i
E

i
E

i
EE

i
EI

i I

I
I IE IId

dt
F I I I

d

dt
F I I= − + + +( ) = − + +( )ext , ,

 
(3)

where F is a threshold linear function with unitary gain: F(x) = x 
if X > 0; 0 otherwise, the currents Ii

ext are generated by the neurons 
representing the external events, and the synaptic currents Ii

xy  are 
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task can be interpreted as a classification of presynaptic inputs. 
The correlations between the inputs make the patterns classified by 
neuron i non-linearly separable, or equivalent to the computation 
of the XOR (exclusive OR) operator (Minsky and Papert, 1969). 
Neuron i is indeed required to perform a computation which is 
equivalent to an XOR of the input generated by the recurrent net-
work and the external input: when the external input is inactive, 
neuron i has to be active in one mental state, inactive in the other, 
whereas the activated external input requires neuron i to switch 
to a different state of activation. Figure A1B shows a graphical 
representation of the problem in the specific case of the simplified 
WCST, and in particular when ξ1

 is the mental state Shape + Left, 
ξ2

 is Color + Left, and E is the Error Signal.
We now consider the most general case and we denote by h0 

the vector of the activities of the external neurons in the absence 
of events, and by h1, the pattern of activity corresponding to the 
occurrence of E. The input patterns are N-dimensional activity 
vectors where N is the total number of neurons on a dendritic tree. 
Whenever we have the non-linear separability problem described 
above, the four input patterns are constrained to lie on a plane 
that is spanned by two vectors: (1) one along the direction of inner 
mental state selectivity, e.g., [ξ2

,h0] − [ξ1
,h0], and (2) one along the 

external input selectivity, e.g., [ξ1
,h1] − [ξ1

,h0]. Figure A1B shows 
a representation of such a plane. The projections of the four pos-
sible inputs onto the plane lie at the vertices of a rectangle (in our 
specific example, a square), where we placed four red circles. The 
position of the rectangle with respect to the axes will in general 
depend on the vectors ξ1 2,

,h0,1. We chose a simple symmetric case 
in which the axes cross at the center of the rectangle. The filling 
colors of the circles represent the desired output activity of one 
particular neuron of the recurrent network. In our specific case it 
is the output of a neuron representing Color Rule, when we impose 
the four conditions corresponding to the attractors and the Error 
Signal driven transitions indicated in the figure. For example, when 
we impose that Color + Left is an attractor (lower right), the neuron 
should be active, and this is represented by a filled circle. The Error 
Signal should trigger a transition to Shape and hence inactivate the 
neuron (empty circle in the upper right quadrant). The output of 
our particular neuron is a XOR of the Color-Error Signal neuron 
activities. The fact that there is no set of synaptic weights imple-
menting this function translates graphically in the impossibility of 
finding an hyperplane (a line on the projection plane) separating 
the inputs that should activate the Color neuron from those that 
should inactivate it.

Figure A1 | (A) Architecture of the network, reproduced from Figure 2 for 
convenience. (B) The context dependence problem is equivalent to the XOR 
(exclusive OR problem). The N-dimensional space of all possible inputs is 
projected onto the plane described in the text. The circles represent the desired 
output activity of a specific neuron (in our case a red, Color Rule encoding 
neuron) in response to the input identified by the location of the circle on the 
plane. The desired outputs are dictated by the requirements of the conditions 
corresponding to the attractors (lower quadrants) and the event-driven 
transitions (upper quadrants). (C) Effects of an additional neuron with pure 
selectivity to the inner mental states. Left: the neuron (gray) responds to two of 
the four possible inputs (leftmost points) and hence it has pure selectivity. The 
response to the two inner mental states (Shape + Left, Color + Left) averaged 
over the two possible external inputs is represented by two bars above the 

square. The response to the external inputs averaged over the inner mental 
states is plotted vertically and it is represented again by two bars. The neuron 
responds differently and is selective to the inner mental states but not to the 
external inputs. Center: effects of the introduction of the pure selectivity neuron 
in the network dynamics. The input space goes from a plane to the third 
dimension, spanned by the activity of the additional neuron. Two of the circles 
representing the outputs of the Color Rule neurons (see B) move up to reflect 
the activity states of the additional neuron. The axes directions are correct, but 
their position is arbitrary. Right: an RCN with pure selectivity responding to the 
same input space represented in (B). The position and orientation of the red line 
is determined by the random synaptic weights. For this particular realization 
separates two inputs on the left, which are the input patterns activating the 
RCN. (D) Same as in (C) but for a mixed selectivity neuron.
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The probability of not encountering the context-dependent problem is 
exponentially small for random uncorrelated patterns
The probability that such a situation occurs depends on the statis-
tics of the patterns representing the mental states, and on the set 
of event-driven transitions. We now compute the probability that 
the conditions for attractors and transitions cannot be imposed 
simultaneously when the attractor patterns are random and uncor-
related and the neurons are active with probability 1/2. Given one 
particular event occurring in two contexts corresponding to two 
attractors, the probability that it generates a non-linear separability 
on one output neuron, is 1/8. Indeed, there are two possible outputs 
for each of the four input patterns (two attractors and two transi-
tions), for a total of 24 = 16 possible input–output relations. For two 
of them (the XOR, and its negation) the patterns are non-linearly 
separable. As there are N output neurons, the probability that the 
patterns are linearly separable for all outputs is

1
1

8
8−



 ∼ −

N

Ne / ,

which goes to 0 exponentially with N. If the number of contexts C 
in which the same event occurs is more than 2, then the exponent 
is proportional to NC. Notice that the probability that the problem 
is solvable decreases as N increases.

