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the approach rarely succeeds in giving a complete account of the 
recorded activity on the population level. For instance, many inter-
esting features of the population response may go unnoticed if 
they have not been explicitly looked for. Furthermore, the strongly 
 distributional nature of the population response, in which indi-
vidual neurons can be responsive to several task parameters at once, 
is often left in the shadows.

Principal component analysis (PCA) and other dimension-
ality reduction techniques seek to alleviate these problems by 
providing methods that summarize neural activity at the popu-
lation level (Nicolelis et al., 1995; Friedrich and Laurent, 2001; 
Zacksenhouse and Nemets, 2008; Yu et al., 2009; Machens et al., 
2010). However, such “unsupervised” techniques will usually 
neglect information about the relevant task variables. While 
the methods do provide a succinct and complete description of 
the population response, the description may yield only limited 
insights into how different task parameters are represented in 
the population of neurons.

In this paper, we propose an exploratory data analysis method 
that seeks to maintain the major benefits of PCA while also extract-
ing the relevant task variables from the data. The primary goal of 
our method is to improve on dimensionality reduction techniques 
by explicitly taking knowledge about task parameters into account. 
The method has previously been applied to data from the prefrontal 
cortex to separate stimulus- from time-related activities (Machens 
et al., 2010). Here, we describe the method in greater detail, derive 
it from first principles, investigate its performance under noise, and 
generalize it to more than two task parameters. Our hope is that this 
method provides a better visualization of a given data set, thereby 

IntroductIon
Higher-order cortical areas such as the prefrontal cortex receive 
and integrate information from many other areas of the brain. 
The activity of neurons in these areas often reflects this mix 
of influences. Typical neural responses are shaped both by the 
internal dynamics of these systems as well as by various external 
events such as the perception of a stimulus or a reward (Rao 
et al., 1997; Romo et al., 1999; Brody et al., 2003; Averbeck et al., 
2006; Feierstein et al., 2006; Gold and Shadlen, 2007; Seo et al., 
2009). As a result, neural responses are extremely complex and 
heterogeneous, even in animals that are performing relatively 
facile tasks such as simple stimulus–response associations (Gold 
and Shadlen, 2007).

To make sense of these data, researchers typically seek to relate 
the firing rate of a neuron to one of various experimentally control-
led task parameters, such as a sensory stimulus, a reward, or a deci-
sion that an animal takes. To this end, a number of statistical tools 
are exploited such as regression (Romo et al., 2002; Brody et al., 
2003; Sugrue et al., 2004; Kiani and Shadlen, 2009; Seo et al., 2009), 
signal detection theory (Feierstein et al., 2006; Kepecs et al., 2008), 
or discriminant analysis (Rao et al., 1997). The population response 
is then characterized by quantifying how each neuron in the popu-
lation responds to a particular task parameter. Subsequently, neu-
rons can be attributed to different (possibly overlapping) response 
categories, and population responses can be constructed by averag-
ing the time-varying firing rates within such a category.

This classical, single-cell based approach to electrophysiological 
population data has been quite successful in clarifying what infor-
mation neurons in higher-order cortical areas represent. However, 
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limited, the response heterogeneity increases strongly when more 
components are allowed (see Figures 3A,B for an example with 
three components).

PrIncIPal comPonent analysIs faIls to demIx the resPonses
The standard approach to deal with such data sets is to sort cells into 
categories. In our example, this approach may yield two overlapping 
categories of cells, one for cells that respond to the stimulus and one 
for cells that respond to the decision. While this approach tracks 
down which variables are represented in the population, it will fail 
to quantify the exact nature of the population activity, such as the 
precise co-evolution of the neural population activity over time.

