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and by recurrent and inhibitory network connections. This 
 hypothesis is anchored on the fact that spontaneous activity 
is often observed to emanate from localized sources or burst-
 initiation zones (BIZ), propagating from them to excite large 
populations of neurons (Raichman and Ben-Jacob, 2008, reviews 
possible mecahnsimis).

Most of the firing activity is observed within a very short time 
window at the beginning of the SBE which is then followed by decay 
over longer period of time (Raichman et al., 2006). Moreover, each 
neuron in a SBE has its own temporal firing pattern which can 
greatly vary between different neurons but is usually consistent 
over days (Raichman and Ben-Jacob, 2008).

The capability of cultured neural networks to spontaneously 
generate repeating motifs on long time scales (hours) is highly 
significant for various applications. For example it affords neuro-
nal networks in vitro to maintain long-term memory (Raichman 
and Ben-Jacob, 2008; Raichman et al., 2009). It was shown that 
printed (by local chemical stimulation) new activity motifs (activity 
propagation patterns) can also be maintained by the cultured net-
works for long times (Baruchi and Ben-Jacob, 2007). The number 
of motifs and the statistics of their appearance are connected with 
the architecture (topology, geometry and strengths of synaptic con-
nections) of the network (Volman et al., 2005).

Large networks can generate few different SBEs, each with its 
own characteristic spatial-temporal pattern of activity propaga-
tion across the network (Hulata et al., 2004; Segev et al., 2004). 
Engineered coupled network, such as the quadruple networks 

IntroductIon
MultIelectrode arrays and sBes
The human brain is considered to be one of the most complex sys-
tems and thus understanding the principles which underlie its activ-
ity requires simpler models (Koch and Laurent, 1999). Cultured 
neural networks with engineered geometry provided simple model 
systems for studying important motives of mutual synchronization 
and activity propagation (Baruchi et al., 2008; Raichman and Ben-
Jacob, 2008; Raichman et al., 2009). Multielectrode arrays (MEA) 
have provided simple, tractable and efficient model systems for 
studying important motives of cultured networks and also pro-
vide a useful framework to study general information processing 
properties and specific basic learning mechanisms in the nervous 
system (Potter, 2001; Baruchi and Ben-Jacob, 2007; Chiappalone 
et al., 2007).

The spontaneous activity of many types of cultured networks is 
characterized by rapid collective neuronal firings called synchro-
nized bursting events (SBEs) or “network bursts.” These bursts last 
hundreds of milliseconds and are followed by longer (seconds) 
inter-burst-intervals (IBI) of sporadic firings (Segev et al., 2002; 
Raichman and Ben-Jacob, 2008) (Figures 1A1, 1A2). It was found 
that SBEs are important for the development of the nervous system, 
in the initiation of epileptic seizures, and in cortical integration of 
sensory information (Chiappalone et al., 2007).

There are a few suggested mechanisms for SBE activity, one 
of which is based on the hypothesized presence of localized ini-
tiation zones. These are characterized by high neuronal  density 
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We found that half of the networks had algebraic scaling between 
the frequency of appearance of the leading (more frequent) APMs 
reminiscence of the Zipf ’s power-law scaling of words in natural 
language. During the 1930s Zipf showed that a power-law distri-
bution described word counts in the English language (Zipf, 1932, 
1935). A modern demonstration of this concept on Wikipedia’s 
corpus has also been shown (Grishchenko, 2006). Research on the 
origins of the power-law and efforts to observe and validate them 
in the real world is extremely active in many fields of modern sci-
ence, and seems to be a ubiquitous statistical feature of complex 
systems (Bak, 1996; Sornette, 2007).

There is a body of experimental (Beggs and Plenz, 2003, 2004; 
Petermann et al., 2009) and theoretical work (De Arcangelis et al., 
2006; Kinouchi and Copelli, 2006; Levina et al., 2007) on occurrence 
of power-laws with cutoff in cultured neural networks. In these 
references the power-law scaling was of the time intervals between 
events (neuron firing and network bursts). Here, we investigated 
the statistics of the frequency of appearance of the different APM 
regardless of their timing.

the WrestlIng Model
Toward the interpretation of the observed repertoire, we modeled 
the interplay between the intrinsic potential to fire of the differ-
ent BIZ in terms of interacting “clocks” with variable rates. Once 
one BIZ fires, it stimulates the other BIZs and resets their “clock,” 
thus disabling their initiation of spontaneous activity. This varia-
ble-clock game is an extension of the “boxing arena” model pro-
posed for two coupled networks (Feinerman et al., 2007). Here we 
extended this work to multiple BIZs and used a Lévy distribution 
for the clock internal variability and Gaussian distribution for the 
inter-variability between the clocks. Using maximum likelihood 
we estimated the model’s parameters and we observed similarity 
between parameters across cultures with different typical inter-
burst-time intervals.