It therefore turns out that the case of random uncorrelated pat-
terns, which requires a simple learning prescription for attractor 
neural networks (Hopfield, 1982; Amit, 1989), becomes extremely 
complicated in the case of attractors and event-driven context-
dependent transitions. On the other hand, correlations between 
patterns might reduce the performance degradation, as they could 
decrease the probability that the same event modifies in two dif-
ferent directions the activity of a particular neuron.

ThE IMpORTaNCE Of MIxED SELECTIvITy
Mixed selectivity and context dependence
The problem of non-linear separability described in the previous 
Section can be solved by the introduction of neurons with mixed 
selectivity that participate in the network dynamics. We first show 
in Figure A1C that additional neurons with “pure selectivity” either 
to the inner mental state or to the external input cannot solve the 
problem. Then, in Figure A1D, we show that there is always a solution 
when we introduce a mixed selectivity neuron in the network. Such a 
solution can be implemented as a network of RCNs (Figure A1A).

Consider a neuron that is selective to the mental states, i.e., 
when its average response to the inputs containing ξ1, (i.e., [ξ1

,h0] 
and [ξ1

,h1]), is different from the average response to the inputs 
containing ξ2

. The left part of Figure A1C shows one example of a 
neuron that is selective to the mental state, but not to the external 
input. The input space is represented as in Figure A1B, and we now 
consider the output of an additional neuron that activates when in 
Shape + Left mental state, but not in Color + Left, regardless of the 
external input. Active outputs are indicated by filled gray circles.

When we introduce such a neuron in the network, the 
N-dimensional input space becomes N + 1 dimensional. We can 
observe the effects on the Color Rule neuron of the embedding in 
a higher dimensionality in the middle part of Figure A1C. The 
extra dimension introduced by the additional neuron is along the 
z-axis, and the plane of Figure A1B is now spanned by the x and y 
axes. Two of the circles now move up to reflect the activation of the 

additional neuron when the network is in the Shape + Left mental 
state. Unfortunately, this new placement still does not allow us to 
draw a plane that separates the inputs activating the Color Rule 
neuron from those that inactivate it. This shows that “pure selectiv-
ity neurons” do not solve the non-linear separability problem. The 
rightmost plot will be explained in the next section.

Consider now the mixed selectivity neuron of Figure A1D. 
Such a neuron is selective both for the mental states and the exter-
nal input, as shown by the leftmost plot of Figure A1D. Now the 
embedding in a higher dimensional space can allow us to solve 
the problem, as only one circle moves up in the central plot of 
Figure A1D. It is easy so see that it is possible to draw a plane that 
separates the two empty circles from the filled ones. For similar 
geometrical considerations, we can conclude that the problem of 
non-linear separability can be solved for all additional neurons that 
respond to an odd number of the four possible inputs. Notice that 
there are two situations in which moving an even number of circles 
would also solve the problem (when the opposite circles move up 
or down). However these situations cannot be realized by a single 
neuron, as it would implement a non-linear separable function.

The general importance of mixed selectivity
To show the general importance of mixed selectivity we consider, for 
simplicity, binary neurons that can be either active or inactive. Each 
neuron can be regarded as a unit that computes a Boolean function 
φ(·) of the vector of the N activities s

1
,…,s

N
 of the synaptically con-

nected input neurons, which include the recurrent and the external 
neurons (s = {0,1}). The problem of context-dependent tasks is 
related to the fact that the class of Boolean functions that can be 
implemented by a neuron is restricted, as it is usually assumed that 
the neural response is a monotonic function of the weighted sum of 
the activities of the synaptically connected neurons. More formally, 
consider a McCulloch–Pitts model neuron that is described by

s t t J s ti ij j
j

N

( ) ( ) ,+ = −





=
∑∆ Θ θ

1  
(6)

where J
ij
 is the synaptic efficacy of the coupling between neuron j 

and neuron i, Θ is the Heaviside function [Θ(x) = 0 if x ≤ 0, Θ(x) = 1 
otherwise], and θ is the activation threshold. Different sets of synap-
tic efficacies correspond to different Boolean functions. How does 
the set of functions implementable by a McCulloch–Pitts neuron 
compare to more general Boolean functions, which would include 
also the ones that solve context-dependent problems? It is illumi-
nating to expand a general Boolean function in a series of terms 
containing products of the input variables (Wegener, 1987):

s t s t s t

C s t C s t s t

i i N

ij j
j

N

ijk j k
j k

( ) ( ), , ( )