A common approach to address these types of problems are 
dimensionality reduction methods such as PCA (Nicolelis et al., 
1995; Friedrich and Laurent, 2001; Hastie et al., 2001; Zacksenhouse 
and Nemets, 2008; Machens et al., 2010). The main aim of PCA 
is to find a new coordinate system in which the data can be repre-
sented in a more succinct and compact fashion. In our toy example, 
even though we may have many neurons with different responses 
(N = 50 in Figure 1, with five examples shown in Figure 1B), the 
activity of each neuron can be represented by a linear combination 
of only two components. In the N-dimensional space of neural 
activities, the two components, z

1
(t,s) and z

2
(t,d), can be viewed 

as two coordinates of a coordinate system whose axes are given 
by the vectors of mixing coefficients, a

1
 and a

2
. Since the first two 

coordinates capture all the relevant information, the components 
live in a two-dimensional subspace. Using PCA, we can retrieve 
the two-dimensional subspace from the data. While the method 
allows us to reduce the dimensionality and complexity of the data 
dramatically, PCA will in general only retrieve the two-dimensional 
subspace, but not the original coordinates, z

1
(t,s) and z

2
(t,d).

To see this, we will briefly review PCA and show what it does to 
the data from our toy model. PCA commences by computing the 
covariances of the firing rates between all pairwise combination 
of neurons. Let us define the mean firing rate of neuron i as the 
average number of spikes that this neuron emits, so that
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We will use the angular brackets in the second line as a short-
hand for averaging. The variables to be averaged over are indicated 
as subscript on the right bracket. Here, the average runs over all 
time points t, all stimuli s, and all decisions d. For the vector of 
mean firing rates we write r = (r

1
,…,r

N
)T.

The covariance matrix of the data summarizes the second-order 
statistics of the data set,

C t s d t s d
T

t s d
= −( ) −( )r r r r( , , ) ( , , ) ,

, ,  
(6)

and has size N × N where N is the number of neurons in the data 
set. Given the covariance matrix, we can compute the firing rate 
variance that falls along arbitrary directions in state space. For 
instance, the variance captured by a coordinate axis given by a nor-
malized vector u is simply L = uTCu. We can then look for the axis 

yielding new insights into the function of higher-order areas. We 
will first explain the main ideas in the context of a simple example, 
then show how these ideas can be generalized, and finally discuss 
some caveats and limitations of our approach.

results
resPonse heterogeneIty through lInear mIxIng
Recordings from higher-order areas in awake behaving animals 
often yield a large variety of neural responses (see e.g., Miller, 1999; 
Churchland and Shenoy, 2007; Jun et al., 2010; Machens et al., 2010). 
These observations at the level of individual cells could imply a com-
plicated and intricate response at the population level for which a 
simplified description does not exist. Alternatively, the large hetero-
geneity of responses may be the result of a simple mixing procedure. 
For instance, response variety can come about if the responses of 
individual neurons are random, linear mixtures of a few generic 
response components (see e.g., Eliasmith and Anderson, 2003).

To illustrate this insight, we will construct a simple toy model. 
Imagine an animal which performs a two-alternative-forced choice 
task (Newsome et al., 1989; Uchida and Mainen, 2003). In each trial 
of such a task, the animal receives a sensory stimulus, s, and then 
makes a binary decision, d, based on whether s falls into one of 
two response categories. If the animal decides correctly, it receives 
a reward. We will assume that the activity of the neurons in our toy 
model depends only on the stimulus s and the decision d.

To obtain response heterogeneity, we construct the response 
of each neuron as a random, linear mixture of two underlying 
response components, one that represents the stimulus, z

1
(t,s), and 

one that represents the decision, z
2
(t,d), see Figure 1A. The time-

varying firing rate of neuron i is then given by

r t s d a z t s a z t d c ti i i i i( , , ) ( , ) ( , ) ( ).= + + +1 1 2 2 η  (1)

Here, the parameters a
i1
 and a

i2
 are the mixing coefficients of 

the neuron, the bias parameter c
i
 describes a constant offset, and 

the term η
i
(t) denotes additive, white noise. We assume that the 

noise of different neurons can be correlated so that

〈 + 〉 =η η τ δ τi j t ijt t H( ) ( ) ( ) ,
 

(2)

where the angular brackets denote averaging over time, and H
ij
 is the 

noise covariance between neuron i and j. We will assume that there 
are N neurons and, for notational compactness, we will assemble 
their activities into one large vector, r(t,s,d) = (r

1
(t,s,d),…,r

N
(t,s,d))T. 