MaterIals and Methods
culture and PreProcessIng
The experimental protocol of the recordings of the coupled net-
works’ activity which were analyzed here has been previously pre-
sented in details (Raichman and Ben-Jacob, 2008). We used six 
recorded cultures which are summarized in Table 1 along with 
their characteristics.

 studied here, exhibit different types of mutual SBE, each with 
its own order of activity propagation between the sub-networks 
(Baruchi et al., 2008; Raichman and Ben-Jacob, 2008).

sBe sortIng
Dimensionality reduction clustering algorithms (e.g., principle 
component analysis) are used to identify and sort the different SBE 
motifs (sometimes referred to as network repertoire). These algo-
rithms enable to simplify the representation of the network activ-
ity. In evoked activity experiments where the states of the system 
are expected due to the controlled stimuli, supervised algorithms 
can be used (Marom and Shahaf, 2002). However, in the case of 
spontaneous activity, only un-supervised methods are applicable.

In previous studies, identifications of the distinct SBEs were 
based on a measure of burst similarity (correlation) metric space. 
This similarity was defined either by (i) the firing intensity of indi-
vidual neurons, with disregard of the temporal delays between 
neurons (Mukai et al., 2003; Madhavan et al., 2006) or (ii) by 
the time-space correlation between neuronal spike-trains (Segev 
et al., 2004). The latter approach enables to distinguish between 
bursts in which the firing profiles of the individual neurons are 
conserved but with different time delays between the activity of 
the different neurons. More recently, a delay similarity method was 
proposed (Baruchi et al., 2008; Raichman and Ben-Jacob, 2008). 
The method identifies repeating motifs that strictly depend on the 
delays between initiations of neuronal activity, while disregard the 
burst intensity and burst duration.

Despite the importance of timing, it has been shown that the 
information about evoked stimulus position can be retrievable just 
from the recruitment order, regardless of precise timing (Shahaf 
et al., 2008). Motivated by these observations we characterize here 
the different activity propagation modes (APM) of the mutual 
SBEs in terms of the order of activity propagation between the 
sub-networks (Figure 1B1).

It is believed that a central property of a complex system is 
the possible occurrence of coherent large scale collective behaviors 
with a very rich structure, resulting from the repeated non-linear 
interactions among its constituents.

Given such a complex system as neuronal network, a first stand-
ard attempt in order to quantify and classify the characteristics and 
the possible different dynamics consists in (i) identifying discrete 
events, (ii) measuring their features, and (iii) constructing their 
probability distribution (Sornette, 2007).

In our analysis, these discrete events are the SBE timings and their 
measured feature is the different APM assigned to each SBE.

PoWer-laW scalIng
Once identified, we investigated the network repertoire – the sta-
tistics of the frequency of appearance of the different APMs. The 
idea is that similar to the case of other complex systems, the sta-
tistics of system level events can provide important clues about 
the underlying mechanisms that regulate the network activity 
(Sornette, 2007).

Identification and understanding of such underlying mecha-
nisms that regulate the activity of coupled neural networks can 
provide important clues on how to regulate, control and change 
the repertoire of such networks.

Table 1 | Time characteristics of the recorded cultures.

# T N B D A IBI

A 3.5 49 1053 1.3 ± 0.5 0.8 ± 0.1 11 ± 5

B 49.7 19 748 1.7 ± 0.7 0.6 ± 0.1 250 ± 120

C 2.3 14 82 0.3 ± 0.4 0.3 ± 0.1 100 ± 100

D 23.0 49 5904 1.2 ± 0.6 0.7 ± 0.1 16 ± 6

E 47.2 37 9620 0.5 ± 0.3 0.6 ± 0.2 9 ± 7

F 31.0 16 4969 0.1 ± 0.1 0.3 ± 0.1 14 ± 10

#, Culture label; T, duration of recording (h); N, number of sorted neurons in the 
recording; B, total number of SBEs during the recorded time; D, SBE duration (s); 
A, SBE activity (fraction of participating neurons); and IBI, inter-burst-interval (s). 
All columns show mean ± standard deviation where applicable.
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number of active neurons within the 2 s window. We ignored events 
that had less than 10–50% active neurons, or that were less than 5 s 
apart from the previously found SBE. Once an SBE was located, we 
used a pre-trigger and post-trigger of 2 s as the SBE time-support 
(Chiappalone et al., 2004; Raichman and Ben-Jacob, 2008).