( ) ( ) ( )
,

+ = ( )

= +
= =

∑

1

1
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11

1

N

ijkl j k l
j k l

N

C s t s t s t

∑

∑





+ +…−


=

( ) ( ) ( ) ,
, ,

θ
 

(7)

where the Cs are the coefficients of the expansion. Such an expan-
sion is similar to the Taylor expansion of a function of continuous 
variables, although in the case of Boolean functions the number of 
terms is finite and equal at most to 2N. Every term is either a single 
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is activated by Shape + Left, no matter what is the value of the 
external input. Such a neuron has “pure” selectivity and it does not 
solve the non-linear separability problem. The second example 
in Figure A1D, shows an RCN connected by a different set of 
synaptic weights. The orientation and placement of the red line 
isolate only one vertex of the square, and the RCN shows mixed 
selectivity. In this second case, the introduction of this RCN solves 
the non-linear separability problem. What is the probability that 
an RCN has this kind of mixed selectivity?

Random synaptic weights would imply random orientation and 
displacement with a distribution that depends on the dimensional-
ity of the original space of input patterns (N), on the statistics of the 
random weights and on the threshold for neuronal activation. In 
our case the probability of drawing a particular line is isotropic with 
respect to the origin (see probability density function in Figure A2A) 
and depends only on the distance from the center of the square. In 
particular, it grows to a maximum and then it decays to 0 (see Figure 
A2C). The only useful RCNs correspond to those that isolate a single 
vertex. Those lines that are far from the center of the square do not cut 
any edge joining two of the four input patterns, and they do not solve 
the non-linear separability. As a consequence, the best distributions 
are those localized around the center of the square, as in the case of 
Figure A2B, i.e., for small thresholds θ. In all these situations the frac-
tion f of all possible patterns of the input space that activate the RCN 
is close to 1/2, whereas, when the threshold θ is large, f tends to 0.

We now give a more general and formal explanation for the 
importance of the kind of mixed selectivity we introduced in our 
network. We seek to prove that as the number of RCN grows, the 

variable, or a product of two or more Boolean variables. This is 
equivalent to performing the logical OR operation (sum in the 
expression) of logical ANDs (products) between variables.

A McCulloch–Pitts neuron reads out a weighted sum of the 
activities s

1
,…,s

N
, and can therefore only implement Boolean func-

tions that depend on the first order terms of the expansion. The 
coefficients C

ij
 are equivalent to the synaptic weights J

ij
 of the neu-

ronal inputs. Equation 7 suggests that, in general, we may need to 
consider also higher order terms to solve complex problems.

Notice that each term taken singularly, or the sum of terms of 
the expansion can be considered as the output of an additional 
neuron that responds to a particular combination of generic events 
according to Eq. 6. Each C can be then regarded as the synaptic 
efficacy of the connection from such a neuron to the output neuron 
s

i
. For example, the term C

i12
s

1
s

2
 can be interpreted as the input to 

neuron s
i
 from a neuron that is active only when both s

1
 and s

2
 are 

active, with the synaptic strength C
i12

. The neuron of Figure 2B, 
that solves the problem of context dependence by responding to 
the Error Signal only when starting Shape Rule, actually implements 
one of these higher order terms.

ESTIMaTINg ThE NUMbER Of NEEDED RCNs
Single context dependence: a graphical analysis
The prescription we use to create Randomly Connected Neurons 
(RCNs) leads to neurons with mixed selectivity. What is the 
 probability that an RCN solves the problem generated by one 
 particular context-dependent transition? In order to solve the 
 problem, we showed in Section ‘The importance of mixed selec-
tivity’ that the “ that the neuron should have mixed selectivity, 
or in other words, in our paradigmatic example, the neuron has 
to respond to an odd number of the four possible input patterns [
ξ1,h0], [ξ1,h1], [ξ2,h0], [ξ2,h1]. What is the probability that an RCN 
has such a response property? The RCN is active if the weighted 
sum of its inputs ν

j
 is above some threshold θ:

K j j
j

ν θ>∑ ,
 

(8)

where the K
j
’s are the synaptic weights and the sum extends 

over both the external inputs and the neurons of the recur-
rent network. Choosing a specific set of synaptic weights and a 
threshold is therefore equivalent to drawing an hyperplane in an 
N-dimensional space (whose equation is Σ

j
K

j
ν

j
 = θ) that sepa-

rates the input patterns activating the RCN from those that don’t 
activate it. For some of these hyperplanes, the RCN implements 
the mixed selectivity neuron that we need in order to solve the 
context dependence problem of Section ‘Constraints on the types 
of implementable context-dependent transitions’. Consider for 
simplicity the case N = 2, in which the activity patterns lie on 
a plane. In this case, the problem amounts to determining a set 
of synaptic weights and a threshold so that the line Σ j j jK= =1

2 ν θ 
has a particular orientation and displacement with respect to the 
origin. The rightmost part of Figure A1C shows how an RCN 
responds to the four possible input patterns [ξ1,h0], [ξ1,h1], [ξ2

,h0], [ξ2,h1], that lie on the same plane introduced in Figure A1B. 
The RCN output is determined by the orientation of the red line 
that represents one realization of the random synaptic weights. 
The gray circles on the left of the line indicate that the neuron 

Figure A2 | (A) Density of circles tangent to the planes generated by 
randomly sampling RCNs with Gaussian synapses and θ = 2. (B) Same as (A), 
but with θ = 0. (C) Distribution of the radii of tangent circles for different 
values of the firing threshold θ.
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where the 1/ Nr  and 1/ N x  factors have been introduced to keep 
the total synaptic current intensive.