After doing the same for the mixing coefficients, the constant offset, 
and the noise, we can write equivalently,

r a a c n( , , ) ( , ) ( , ) ( ).t s d z t s z t d t= + + +1 1 2 2  (3)

Without loss of generality, we can furthermore assume that the 
mixing coefficients are normalized so that a ai

T
i = 1 for i ∈{1,2}. Since 

we assume that the mixing coefficients are drawn at random, and 
independently of each other, the first and second coefficient will 
be uncorrelated, so that on average, a a1 2 0T = , implying that a

1
 and 

a
2
 are approximately orthogonal.
With this formulation, individual neural responses mix informa-

tion about the stimulus s and the decision d, leading to a variety of 
responses, as shown in Figure 1B. While with only two underly-
ing components, the overall heterogeneity of responses remains 
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where the trace-operation, tr(·), sums over all the diagonal entries 
of a matrix, and I

n
 denotes the n × n identity matrix.

Mathematically, the principal axes u
i
 correspond to the eigenvec-

tors of the covariance matrix, C, which can nowadays be computed 
quite easily using numerical methods. Subsequently, the data can 
be plotted in the new coordinate system. The new coordinates of 
the data are given by

y r r( , , ) ( , , ) .t s d U t s dT= −( )  
(8)

that captures most of the variance of the data by  maximizing the 
 function L with respect to u subject to the normalization constraint 
uTu = 1. The solution corresponds to the first axis of the coordinate 
system that PCA constructs. If we are looking for several mutually 
orthogonal axes, these can be conveniently summarized into an 
N × n orthogonal matrix, U = [u

1
,…,u

n
]. To find the maximum 

amount of variance that falls into the subspace spanned by these 
axes, we need to maximize

L C U CU U U Ii
T

i
T T

n
i

n

= = =
=
∑u u tr subject to( ) ,

1  
(7)
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Figure 1 | Mixing and demixing of neural responses in a simulated 
two-alternative forced choice task. (A) We assume that neural responses are 
linear mixtures of two underlying components, one of which encodes the 
stimulus (left, colors representing different stimuli), and one of which encodes the 
binary decision (right) of a two-alternative-forced choice task. For concreteness, 
we assume that the task comprised Ms = 8 stimuli and Md = 2 decisions. (B) 
Single cell responses are random combinations of these two components. We 
assume that N = 50 neurons have been recorded, five of which are shown here. 
The noisy variability of the responses was obtained by transforming the 
deterministic, linear mixture of each neuron into 10 inhomogeneous Poisson spike 

trains, and then re-estimating the firing rates by low-pass filtering and averaging 
the spike trains. This type of noise may be considered more realistic, even if it 
deviates from the assumptions in the main text. In our numerical example, this did 
not prove to be a problem. To systematically address such problems, however, one 
may apply a variance-stabilizing transformation to the data, such as taking the 
square-root of the firing rates before computing the covariance matrix (see e.g., 
Efron, 1982). (C) PCA uncovers the underlying two-dimensionality of the data, but 
the resulting coordinates do not demix the separate sources of firing rate variance. 
(D) By explicitly contrasting these separate sources, we can retrieve the original 
components up to a sign.
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demIxIng resPonses usIng covarIances over  
margInalIzed data
To solve these problems, we need to separate the different causes of 
firing rate variability. In the context of our example, we can attribute 
changes in the firing rates to two separate sources, both of which 
contribute to the covariance in Eq. 6. First, firing rates may change 
due to the externally applied stimulus s. Second, firing rates may 
change due to the internally generated decision d.

To account for these separate sources of variance in the popu-
lation response, we suggest to estimate one covariance matrix for 
every source of interest. Such a covariance matrix needs to be spe-
cifically targeted toward extracting the relevant source of firing 
rate variance without contamination by other sources. Naturally, 
this step is somewhat problem-specific. For our example, we will 
first focus on the problem of estimating firing rate variance caused 
by the stimulus separately from firing rate variance caused by the 
decision. When averaging over all stimuli, we obtain the marginal-
ized firing rates r(t,d) = 〈r(t,s,d)〉

s
. The covariance caused by the 

stimulus is then given by the N × N matrix

C t s d t d t s d t ds

T

t s d
= −( ) −( )r r r r( , , ) ( , ) ( , , ) ( , ) .