IdentIfIcatIons of the actIvIty ProPagatIon Modes
As was mentioned earlier, the APM are characterized by the order 
of activity propagation between the sub-networks (Figure 1B2). 
With four-coupled networks each APM is described by a permu-
tation of the sequence [1234]. For example, X = [1, 2, 3, 4] means 
that APM X was such that sub-network “1” fired first, then “2,” “3” 
and lastly “4.” Therefore, for four sub-networks there are 4! = 24 
different possible APMs.

Usually once a sub-network becomes active it does not relax and 
become active again within the same mutual SBE (representing a 
finite sub-network refractory period).

The networks were grown on MEA consisting of 60 round spot 
recording sites (each with diameter of 30 μm). The spatial organi-
zation was specially designed. The electrode array was consisted 
out of four clusters in the corners of a 1.8 mm × 1.4 mm rec-
tangle. Each cluster was consisted of 13 equally spaced electrodes 
(250 μm). Other 7 electrodes were located in the regimes between 
the clusters.

Spike sorting of the extra-cellular recordings was based on 
wavelet packet decomposition (Hulata et al., 2002). This resulted 
in a (binary) time series of spike timings with a resolution of mil-
liseconds for each identified neuron.

In order to identify the network bursts we followed the standard 
procedure of scanning the binary data of the network temporal 
spike activity in consecutive windows of 2 s, with a 50% overlap. 
Each window was divided into bins of 200 ms, and each bin was 
summed up over the number of active neurons. The timing of an 
SBE was defined as the time bin in which there were a maximum 

FIgure 1 | (A1) Typical raster plot of the recorded activity of for coupled neural 
network. Each line corresponds to the recorded activity from a specific 
electrodes. Bars indicated neuronal firing. The results show the formation of 
mutual SBEs. (A2) Zoom in on the raster plot showing five distinct SBEs. 
(B1) Color code of the order of individual neuron firings within the different 
APMs from the first firing neuron (blue) to the last (red). Location and size of the 

electrodes is not in scale. Gray bars mark PDMS lines used to separate between 
the sub-networks. The order of activity of the four sub-networks follows a 
wave-like pattern, where the first firing group first activates each of the two 
nearest clusters. (B2) The activity order of the five leading (most frequent) 
activity propagation modes (APMs). (A1), (A2), and (B1) are reproduced with 
permission (Raichman and Ben-Jacob, 2008).
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( typically ∼50 ms). Next we define a normalized Pearson’s cross 
correlation Cn

i j, ( )τ  between the bursts couple (i, j) per neuron 
with time displacement τ:
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Finally, a max correlation matrix EC is defined as the maximum 
(over τ) of the sum (over neurons) of the correlation Cn
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This correlation matrix can be interpreted as representation of 
N

SBE
 bursts in a N

SBE
 dimension space. This metric space is then 

clustered using the dendrogram algorithm tree – an agglomera-
tive hierarchical cluster technique based on distances (Mathworks, 
2009). This clustering method allows sorting of the SBEs into dif-
ferent modes, each with its own pattern of correlations between 
the neuron firings.

The delay similarity method is based on a delay activation matrix 
B such that Bi

n m,  is the delay between the first spikes of neuron n 
and m in the ith SBE. Neurons that did not fire in the particular SBE 
are assigned a NULL value in the activation matrix. The similarity 
between bursts is than defined as:

S i j
N N

A n m A n mi j
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Where θ is the Heaviside function and τ
0
 is a threshold which is 

set to 30 ms following the average spike precision in bursts (Bonifazi 
et al., 2005). The method detects the center (motive) of SBE clusters 
with high similarity, by applying a two-stage method that uses a 
hierarchical clustering algorithm followed by an iterative search 
for independent cluster centers.

For comparison between the correlation and delay similarity 
methods with our approach, we used the previous methods’ metric 
matrix and reordered these matrices in three different fashions: 
(i) by clustering with respect to the same metric space (e.g., correla-
tion metric reordered according to the correlation space and vice 
versa), (ii), we repeated the procedure with the alternative metric 
space (e.g., delay metric reordered based on correlation metric and 
vice versa), (iii) we reordered the metrics by the APMs that our 
method identified.

In the result section we show that, while our method is consistent 
with the other two methods, it is more efficient.