We now calculate the coding level of the RCN, that is, the prob-
ability that η is positive.

Coding level of the RCN network. Assuming a large number of 
pre-synaptic recurrent and external neurons (N

r
,N

x
 → ∞) we can 

harness the central limit theorem to calculate the terms contribut-
ing to the synaptic input to η in Eq. 9. The following quantities are 
distributed according to a normal distribution as follows:
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We can then calculate the coding level of one RCN as a function 
of the firing threshold θ:
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with σ µ σ µ σ2 2 2 2 2= + + +r r x x, and where we used the standard 
definition of the error function: erf exp( ) / ( )x t dt

x= ∫ −2 0
2π  and 

erfc(x) = 1 − erf(x). The coding level of the RCN network is there-
fore given by:

f r r x x= 



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= + + +1

2 2
2 2 2 2 2erfc

θ
σ

σ µ σ µ σ, .
 

(10)

Conversely, in order to obtain RCNs with a given coding level f we 
can set the firing threshold to be:

θ σ( ) ( ),f f= −2 21erfc

where with erfc−1 we indicate the inverse function of erfc, i.e., the 
function for which erfc−1(erfc(x)) = x.

RCNs and linear separability. We now calculate the probability p 
that a particular RCN η responds only to an odd number of cases, 
that is when all but one of the terms η(ξ1,h0), η(ξ2,h0), η(ξ1,h1), 
η(ξ2,h1) are the same. To calculate this probability we start by defin-
ing the following three independent random variables:

g
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probability to be able to implement an arbitrary scheme of attrac-
tors and transitions goes to 1. We first analyze two specific cases, the 
ultra-sparse case in which f is very small and every RCN responds 
to only one input pattern, and the dense case in which f = 1/2.

The ultra-sparse case
In the case in which the RCNs are connected to the neurons of the 
recurrent network by random binary synapses, we can tune the 
neuronal threshold such that f = 1/2N, i.e., every RCN is activated 
by a single input pattern. In such a case every additional unit gen-
erates one term of a particular Boolean expansion, known as the 
Disjunctive Normal Form (Wegener, 1987). Using the same nota-
tion as in Section ‘The importance of mixed selectivity’, we can write 
the activity of a generic neuron s

i
 of the recurrent network as:

s
i
(t + 1) = φ

i
(s

1
(t),…, s

N
(t)) = Θ(C

i1
s

1
(t)(1 − s

2
(t)),…, (1 − s

N
(t))   

 + C
i2
s

1
(t)s

2
(t)(1 − s

3
(t)),…, (1 − s

N
(t))+…),

where Θ is the Heaviside function and the Cs are the coefficients of 
the expansion. Every term is a product of some Boolean variables 
and the negation of the others (which is one minus the original 
variable). If these neurons are part of the recurrent network, then 
they can also be considered as input neurons and can contribute to 
the total synaptic current. If we choose the proper synaptic weights 
and have enough RCNs, we know that we can generate any arbitrar-
ily complex function of the inputs s

1
,…,s

N
. This is an extreme case 

in which the number of needed RCNs grows exponentially with 
the number N of neurons in the recurrent network. However, in 
such a case, not only we can satisfy all possible conditions for the 
attractors and the event-driven transitions, but in principle we can 
also shape the basins of attractions arbitrarily.

The general case (any coding level) for single context dependence
We consider the paradigmatic case of a single context depend-
ence as the one described in Section “Constraints on the Types 
of Implementable Context-Dependent Transitions.” Our aim is to 
compute the probability that an RCN solves the context depend-
ence problem. We will show that this probability depends on the 
sparseness of the representations of the mental states, the external 
inputs and the corresponding patterns of  activities of the RCNs. 
The main result of this paragraph will be that the maximum will 
always be in correspondence of dense representations.

In order to solve the non-linear separability due to the context 
dependence problem, we need an RCN that responds to an odd 
number of the four possible input patterns [ξ1,h0], [ξ1,h1], [ξ2,h0], 
[ξ2,h1] (mixed selectivity).

We consider one particular randomly connected neuron (RCN) 
and calculate the probability that it responds as a mixed selectiv-
ity neuron. Our RCN, whose activity level we will denote by the 
binary variable η (for now η = −1 or 1 for simplicity, but see below 
for the other cases), receives inputs from both internal and exter-
nal excitatory neurons with synapses independently and identi-
cally sampled from two distributions with finite first and second 
moments equal to 〈Kr〉 = μ

r
 and ( )K r

r r− =µ σ2 2, and 〈Kx〉 = μ
x
 and 

( )K x
x x− =µ σ2 2, respectively.