, ,  
(13)

We will refer to C
s
 as the marginalized covariance matrix for the 

stimulus. We can repeat the procedure for the decision-part of the 
task. Marginalizing over decisions, we obtain r(t,s) = 〈r(t,s,d)〉

d
 and

C t s d t s t s d t sd

T

t s d
= −( ) −( )r r r r( , , ) ( , ) ( , , ) ( , ) .

, ,  
(14)

Having two different covariance matrices, one may now per-
form two separate PCAs, one for each covariance matrix. In turn, 
one obtains two separate coordinate systems, one in which the 
principal axes point into the directions of state space along which 
firing rates vary if the stimulus is changed, the other in which they 
point into the directions along which firing rates vary if the deci-
sion changes.

For the toy model, it is readily seen that the marginal-
ized covariance matrices are given by C M Hs

T
s= +a a1 1 11,  

and C M Hd
T

d= +a a2 2 22,  with M
s,11

 = 〈(z
1
(t,s) − z

1
(t))2〉 and 

M
d,22

 = 〈(z
2
(t,d) − z

2
(t))2〉. Consequently, the principal eigenvec-

tors of C
s
 and C

d
 will be equivalent to the mixing coefficients a

1
 

and a
2
, at least as long as the variances M

s,11
 and M

d,22
 are much 

larger than the size of the noise, which is given by tr(H).
If the noise term is not negligible, it will force the eigenvectors 

away from the actual mixing coefficients. This problem can be alle-
viated by using the orthogonality condition, a a1 2 0T = , which implies 
that there are separate sources of variance for the stimulus- and 
decision-components. To this end, we can seek to divide the full 
space into two subspaces, one that captures as much as possible 
about the stimulus-dependent covariance C

s
, and another, that cap-

tures as much as possible about the decision-dependent covariance 
C

d
. Our goal will then be to maximize the function

L U C U U C UT
s

T
d= ( ) + ( )tr tr1 1 2 2  

(15)

with respect to the two orthogonal matrices U
1
 and U

2
 whose 

columns contain the basis vectors of the respective subspaces. 
The first term in Eq. 15 captures the total variance falling into 

These new coordinates are called the principal components. Note 
that the new coordinate system has a different origin from the 
old one, since we subtracted the vector of mean firing rates, r. 
Consequently, the principal components can take both negative 
and positive values. Note also that the principal components are 
only defined up to a minus sign since every coordinate axis can 
be reflected along the origin. For our artificial data set, only two 
eigenvalues are non-zero, so that two principal components suffice 
to capture the complete variance of the data. The data in these two 
new coordinates, y

1
(t,s,d) and y

2
(t,s,d), are shown in Figure 1C.

Our toy model shows how PCA can succeed in summarizing the 
population response, yet it also illustrates the key problem of PCA: 
just as the individual neurons, the components mix information 
about the different task parameters (Figure 1C), even though the 
original components do not (Figure 1A). The underlying problem 
is that PCA ignores the causes of firing rate variability. Whether 
firing rates have changed due to the external stimulus s, due to the 
internally generated decision d, or due to some other cause, they 
will enter equally into the computation of the covariance matrix 
and therefore not influence the choice of the coordinate system 
constructed by PCA.

To make these notions more precise, we compute the cov-
ariance matrix of the simulated data. Inserting Eq. 3 into Eq. 6, 
we obtain

C M M M HT T T T= + + +  +a a a a a a a a1 1 11 2 2 22 1 2 2 1 12 ,
 

(9)

where M
11

 and M
22

 denote firing rate variance due to the first 
and second component, respectively, M

12
 denotes firing rate 

variance due to a mix of the two components, and H is the 
covariance matrix of the noise. Using the short-hand notations 
z

1
(t) = 〈z

1
(t,s)〉

s
, z

2
(t) = 〈z

2
(t,d)〉

d
, and z

i
 = 〈z

i
(t)〉

t
 for i ∈[1,2], the 

different variances are given by

M z t s z
t s11 1 1

2= −( ( , ) ) ,
,  

(10)

M z t d z
t d22 2 2

2= −( ( , ) ) ,
,  

(11)

M z t z z t z
t12 1 1 2 2= − −( ( ) )( ( ) ) .