PoWer-laW testIng and estIMatIon
To quantify the finite scaling of the frequency of appearance of the 
different APMs we followed and extended the method of (Goldstein 
et al., 2004; Clauset et al., 2009). The estimation and significant 
testing of the power-law (p(k) ∝ k−β) distribution’s parameter (β) 
have been extended for the case of the observed finite power-law. 
This is defined as a finite repertoire of motifs’ (alphabet) distribu-
tion which follows the power-law only for k < M where k is the 
event frequency rank.

Timing the sub-network activity
Three different methods for timing the sub-network activity 
were tested: (1) average the firing time of first spikes (“first”), (2) 
 center-of-mass of activity profile (“COM”), and (3) max firing 
rate (“max rate”).

The “first” time is defined as: t N ti
k
N

k
i

first

first

first= ∑ =1 1/ , where N
first

 is 
equals to the number of spikes that are considered to be “first” (this 
number is selected to optimize the measure), and t

k 
is the time of 

the kth spike in the ith sub-network.
The motivation to measure only the first spikes, is in line with 

results showing that spike timing is more accurate in the beginning 
of the spike-trains, both in spontaneous firing and in bursts gener-
ated as a response to electric stimuli. Moreover, it was suggested that 
bursts propagates as traveling waves where local networks act as the 
substrate of sequential firing patterns since activity which passes 
through a given point initiates similar local sequences. (Jimbo and 
Robinson, 2000; Bonifazi et al., 2005; Luczak et al., 2007; Raichman 
and Ben-Jacob, 2008; Shahaf et al., 2008).

The number of first spikes N
first

 introduces a tradeoff between 
robustness and accuracy. We chose the criterion for choosing N

first
 

to be such that more bursts fall into the same motif, thereby iden-
tifying a smaller number of distinct APMs.

The “center-of-mass” time was defined as:
 
t N tk

N
kCOM tot

tot= ∑ =1 1/ , 
where N

tot
 is the overall number of spikes fired by the sub-network. 

This method is based on the assumption that different sub-networks 
fire with similar patterns of firing rate. In this case, averaging the 
whole firing pattern can produce a fine and robust measure of the 
sub-network firing pattern. This method assigns larger weight to 
time periods with higher firing rates in the weighted average. The 
reason is that such time periods are relatively less noisy (assuming 
Poisson noise).

The “max rate” time was defined using a histogram: 
b t m t m t tm k

N
k k= ∑ − − + −=1 1tot θ θ( ) (( ) ),∆ ∆  where θ is the Heaviside 

function and ∆t the histogram resolution (1 ms).
The estimated maximum rate time was defined at the center 

of the histogram maximum: t t b
m mmaxrate = +∆ (arg max . ).0 5  The 

motivation for this measurement is to order activity of the dif-
ferent sub-networks by the delays of the maximum local activity. 
The idea is that the first spikes describe the propagation front of 
the neural signal, but once each sub-network is activated it has its 
own internal activity propagation.

In the results section we compare between these three timing 
methods. We then selected the method that yielded the least dis-
tinction entropy between the different APMs, following the idea of 
minimum-entropy data partitioning (Roberts et al., 2001).

Consistency test
In order to test for consistency of our method of identification of 
the APMs, we compared it with the correlation and delay similarity 
methods mentioned in the introduction.

The correlation method is based on a binary activity matrix 
Ai

N T×  representation of a SBE where N is the number of neurons 
and T is the number of time bins. The element is Ai

n t, = 1 if neu-
ron n fired during the time bin t in SBE i = {1…N

SBE
} (zero other-

wise). First, the activity vector of each neuron ( ( ))A tn
i  is convolved 

with a normalized Gaussian kernel with width adjusted to the 
firing rate in order to obtain a smooth rate representation D tn

i ( ) 
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δ parameter). The symmetry parameter β
Levy

 was set to zero (no 
drift). This difference in δ was generated from a Gaussian dis-
tribution with zero mean and STD of σint er

2  and was rolled once 
before each simulation.

The normalized version of the model has two parameters only: 
first, the variability variance ratio (η) which is the IBI’s intra-
variability variance normalized by the inter-variability variance. 
Secondly, the Lévy’s distribution power coefficient (α). The details 
of the model simulation and the procedure of parameter estima-
tion are described in the Appendix (see Model Details and its 
Parameter Estimation).

results
consIstency test
We analyzed the activity of six cultures all having similar structure 
of four-coupled sub-networks (see Materials and Methods). All 
of these cultures showed global synchronization marked by the 
existence of mutual SBEs. First, we show a typical sorting of the 
different SBEs using the methods of correlation and delay similarity 
(see Materials and Methods). Then, we compared this similarity/
correlation metric matrix when reordered by our new characteri-
zation approach.