We assume that the statistics of these synapses is independent 
from that of the patterns. The activity η depends on the total syn-
aptic input and the firing threshold, denoted with θ:
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We now consider the case in which the patterns represent-
ing the mental states and the external events have the same sta-
tistics. We therefore assume that o

r
 = o

x
 = o, which implies that 

ˆ ˆ ˆ ( )/o o o ox r= = = +1 2. We also assume without loss of generality 
that µ σ µ σr r x x

2 2 2 2 1+ = + = . Equation 16 then simplifies to
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For the special case of random uncorrelated patterns with coding 
level f

0
 = 1/2 we have that o

r
 = o

x
 = 0, which means that ˆ /o = 1 2. In 

this case, Eq. 17 further simplifies to:
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Maximizing the probability of linear separability for random pat-
terns. We now want to further examine the case in which mental 
states and external stimuli are represented by uncorrelated random 
patterns with coding level f

0
 = 1/2. This is the simplest maximal 

entropy situation which is also the most commonly investigated 
in the computational literature. The probability p of linear separa-
bility for random uncorrelated f

0
 = 1/2 patterns is given in Eq. 18. 

This expression is clearly symmetric in θ and can be shown to 
have a maximum at θ = 0. For this case corresponding to dense 
coding f = 1/2 we therefore have a maximal probability which can 
be calculated to be

maxθ p o| ,=( ) =0

1

3  
(19)

meaning that on average one additional mixed selective unit out of 
three will be useful to solve the context dependence problem. This 
is a surprisingly high fraction, considering that the representations 
and the synaptic connections to the RCN are completely random.

Figure A3 shows the probability p of finding a mixed selective 
RCN as a function of the RCN’s firing threshold for different values 
of the overlap o. As it can be seen, for positive o the maximum is 
always at θ = 0 which corresponds to dense coding level f = 1/2. 
Moreover, increasing the overlap o decreases the probability of 
finding mixed selective RCNs. This can be intuitively understood 
considering that an increasing value of o corresponds to an increas-
ing similarity between the patterns, and therefore an increasing 
difficulty to linearly separate them. Notice that the case of positive 
overlap o can always be led back to a case of random uncorrelated 
patterns with a coding level f

0
 satisfying o = (2f

0
 − 1)2. Conversely, 

the case of random patterns with coding level f
0
, corresponds to 

the case of positive o = (2f
0
 − 1)2.

Maximizing the probability of linear separability for anti-corre-
lated patterns. We now want to consider the case in which we are 
allowed to manually pick the patterns representing the mental states 
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where the sum Σ
j j j:ξ ξ1 2=−  is over all the indices j for which ξ ξj j

1 2= − , 
and so on. With these definitions we can explicitly write down the 
activity of η in the four conditions in the following way:

η(ξ1,h0) = sign(g+ + g
r
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x
), η(ξ1,h1) = sign(g+ + g
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x
),
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x
), η(ξ2,h1) = sign(g+ − g

r
 − g

x
).

The quantities defined in Eqs 11 and 12 are independent Gauss 
distributed variables whose variance depends on the correlations 
(overlaps) between the patterns ξ, h representing the mental states 
and the external stimuli. Let us denote with o

r
 the overlap between 

ξ1 and ξ2, and with o
x
 the overlap between h0 and h1:
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Note that the overlaps o
r
,o

x
 are quantities between −1 and 1.

Using the fact that Nr j
N

j j
r

j j j j
= = += = =−

Σ Σ Σ11 1 11 2 1 2: :ξ ξ ξ ξ  and the analo-
gous identity for N

x
 it is simple to verify that g

r,x,+ are distributed 
in the following way:
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where we have used the following definitions

ˆ , ˆ .o
o

o
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r
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x
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2  
(15)

Note that ôr, ôx are quantities between 0 and 1 quantifying how 
similar ξ1 is to ξ2 and h0 to h1, respectively. As a matter of fact ôr  
is equal to 0 if ξ1 is totally anti-correlated to ξ2 (that is ξ1 = −ξ2), 
ôr is equal to 1 if ξ1 is equal to ξ2, and is equal to one half for the 
intermediate case of uncorrelated patterns.

We can now calculate the probability p that one of the η’s has 
an opposite sign with respect to all the others. Taking into account 
the distributions of the variables given in Eq. 14 this probability 
is given by:
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where with (x ↔ r) we indicate a summand equal to the previous 
term in Eq. 16 with the only difference that x and r indices have 
to be exchanged.
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Because the derivative of erf is just a Gauss function which is easily 
integrated, also the third term in Eq. 20 results in a fairly simple 
expression:
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Putting the last three equations together we obtain:

∂
∂

= − +( )
+( ) +=

p

o oθ π0

2

2 2 2

1 2 2

1 2

Σ
Σ Σ Σˆ

,

which is 0 only for Σ2 = 2, that is for ˆ /o = 1 3, which in turn cor-
responds to o = −1/3. This in fact is the maximum point which can 
be graphically inferred from Figure A5.