 
(12)

Principal component analysis will only be able to segregate the 
stimulus- and decision-dependent variance if the mixture term M

12
 

vanishes and if the variances of the individual components, M
11

 and 
M

22
, are sufficiently different from each other. However, if the two 

underlying components z
1
(t,s) and z

2
(t,d) are temporally correlated, 

then the mixture term M
12

 will be non-zero. Its presence will then 
force the eigenvectors of C away from a

1
 and a

2
. Moreover, even if 

the mixture term vanishes, PCA may still not be able to retrieve the 
original mixture coefficients, if the variances of the individual compo-
nents, M

11
 and M

22
 are too close to each other when compared to the 

magnitude of the noise: in this case the eigenvalue problem becomes 
degenerate. In general, the covariance matrix therefore mixes differ-
ent origins of firing rate variance rather than separating them. While 
PCA allows us to reduce the dimensionality of the data, the coordinate 
system found may therefore provide only limited insight into how the 
different task parameters are represented in the neural activities.
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forth between the single cell and population level description of the 
neural activities. Just as in PCA, we can project the original firing 
rates of the neurons onto the new coordinates,

y r r( , , ) ( , , ) ,t s d U t s dT= −( )  (18)

and the two leading coordinates for the toy model are shown in 
Figure 1D. These components correspond approximately to the 
original components, z

1
(t,s) and z

2
(t,d). In turn, we can reconstruct 

the activity of each neuron by inverting the coordinate transform,

r y r( , , ) ( , , ) .t s d U t s d= +  (19)

For every neuron this yields a set of N reconstruction coefficients 
which correspond to the rows of U.

Since two coordinates were sufficient to capture most of the vari-
ance in the toy example, the firing rate of every neuron can be recon-
structed by a linear combination of these two components, y

1
(t,s,d) 

and y
2
(t,s,d). For each neuron, we thereby obtain two reconstruction 

coefficients, u
i1
 and u

i2
. The set of all reconstruction coefficients 

constitutes a cloud of points in a two-dimensional space. The distri-
bution of this cloud, together with the activities of several example 
neurons are shown in Figure 2. This plot allows us to link the single 
cell with the population level by visualizing how the activity of each 
neuron is composed out of the two underlying components.

generalIzatIons to more than two Parameters
In our toy example, we have assumed that each task parameter 
is represented by a single component. We note that this is a fea-
ture of our specific example. In more realistic scenarios, a single 

the  subspace spanned by the columns of U
1
, and the second term 

the total  variance falling into the subspace given by U
2
. Writing 

U = [U
1
,U

2
], we obtain an orthogonal matrix for the full space, and 

the orthogonality conditions are neatly summarized by UUT = I. 
As shown in the Appendix, the maximization of Eq. 15 under these 
orthogonality constraints can be solved by computing the eigenvec-
tors and eigenvalues of the difference of covariance matrices,

D C Cs d= − .  (16)

In this case, the eigenvectors belonging to the positive eigenval-
ues of D form the columns of U

1
 and the eigenvectors belonging 

to the negative eigenvalues of D form the columns of U
2
. As with 

PCA, the positive or negative eigenvalues can be sorted according 
to the amount of variance they capture about C

s
 and C

d
.

For the simulated example, we obtain

D M MT
s

T
d= −a a a a1 1 11 2 2 22, , ,

 
(17)

where the noise term H has now dropped out. Diagonalization 
of D results in two clearly separated eigenvalues, M

s,11
 and −M

d,11
, 

and in two eigenvectors, a
1
 and a

2
, that correspond to the original 

mixing coefficients.

lInkIng the PoPulatIon level and the sIngle cell level
As a result of the above method, we obtain a new coordinate sys-
tem, whose basis vectors are given by the columns of the matrix U. 
This coordinate system provides simply a different, and hopefully 
useful, way of representing the population response. One major 
advantage of orthogonality is that one can easily move back and 
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Figure 2 | Linking the single cell and population level. Using the coordinate 
system retrieved by separating variances, we can illuminate the contributions of 
each component to the individual neural responses. The center shows the 

contribution of the stimulus- and decision-related components to each individual 
neuron. The surrounding plots show the activity of eight example neurons, 
corresponding to the respective dots in the center.
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Eq. 24 with standard gradient ascent methods. In any case, it may 
often be a good idea to use PCA on the full covariance matrix of the 
data, Eq. 6, to reduce the dimensionality of the data set prior to the 
demixing procedure. Indeed, this preprocessing step was applied in 
Machens et al. (2010).