The new method provides an efficient and clear sorting of SBE 
into distinct motives of APMs which can be seen as areas of strong 
intra-group and weak inter-group delay similarity (Figure 2). 
It is worthwhile noting that although this method achieved a 

We focus only on estimating the power parameter, while M was 
fixed and chosen such that it differentiated between APMs with 
frequency higher and lower than that calculated for the limit of 
uniform frequency of appearance.

The details of the estimation and testing is detailed in the 
Appendix (see Power-Law Testing and Estimation).

the WrestlIng Model
We developed a semi-realistic model which recovers quite effi-
ciently the observed statistical behaviors of the APMs repertoire. 
This “wrestling” model is an extension for the “boxing arena 
model” which was proposed for two coupled networks (Feinerman 
et al., 2007).

The central assumption is that each sub-network has several 
BIZs and they all “compete” to be the first to initiate a mutual 
SBE. We assume that each sub-network, had it been isolated from 
the other sub-networks, have its own innate mean time between 
SBEs. In other words, each sub-networks a stochastic SBEs gen-
erator with its own innate “clock.” However, since the statistics 
of IBI (inter-bursts-intervals) follows a Lévy distribution (Segev 
et al., 2002; Ayali et al., 2004), the definition of the generator 
and the clock have to be done with extra care. In the model used 
here, we used a stochastic generator that generates a Lévy flight 
process (Chambers et al., 1976). The generators of the different 
sub-networks had the same α (slope) and γ (variability) param-
eters while each sub-network had its own most probable IBI (the 

FIgure 2 | Comparison of delay similarity (row (A)) and correlation (row 
(B)) metric matrices with culture #A (see Materials and Methods). The 
x- and y-axis are 300 SBEs indices while the color at each pixel represents the 
normalized metric value (red-high, blue-low). These metrics were reordered 
according to three different permutations (1–3 columns): (1) delay similarity, 

(2) correlation matrix, and (3) our APM method. The latter APMs were 
bordered (white line) and rearranged (without breaking groups) to fit bets 
the permutation of the relevant metric (row (A) or (B)). Notice the sequence 
[3412] and [2143] have opposite activation order and thus have low cross delay 
similarity metric values.
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Although the different networks had very different time scales 
and activity, we estimated similar parameters for the different sub-
networks.

To avoid confusion we note that there is the set of parameters of 
the Lévy distribution of the IBI generated by the stochastic genera-
tor and the set of parameters of the distribution of the frequency 
of appearance of the APMs.

The set of parameters for the IBI distributions are defined as: 
(1) the stability parameter (the slope of the tail of the distribu-
tion) – the α parameter of the Lévy distribution. (2) the scaling 
parameter η, that is equal to the ratio between the variability 
parameter of the generated IBI sequences (related to the gen-
eralization of the STD for Lévy distribution) and the variability 
(σ

inter
) in the mean IBI of the generated IBI sequences of the four 

 precise classification, it is much less computationally demanding 
than  previous techniques based on metric estimation since the 
 computation of the O N( )SBE

2 metric space is not needed.
We found that two APMs with a reverse order of activity propa-

gation, such as the APMs [2, 1, 4, 3] and [3, 4, 1, 2] (Figure 2A3), 
show low delay similarity. And, two APMs in which the activity 
starts at the same sub-network show high delay similarity.

Assessment of the Activity timing methods
Comparison between the different methods of activity timing 
revealed that the “first” timing method (based on the firing time of 
the first few spikes), yields the statistically most significant sorting 
of the APMs. The statistical significance was assessed by calculating 
the minimum-entropy data partitioning approach (Roberts et al., 
2001). In this approach the entropy of the frequency of appearance 
of the APMs is calculated (the relative frequency of appearance of 
each APM is taken as its probability). A distribution with lower 
entropy corresponds to sorting that is more statistically significant 
(higher deviation from a uniform distribution).

We found that the best sorting by the “first” timing method is 
obtained when the first five spikes are taken (N

first
 = 5) as is shown 

in Figure 4.

frequency of AppeArAnce
Half of the networks (three out of six) expressed scaling consistent 
with a finite power-law with p-value higher than 20% (Figures 5A–C 
cultures). The three other networks only showed power-law scal-
ing for the leading APMs. Moreover, we compared the power-law 
with an alternative exponential model. The exponential model was 
rejected in five out of six networks (Figure 3).