We now consider what happens for values of the overlap o 
which are even more negative than o < −1/3. This is illustrated 
in Figure A6.

The value of p at θ = 0 goes to 0 as o → −1 and the maximum 
monotonically increases and shifts away from θ = 0. We can there-
fore ask two questions.

First of all, what is the value of the absolute maximum which 
is reached at o = −1? Derivation and numerical integration of 
the expression (Eq. 17) for this case shows that this maximum is 
p

max
 = 0.5.

The second question we can ask is, how fast does the value of 
p go to 0 as o approaches −1? To calculate how fast p goes to 0 as o 
goes to −1 let us recall that the quantity ˆ ( )/o o= +1 2 is a measure 
of how different the pattern ξ1 is from ξ2 and h0 is from h1, and is 
exactly equal to 0 for totally anti-correlated patterns. We therefore 
want to Taylor-expand expression (Eq. 17) at θ = 0 around ô = 0, 
that is for the case of anti-correlated patterns.

and the external stimuli. In particular, let us see what happens if 
we are allowed to choose anti-correlated patterns, that is pairs of 
patterns which have a negative overlap o.

Following last paragraph’s intuition we would expect that 
increasingly negative overlaps push the activity patterns further 
apart, therefore making them easy to linearly separate. From Figure 
A4 we see that this is exactly what happens initially for all values 
of θ and in particular for θ = 0. When o is decreased below 0 the 
value of p increases for all values of θ, and θ = 0 always corresponds 
to the maximal value.

This trend crucially stops at a critical value of o = −1/3. Below 
this point, the value of p at θ = 0 starts to decrease and Figure 
A4 shows that the maxima of the value of p shift laterally to 
θ ≠ 0.

It is possible to calculate analytically the critical value o = −1/3 
of maximal p for θ = 0 maximizing the expression in Eq. 17. First 
of all let us compute the value of p at θ = 0 from Eq. 17:
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where we defined Σ = −( )/1 ˆ ˆo o . The plot of this expression gives 
the graph in Figure A5. To find the maximum we have to calculate 
the extremal points in o by computing the derivative and setting it 
to 0. Because of the chain-rule:

∂
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= ∂
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∂
∂
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p
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o o

p

θ θ0 0

ˆ

ˆ
.

Σ
Σ  

(20)

From the definitions of ô and Σ the first two factors in Eq. 20 sim-
ply give:

Figure A3 | Probability of finding an rCN which implements mixed 
selectivity, therefore allowing to linearly separate the input patterns as a 
function of the rCN’s firing threshold θ. This quantity is calculated in Eq. 17. 
Different curves correspond to different positive values of the overlap o of the 
input patterns representing the mental states and the external events.

Figure A4 | Probability of finding an rCN which implements mixed 
selectivity as a function of the rCN’s firing threshold θ. This figure is 
analogous to Figure A3, with the difference that different curves correspond 
to different negative values of the overlap o of the input patterns representing 
the mental states and the external events.
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From ±1 to 0/1 neurons
All the conclusions illustrated in the previous sections are easily 
translated to the case in which we represent the neuronal activity 
with Boolean variables (0/1), rather than ±1 variables. We show 
this by first introducing the relation between the ±1 variable ξ to 
the 0/1 Boolean variable ξ̂:

ξ ξ
ξ

ξ
= − =

− =

+ =




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2 1

1 0

1 1

ˆ
ˆ

ˆ
.

if

if

Equation 9, defining the activity of an RCN, can then be translated 
to the Boolean case as follows:
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(23)

where Θ(·) denotes the Heaviside’s step function: Θ(x) = 1 if x > 0, 
and Θ(x) = 0 otherwise. Equation 23 can be rewritten as:
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by defining K̂ Kj
r

j
r= 2  as a random variable with mean µ̂ µr r= 2  and 

variance σ̂ σr r
2 24= , and K̂ Kj

x
j
x= 2  as a random variable with mean 

µ̂ µx x= 2  and variance σ̂ σx x
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These equations show that switching from a ±1 to a 0/1 representa-
tion, is equivalent to modifying the statistics of the random synaptic 
connections, and introducing an additional inhibitory term. This 
simple consideration provides us with a straightforward way to 
extend the results of the analysis of ±1 neurons to the case of 0/1 
neurons. Indeed, it is easy to generate Boolean 0/1 RCNs with the 
same statistical properties as the ±1 RCNs that we considered in 
the previous paragraphs. Assume for instance that we are given an 
ensemble of Boolean 0/1 RCNs whose activity is described by Eq. 24 

To do this we can use Eqs 21 and 22 together with the 
fact that
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This means that in the θ = 0 case for very anti-correlated patterns, 
that is for ô → 0 , the probability of finding a useful RCN goes to 
0 as the square root of ô :
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2
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We can also compute how fast p goes to 0 when the input patterns 
are increasingly similar, that is for the case o → 1, corresponding 
to ô →1. This gives the same type of decay:
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In conclusion, we have seen that the case θ = 0 corresponding to 
a dense RCN coding level f = 1/2 always gives the highest prob-
ability p to obtain a useful RCN. The only regime for which the 
case θ = 0 is not the most favorable one is when we are allowed to 
choose anti-correlated patterns with an overlap below o = −1/3. 
Nonetheless, the probability at θ = 0 decreases relatively slowly 
when we depart from the random uncorrelated case o = 0. Notice 
that the best possible value of p which is obtained by choosing ad 
hoc the input patterns is p

max
 = 0.5, which is a relatively small gain 

with respect to the value p
max

 =1/3 which we get for purely random 
input patterns.