further generalIzatIons and lImItatIons of the method
The above formulation of the problem may be further generalized 
by allowing individual components to mix parameters in non-
trivial ways. To study this scenario in a simple example, imagine that 
in the above two-alternative-forced choice task, in addition to the 
stimulus- and decision-dependent component, there were a purely 
time-dependent component, z

3
(t), locked to the time structure of 

the task, so that

r a a a c n( , , ) ( , ) ( , ) ( ) ( ).t s d z t s z t d z t t= + + + +1 1 2 2 3 3  (25)

This scenario is illustrated in Figures 3A,B. As before, we can 
compute marginalized covariance matrices, that capture the covari-
ance due to the stimuli s, the decisions d, or the time points t. While 
the marginalized covariance matrices for the stimuli and decisions, 
C

s
 and C

d
, have one significant eigenvalue each, and thereby capture 

the relevant component (Figure 3C), the marginalized covariance 
matrix for time, C

t
, now has three significant eigenvalues, and there-

fore does not allow us to retrieve the purely time-dependent com-
ponent z

3
(t). The reason for this failure is that all three components 

in Eq. 25 have a time-dependence that cannot be averaged out. By 
design, the stimulus-averaged first component, z

1
(t) = 〈z

1
(t,s)〉

s
, and 

the decision-averaged second component, z
2
(t) = 〈z

2
(t,d)〉

d
 do not 

vanish. In other words, the stimulus- and decision-components 
have intrinsic time-dependent variance that cannot be separated 
from the stimulus- or decision-induced variance.

Consequently, the subspace spanned by the first three eigenvec-
tors of C

t
 overlaps with the respective subspaces spanned by the 

first eigenvectors of C
s
 and C

d
. One way to visualize this overlap 

is to take the five relevant eigenvectors (three for C
t
, one for C

s
, 

and one for C
d
) and compute how much of the variance of each 

marginalized covariance matrix they capture. To do so, we compute 
the “confusion matrix”

S
C

Cij
i
T

j i

j

=
u u

tr( )
.

 

(26)

This confusion matrix measures what percentage of the variance 
attributed to the j-th cause is captured by the i-th coordinate. For 
the above example, it is illustrated in Figure 3D. If in one row of this 
matrix, more than one entry is significantly above 0, then more than 
one covariance matrix has significant variance along that direction of 
state space. Whereas the eigenvectors of the C

s
 and C

d
 matrix do not 

interfere with each other, i.e., they are approximately orthogonal, the 
eigenvectors of the C

t
 matrix interfere with both the C

s
 and C

d
 eigen-

vectors, i.e., the respective subspaces overlap. The method introduced 
above will still yield a result in this case, however, the new coordinate 
system will generally not retrieve the original components.

An ad hoc solution to this problem may be to section the three-
dimensional eigenvector subspace of C

t
, and identify a direction 

that is orthogonal to the first eigenvectors of C
s
 and C

d
, which will 

task parameter could potentially be represented by more than 
one  component. For instance, if one set of neurons fires tran-
siently with respect to a stimulus s, but another set of neurons 
fires tonically, then the firing rate dynamics of the stimulus rep-
resentation are already two-dimensional, even without taking the 
decision into account. In such a case, we can still use the method 
described above to retrieve the two subspaces in which the respec-
tive components lie.

However, the number of task parameters will often be larger than 
two. In the two-alternative-forced choice task, there are at least four 
parameters that could lead to changes in firing rates: the timing of 
the task, t, potentially related to anticipation or rhythmic aspects 
of a task, the stimulus, s, the decision, d, and the reward, r. Even 
more task parameters could be of interest, such as those extracted 
from previous trials etc.