Note that all networks deviated greatly from what would be 
expected from a uniform distribution of the frequency of appear-
ance (black transparent patches in Figure 5).

employing the Wrestling model
The results of the wrestling model simulation are in good agreement 
with the observed distributions. The level of the agreement indicates 
that the model may explain some observed features and in particular 
the four orders of magnitude ratios in the frequency of appearance 
(see Figure 5 y-axis) and the finite cutoff in the power-law scaling.

Figure 3 | Comparison between the significance levels of a power-law 
model versus an exponential one. Half of the networks showed a 
significance p-value such that the null hypothesis of a power-law distribution 
(with cutoff) cannot be declined. On the other hand, only 1/6 of the networks 
showed similar significance for the exponential model.

Figure 4 | Comparison between the different methods to estimate the 
APMs’ timing on culture #A (see Materials and Methods). (A1) The 
frequency of appearance (log) of the frequency of appearance of the APMs 
using the different methods is similar. (A2) The “first” method shows the 
closer to power-law like behavior and the entropy. (B) The sub-network activity 
timing can be measured by averaging the first Nfirst spikes (blue), by the 
center-of-mass (COM) of activity (red), or by the maximum firing rate (green) 
as can be seen plotted on the activity profile histogram (bin size 100 ms). 
(C) The “first” method entropy is minimized at Nfirst = 5.
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An additional important observation is related to the value of 
the inter-burst-time interval (IBI) which preceded the appear-
ance of each APM. The wrestling model predicts that the distri-
bution of the observed bursts IBIs would be of the same order of 
magnitude for the different sub-networks in agreement with the 
experimental observations.

In other words, the mean IBI of a specific BIZ conditioned of it 
being the shortest one in the current round is smaller than the aggre-
gated IBI mean and is comparable to the most frequent BIZ’s IBI:

IBI IBI IBI IBIi
r

j
j
r

r j
j
r

i
r

r
i = <arg min ~ arg min

We compare the simulation result to the real data by treating 
each APM as it was generated by different IBI and in both the 
“winning” IBIs is relatively flat (Figure 6).

different sub-networks is. It is important to note that η equals 
to 1 for the case that the internal variability of the IBI sequences 
and the variability between the sub-networks are comparable. The 
symmetry parameter β

Lévy
 was set to zero (no drift) and should 

not be confused with β used here that is the slope of the algebraic 
(power-law) part of the distribution of the APMs’ frequency of 
appearance.

Employing the wrestling model, we found that the parameters 
that fits the observations were:

 
α = ±1 98 0 01. . , η = ±1 0 1.  (±SEM) 

for the Levy distribution and β = − ±0 52 0 06. .  for the power-law 
slope ( ±  SEM). Note that the Lévy slope was almost 2 which is on 
the edge of Gaussian. We note the similarity across cultures by meas-
uring the coefficient of variance of the model parameters: CV(α, 
β, γ) = (0.01, 0.28, 0.24). We also note that, five out of six cultures 
passed a leave-one-out multi-variant ANOVA test with 5% thresh-
old with the null hypothesis being the same parameters mean.

FIgure 5 | Distributions of the frequency of appearance of the APMs of 
six different four coupled networks (labeled (A) to (F)). The dots represent 
the frequency of appearance of the APMs on a log scale, ranked from the 
most frequent one and down The red dots are the leading (most frequent) 
APMs – the ones which were more frequent than random (1/24) and blue are 
the APMs with lower frequency of appearance (including one additional point 
which was above it). The black patches represent the 1–99% Monte Carlo 
simulation of a ranking a uniform distribution with alphabet size equal to the 
maximum number of possible words (24) and to the number of words above 
uniform (red) (population size = number of culture SBEs and 10,000 repeated 
simulations). The orange line is the maximum likelihood fit to a power-law 
model of the points above uniform (red). The Green patches represent the 
1–99% Monte Carlo simulation of wrestling model simulation with parameters 
which were estimated according to maximum likelihood measurement on a 