Figure A5 | Probability p of finding an rCN implementing mixed 
selectivity as a function of the overlap o between the input patterns for a 
constant value of the rCN firing threshold θ. We see that by going to 
negative o we can slightly increase p until a value o = −1/3. At this point θ = 0 
stops being a maximum of p.

Figure A6 | Probability of finding an rCN which implements mixed 
selectivity as a function of the rCN’s firing threshold θ. Different curves 
correspond to different negative values of the overlap o of the input patterns 
representing the mental states and the external events.
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the overlap o indicated in the plots and characterizing different 
curves, should be recalculated as explained above. All the con-
siderations about the position and the value of the maximum 
discussed in the main text remain unchanged when the 0/1 case 
is considered.

The dense case: multiple context dependencies
What is the total number of RCNs needed to satisfy all conditions 
corresponding to a large number of transitions and stationary 
patterns of neural activity? Were all context-dependent transi-
tions independent, such a number would be proportional to the 
logarithm of the number of conditions. This is certainly true for a 
small number of context-dependent transitions. Unfortunately, the 
conditions to be imposed for a large number of context-dependent 
transitions are not independent, and an analytic calculation turned 
out to be rather complicated.

Hence we devised a benchmark to characterize numerically 
the scaling properties, in simulations where transitions between 
randomly selected attractors were all driven by a single event. Half 
of the m mental states were chosen as initial states, i.e., the contexts 
in which the event can occur. For each initial state we chose ran-
domly a target attractor. The representations of the attractors were 
random uncorrelated patterns. Figure A7A shows the required 
number of RCNs as a function of the number of transitions that 
are needed in a task. The average number of necessary RCNs 
scales logarithmically with the number of contexts m for small m 
values, and then linearly. Moreover, the minimal number of RCNs 
is achieved for f = 1/2, consistently with the full simulations of 
Figure 5A. The required number of RCNs increases with decreas-
ing f, approximately like 1/f when f ≤ 1/2 (see Figure A7B), and 
like 1/(1 − f) for f > 1/2 (not shown). Notice that in Figures A7A,B 
we plotted the number of needed RCNs for satisfying the math-
ematical conditions that guarantee the stationarity of the patterns 
of activities of the mental states and the implementation of the 
event-driven transitions. When we additionally require that the 
stationary points are stable and the basin of attraction has a given 
size, as in Figures 5B,D the situation is significantly worse in the 
case of f ≠ 1/2, but the scaling with the number of mental states 
remains linear.

ThE NUMbER Of LEaRNINg EpOChS DECREaSES wITh  
ThE NUMbER Of RCNs
When RCNs are added to the network, not only the neural pat-
terns of activity become linearly separable, but they also become 
more separated. Indeed, adding RCNs to the network is equivalent 
to embedding the neural patterns representing the mental states 
into a higher dimensional space. Although the relative distances 
between different patterns are approximately preserved, the abso-
lute distances increase with the number of RCNs, increasing 
the separation between the neural patterns that should produce 
active neurons from those that are supposed to produce inactive 
neurons. One consequence of this is that it becomes easier to find 
a hyperplane separating these two classes of patterns, and hence 
the number of learning epochs required by the perceptron algo-
rithm decreases, as predicted by the perceptron theorem (Block, 
1962). The phenomenon is illustrated in Figure A8, where we 
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the firing patterns of these RCNs, and in particular the probabil-
ity the coding level f and the probability that an RCN has mixed 
selectivity, will be the same as the statistics of the ±1 RCNs of Eq. 9, 
provided that the first and second moments of the synapses are 
properly rescaled by a constant factor. In particular, when K j
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x  have finite first and second moments equal to µ µr r= ˆ /2  and 
σ σr r
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2 2 4= ˆ / , respectively. As a result, 

the coding level of the Boolean RCN in Eq. 24 (that is, the fraction 
of pre-synaptic configurations for which the neuron is active, i.e., 
its activity is not 0) is given by translating Eq. 10 to the Boolean 
“hatted” variables:
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In other words, this equation gives the coding level f of a Boolean 
0/1 RCN whose activity is described by Eq. 24, with synapses inde-
pendently drawn from a distribution with finite first and second 
moments equal to 〈 〉 =