These observations raise the question of how the method can be 
generalized if there are more than two task parameters to account 
for. To do so, we write the relevant parameters into one long vector 
 = (θ

1
,θ

2
,…,θ

M
), and assume that the firing rates of the neurons 

are linear mixtures of the form

r a a( , ) ( , ) ( , )t z t z t = + +11 11 1 12 12 1θ θ   (20)

+ + +a a21 21 2 22 22 2z t z t( , ) ( , )θ θ   (21)

+ +aM M Mz t1 1( , ) ,θ   (22)

where each task parameter is now represented by more than one 
component. For each parameter, θ

i
, we can compute the marginal-

ized covariance matrix,

C t t t ti

T

t
i i

= −( ) −( )r r r r( , ) ( , ) ( , ) ( , ) ,
,

   


θ θ
 

(23)

which measures the covariance in the firing rates due to changes in 
the parameter θ

i
. Diagonalizing each of these covariance matrices 

will retrieve the various subspaces corresponding to the different 
mixture coefficients. For instance, when diagonalizing C

1
, we obtain 

the subspace for the components that depend on the parameter 
θ

1
. The relevant eigenvectors of C

1
 will therefore span the same 

subspace as the mixture coefficients a
11

, a
12

, etc., in Eq. 22.
As before, the method’s performance under additive noise can 

be enhanced by maximizing a single function (see Appendix)

L U C Ui
T

i i
i

M

= ( )
=
∑ tr

1  
(24)

subject to the orthogonality constraint UTU = I for U = [U
1
,U

2
,…,U

M
]. 

Maximization of this function will force the firing rate variance due 
to different parameters θ

i
 into orthogonal subspaces (as required by 

the model). If M = 1, then maximization results in a standard PCA. 
In the case M = 2, maximization requires the diagonalization of the 
difference of covariance matrices C

1
 − C

2
, as in Eq. 16. In the case 

M > 2, various algorithms can be constructed to find local maxima 
of L (see e.g., Bolla et al., 1998). To our knowledge, a full understand-
ing of the global solution structure of the maximization problem 
does not exist for M > 2. In the Appendix, we show how to maximize 
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decision-components. The rank of C
t
 then reduces to one, and the 

different components separate nicely (Figures 3E,F,G). While feasi-
ble in our toy scenario, these ad hoc procedures are not guaranteed 
to work for real data, when more dimensions are involved, and 

then  correspond to the purely time-dependent component z
3
(t). 

Alternatively, we could restrict the estimation of C
t
 to the time 

before stimulus onset, so that the covariance matrix is no longer 
contaminated by time-dependent variance from the stimulus- or 
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Figure 3 | Heterogeneous responses as a result of linear mixture of three 
components. (A) We now assume that neural responses are constructed from 
three underlying components, one of which encodes only the task rhythm (left), 
while the two others encode stimuli and responses, as in Figure 1. (B) Single 
cell responses are random combinations of these three components. We again 
assume that N = 50 neurons have been recorded, five of which are shown here, 
and response noise was generated as in Figure 1. (C) Whereas the marginalized 
covariance matrices for stimulus and decision, Cs and Cd, have only one 
significant eigenvalue, the one for time, Ct, features three eigenvalues above the 
noise floor. (D) The confusion matrix displays the percentage of variance 

captured by the different components (y-axis) with respect to the different 
marginalized covariance matrices (x-axis). The Cs row shows, for instance, that 
the first eigenvector of Cs captures a significant amount of variance from the Cs 
matrix (which is good), but it also captures a significant amount of variance from 
the Ct matrix (which is bad). (e) By estimating the time-dependent covariance 
over a time window limited to t ∈[0,2], we can reduce the number of significant 
eigenvalues to one. (F) In turn, every row of the confusion matrix has only one 
entry, showing that every component captures the variance of one 
marginalized covariance matrix only. (g) The firing rates projected onto the 
components from (F).
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individual neural responses is often not sufficient, hence the quest 
for methods that provide a useful and interpretable summary of 
the population response.

To provide such a summary, we made one crucial assump-
tion. We assumed that the heterogeneity of neural responses 
is caused by a simple mixing procedure in which the firing 
rates of individual neurons are random, linear combinations 
of a few fundamental components. We believe that such a sce-
nario is likely to be responsible for at least part of the observed 
response diversity. Higher-level areas of the brain are known to 
integrate and process information from many other areas in the 
brain. The presumed fundamental components could be given 
by the inputs and outputs of these areas. If such components 
are mixed at random at the level of single cells, then upstream 
or downstream areas can access the relevant information with 
simple linear and orthogonal read-outs. Such linear popula-
tion read-outs have long been known to work quite well in 
various neural systems (Seung and Sompolinsky, 1993; Salinas 
and Abbott, 1994).