grid search (see Materials and Methods). The green line is the mean value of 
the patch. The number summarize the wrestling arena model simulation 
parameters (α, η), the power-law estimated slope (β) and the power-law test 
p-value (p). Notice that also the cultures had very different time properties (e.g., 
mean IBI lasting from 10 to 250 s; see Materials and Methods) the global 
distribution parameters are similar and consistent across cultures. Moreover, 
the maximum likelihood wrestling model fit gives higher values to more 
frequent events, but nevertheless the model fits nicely also to rare events 
upto 1 to 1000. In order to emphasize the break of symmetry in the frequency 
of appearance of the different SAO, we also compared the apparent 
distribution to a ranking of a uniform distribution. We repeated this first with an 
alphabet size equal to the maximize number of possible sequence (4! = 24) 
and secondly with an alphabet size equal to the number of SAO which were 
more frequent then uniform.
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aPPendIx
PoWer-laW testIng and estIMatIon
To quantify the finite scaling of the frequency of appearance of the 
different APMs we followed and extended the method of (Goldstein 
et al., 2004; Clauset et al., 2009). The estimation and significant test-
ing of the power-law (p(k) ∝ k−β) distribution’s parameter (β) have 
been extended for the case of the observed finite power-law. This 
is defined as a finite repertoire of motifs’ (alphabet) distribution 
which follows the power-law only for k < M where k is the event 
frequency rank. We focus only on estimating the power parameter, 
while M was fixed and chosen such that it differentiated between 
APMs with frequency higher and lower than that calculated for the 
limit of uniform frequency of appearance.

Finite power-law estimation
We estimated the power-law only on a subset of the distribution 
at k < M. The justification for this approach is as follows: if the 
subset accumulates q fraction of the whole distribution P

0
, the 

subset distribution P is related to it as P = qP
0
. Since maximum 

likelihood estimation maximizes P and since q is independent on 
the distribution parameters (β), it can be omitted and P can be 
treated as if it was the real distribution.

  Assuming that the one sample distribution is defined as:

P k M k k MM| β ζ ββ, ( ) { , }( ) = ( ) ∈− −1
1 2

where ζ β βM
k
M k( ) = ∑ =

−
1  is the partition function for the case of M 

discrete values and the exponent β. Note that this is not the real 
partition function and it does not normalize the whole distribution 
rather only the power-law subset part.

If the measurements are statistically independent, the log 
likelihood (λ) of β with N observations { }ki i

N
=1 can be written as 

Λ( ) log ( ) log log .β λ β ζ ββ= = − − ∑ =N kM
n
N

n1  To find its minimum, 
we differentiate with respect to the parameter and get the ML 
estimator:
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∂
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− ==
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dIscussIon and suMMary
We showed that four-coupled cultured networks exhibit mutual 
SBEs with a reach repertoire of APM, each with a distinct order 
of activity propagation between the sub-networks. Investigations 
of the frequency of appearance of the APMS revealed power-
law scaling between the several leading (most frequent) ones. 
In complex systems, power-law scaling can be a manifestation 
of hierarchy and robustness (Sornette, 2007). The non-uni-
form nature of Finite power-law suggests some kind of control 
mechanism that prevents a winner-takes-all scenario by the 
most active sub-network (so it does not generate almost all the 
mutual SBE).

We introduced a “wrestling model” to account for the observa-
tions. Simulations of the model to fit with the observations revealed 
that the scaling parameter η has to be close to 1. This result indicates 
that the intrinsic variability in the IBI sequences generated by the 
sub-networks is regulated to fit the variability in the mean IBI 
between the different sub-networks.

This result ( . )η = ±1 0 1  suggests that there must be some unknown 
mechanism which can co-regulate the local intra-variability and 
the global inter-variability to be comparable.

One possible mechanism might be related to the propagation of 
calcium waves in the astrocytes. It has been proposed that astrocyte 
calcium waves may constitute a long-range signaling system within 
the brain (Cornell-Bell et al., 1990).

The calcium waves can be regulated by the rate of activity of the 
different sub-networks and in turn regulates the effective synaptic 
strengths. Since they have a long time scales and can propagate 
over long distances, the calcium waves might provide a mechanism 
that couples the intrinsic scaling of IBI and the global variability 
between the different sub-networks. The possible role of calcium 
wave can be tested experimentally by testing the effect of regula-
tions of the astrocyte calcium wave’s dynamics on the frequency 
of appearance of the APMs.

Finally we would like to note that the similarity in the model’s 
parameters across cultures might suggests that these are invariants 
of the culture network.