∧ ∧
K j

r
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x xµ σ2 2 , respectively.
The remaining equations of the last sections are also easily trans-

lated from ±1 variables to Boolean variables. In order to do that we 
introduce the following definitions for the overlaps corresponding 
to Eq. 13:
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where ξ indicates the “negation” of the Boolean variable ξ, i.e., 
ξ ξ= −1 . Note that from Eqs 13 and 26 it is easy to see that:
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consistently with the definitions in Eq. 15.
This set of simple relations between “hatted” and “unhatted” 

variables allows us to translate the results obtained in the previous 
paragraphs for the case of ±1 coding neurons to the case of 0/1 
neurons. For instance, the graphs in Figure A3, where we normal-
ized the synapses so that µ σ µ σr r x x

2 2 2 2 1+ = + = , would correspond 
in the 0/1 coding case to a normalization ˆ ˆ ˆ ˆµ σ µ σr r x x

2 2 2 2 4+ = + = . 
With this set of parameters and using Eq. 27 to convert the over-
laps o

r
, o

x
 in the ±1 case to the overlaps ôr, ôx in the 0/1 case, we 

can see that the plots corresponding to o = 0,0.64,0.96 would be 
translated in the 0/1 coding scheme to overlaps between the pat-
terns of ˆ ( )/ . , . , . ,o o= + =1 2 0 5 0 82 0 98  respectively. A similar con-
version can be easily carried out for the other results illustrated 
in Figures A4–A6.

Similarly, when the probability that an RCN has mixed selec-
tivity is plotted against f (the coding level of the RCNs), the curves 
are the same in the ±1 as in the 0/1 case, although each point is 
characterized by a different set of parameters in the two cases 
(in particular the statistics of the synapses and the threshold). 
As a consequence, f

0
 (coding level of the input patterns) and 
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STOChaSTIC TRaNSITIONS bETwEEN MENTaL STaTES
In the simulations illustrated in Figure 6 the transitions induced 
by the external events are deterministic. However, if in Eq. 5 we 
increase the noise in the neural activity, they can become sto-
chastic, occurring with a probability that depends on the noise 
amplitude σ, and on the stability parameter γ used in the per-
ceptron algorithm to compute the proper synaptic couplings (see 
Eq. 2). Different conditions, corresponding to different attrac-
tors or event-driven transitions can be imposed with a different 
strength depending on the stability γ used during learning. Even 
in the case in which the stability parameter is always the same, 
there might be differences in the implemented conditions, due 
to correlations between the representations of the mental states 
and to particular structures in the scheme of transitions. For 
example in the case of the  simulations of Figure 6, the transitions 
between one rule to another, induced by the Error Signal are the 
weakest, and the most vulnerable to noise. Indeed as the level of 
neural noise increases, these transitions become stochastic and 
progressively less probable, as illustrated in Figure A9. Notice 
that the other transitions occurring within each trial remain 
unaffected. The decrease of transition probability is due to the 
fact that the external input is required to drive the recurrent and 
the randomly connected neurons consistently in one particular 
direction for the entire duration of the event triggering the transi-
tion. Noise makes the driving force stochastic, inconsistent, and 
overall weaker, thus reducing the chances that the transition will 
occur. As the starting mental state is an attractor of the dynamics, 
the network will return to the initial state. This is an important 
property of the network, as sometimes it is required to have 
transitions that occur with some probability, as in the case of an 
uncertain environment. Moreover stochasticity is fundamental 
for the latching dynamics, i.e., the ability of the neural circuit to 
jump spontaneously from one mental state to another (Kropff 
and Treves, 2005; Treves, 2005). Latching dynamics has been 
extensively discussed for its importance in cognitive processes 
related to language.

plotted the average number of learning epochs required to satisfy 
all conditions to realize the attractors and transitions, as a func-
tion of the number of RCNs. This was done for three different 
numbers of attractors and transitions. The number of learning 
epochs decreases rapidly as RCNs are added to the network. 
Although this is not the real learning process used by the brain 
(here we assume that the set of mental states and transitions are 
already known), it gives strong indication that our network has 
the highly desirable property that learning becomes simpler and 
faster as the number of RCNs increases.

Figure A7 | (A) Number of RCNs needed to implement m/2 transitions 
between m random mental states. The number of neurons in the recurrent 
network is always N = 200. Different curves correspond to different choices of 

the threshold for activating the RCNs, which, in turn, correspond to a different f 
(average fraction of inputs that activate the RCNs). (B) Number of needed RCNs 
as a function of 1/f for a different m. N = 200 as in (A).

Figure A8 | The number of required learning epochs decays as the 
number of rCNs increases for a fixed minimal stability parameter γ = 0.5. 
The number of epochs is plotted for four different levels of capacity 
(m = 10,20,40,80). The solid lines are the power law curves fitted to the 
datapoints (the power ranges from approximately −1.5 to −2.2 as m 
increased). The asymptotic number of learning epochs seems to increase 
lineary with the number of transitions and the number of attractors m, ranging 
from approximately 12–40 (not visible in the plot), for m = 10 and 80, 
respectively. Parameters as statistics of the neural patterns are as in 
Figure A7.
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