FIgure 6 | Mean IBI just before one of the five most frequent (highest rank) 
APMs of six different networks and a simulation of the “wrestling arena.” We 
normalized these IBI according the mean IBI of the most frequent APMs (thus the 
most frequent mean is “1”) (errors are SEM). It seems that the IBI before each 
APM is the same for the different leading APMs despite the high variability of the 

IBIs. The wrestling model predicts this (typical simulation α = 1.9, η = 1, N = 1000). 
The model predicts that if a slower BIZ wins over the most frequent APM its IBI is 
shorter than usual and of the same order of magnitude as the most frequent APM 
(or smaller). Note that the wrestling simulation can produce a finite power-law like 
behavior (not in all runs) with a cutoff similar to the observed data.
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true value, then at least (2ε)−2 synthetic data sets should be gener-
ated (Clauset et al., 2009). If, for example, the p-value is accurate 
to about two decimal points, ε = 0.01 should be chosen, which 
implies a generation of about 2500 samples minimum. In our test, 
we used 10,000.

Model detaIls and Its ParaMeter estIMatIon
At each round (r = [1, N

r
], N

r
 = 1000) the ith BIZ produces a 

random IBI according to the sum of its own mean IBI μ
i
 ∝ N(0, 

σ
inter

) and its centered Lévy distribution realization l Li
r ∝ ( , )η α  

such that IBIi
r

i i
rl= +µ . At each round the winning BIZ (Wr) is 

the one with the shortest IBI: W r

i i
r= arg min( ).IBI  The histo-

gram H W ii r
N rr= ∑ =1 δ( , ) of winning BIZs is then sorted (ranked) 

and normalized where δ(i, j) being the Kronecker’s delta. The 
probability distribution of the different ranks is thus simply 
p H Hi k

M
k i= ∑ =

−( ) .1
1

We estimated the model parameters by a grid search 
(α = [1:0.01:2], η = [0.5:0.05:2]). For each couple of parameters, 
we estimated the probability distribution of each rank { } .pk

M

k=1  
Then we computed the log likelihood by modeling the observed 
frequency of rank { }xk

M

k=1
 as multinomial distribution. We found 

( , )α ηML ML  which maximize the log likelihood Γ using the rela-
tion Γ = ∝ ∑ =log log .γ i

M
i ix p1  For the ML estimated parameters’ 

values we computed the 98% (1–99%) confidence interval of the 
frequency of appearance for each rank (from the same Monte 
Carlo simulation).

Obviously, when the scaling parameter η is large we expect only 
one BIZ to win (“winner-takes-it-all” scenario), thus producing 
a delta function in the ranked SAO distribution. However, if it 
is small, it would create a uniform distribution since all BIZ are 
equally likely to “win.” We claim that only variability ratio of the 
order of one (η ∼ 1) can explain the observed SAO distribution 
which is neither uniform nor exclusive.

We note that η is somehow problematic as for α lower than 2, 
the variance of the Lévy’s distribution diverges. Therefore, we used 
the empiric variance and normalized it according to σinter

2 .
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where we mark the partition function derivation as 
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which can be solved numerically for every observation set { }ki
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and fixed M.

Power-law testing
Observing an approximately straight line on a log-log plot is a nec-
essary but not sufficient condition to indicate power-law scaling 
(Clauset et al., 2009). Thus, we tested the hypothesis of power-law 
distribution in a statistically significant manner using goodness-of-
fit test based on Kolmogorov–Smirnov (KS) statistic test (Goldstein 
et al., 2004). A significant p-value for this test (typical more than 
0.05) means that the power-law null hypothesis cannot be rejected 
which means that the data is compatible with the null hypothesis.

To avoid estimation bias, we used a Monte Carlo calibration 
process in which we drew a large number (n ∼ 103) of synthetic data 
sets from different power-laws distributions with uniform random 
slope α in the range [0, 1] (α ∼ U(0, 1)) of discrete alphabet size 
M ∈ [3, 24]. Then we fitted each one individually to the power-law 
model (see previous subsection) and calculated the KS statistic for 
each one relative to its own best-fit model. We then measured the 
test’s p-value by estimating the fraction of trials which had a KS 
value larger than the observed one.

To summarize, in order to test the hypothesis that the observed 
data set is drawn from a power-law distribution one should: 
(1) Determine the best fit of the power-law to the data by estimat-
ing the scaling parameter β using the ML method, (2) Calculate 
the KS statistics for the goodness-of-fit of the best-fit power-law 
to the data, (3) generate a large number of synthetic data sets. Fit 
each according to the ML method, and calculate the KS statistic for 
each fit, (4) calculate the p-value as the fraction of the KS statistics 
for the synthetic data sets whose value exceeds the KS statistic for 
the real data, (5) If the p-value is sufficiently small, the power-law 
distribution can be ruled out (Clauset et al., 2009).

An analysis of the expected worst-case performance of the 
method produced a rule of thumb for determine the number of 
trials (n): if the p-values is to be accurate to within about ε of the 
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