To retrieve the components from recorded neural activity, 
and thereby at least partly reduce the response heterogeneity, 
we suggest to estimate the covariances in the firing rates that 
can be attributed to the experimentally controlled, external task 
parameters. Using these marginalized covariance matrices, we 
showed how to construct an orthogonal coordinate system such 
that individual coordinates capture the main aspects of the task-
related neural activities and the coordinate system as a whole 
captures all aspects of the neural activities. In the new coordinate 
system, firing rate variance due to different task parameters is 
projected onto orthogonal coordinates, making visualization and 
interpretation of the data particularly easy. We note, though, that 
the existence of a useful, orthogonal coordinate system is not 
guaranteed by the method, but can only be a feature of the data. 
Our method will generally not return useful results if mixing is 
linear, but not orthogonal, or if mixing is non-linear. Nonetheless, 
the case of non-orthogonal, linear mixing, may still be inves-
tigated through separate PCAs on the different marginalized 
covariance matrices.

Other methods exist that address similar goals. Most promi-
nently, application of canonical correlation analysis (CCA) to 
the type of data discussed here would also construct a coordinate 
system whose choice is influenced by knowledge about the task 
structure. In our context, CCA would seek a coordinate axis in 
the state space of neural responses and a coordinate axis in the 
space of task parameters, such that the correlation between the 
two is maximized. Whether this method would yield a useful, i.e., 
interpretable, coordinate system for real data sets remains open 
to investigation. CCA has recently been proposed as a method to 
construct population responses in sensory systems (Macke et al., 
2008) and as a way to correlate electrophysiological with fMRI data 
(Biessmann et al., 2009).

Further extensions and generalizations of PCA exist, some of 
which are specifically targeted to the type of data we have dis-
cussed here. The work of Yu et al. (2009), for instance, explicitly 
addresses the problems that are incurred by estimating firing rates 

more complex  confusion matrices may result. However, the latter 
solution demonstrates that by a judicious choice of marginalized 
covariance matrices, one may sometimes be able to avoid such 
problems of non-separability.

connectIon to blInd source seParatIon methods
In all of these scenarios, we assumed that the firing rates r are 
linear mixtures of a set of underlying sources z, each with mean 
0, so that

r z c.= +A  (27)

The problem that we have been describing then consists in 
estimating the unknown sources, z, the unknown mixture coef-
ficients, A, and the unknown bias parameters c from the observed 
data, r. Without loss of generality, we can assume that the sources 
are centered so that 〈z〉 = 0. Ours is therefore a specific version 
of the much-studied blind source separation problem (see e.g., 
Molgedey and Schuster, 1994; Bell and Sejnowski, 1995). In many 
standard formulations of this problem, one assumes that the 
sources are uncorrelated, or even statistically independent, which 
implies that the covariance matrix of the sources, M = 〈zzT〉

t
, 

is diagonal.
In our case, we do not want to make this assumption, which 

rules out the use of many blind source separation methods, such 
as independent component analysis (Hyvärinen et al., 2001). On 
the upside, we do have additional information, in the form of n 
task parameters, that provide indirect clues toward the underlying 
sources. More specifically, we assume that the sources are of the 
form z

k
(t,θ

k
) where θ

k
 denotes a single task parameter, or a specific 

combination of task parameters. For each task parameter, we can 
estimate the marginalized covariance matrix C

i
, which in turn is 

given by C
i
 = AM

i
AT with

M t t t ti

T

t
i i

= − 〈 〉( ) − 〈 〉( )z z z z( , ) ( , ) ( , ) ( , )
,

θ θ θ θ
θ

θ θ
 

(28)

As long as different task parameters are distributed over differ-
ent components, the matrix M

i
 will be block-diagonal. In the most 

general case, however, as discussed above, this will not be true. If one 
parameter is shared among several components, then the respec-
tive marginalized covariance matrix will capture variance from all 
of these components, and maximization of Eq. 24 will not neces-
sarily retrieve the original components. Future work may show 
how this general, semi-blind source separation problem can be 
solved by using knowledge about the structure of the marginalized 
M-matrices. For now, we suggest that in many practical scenarios, 
a judicious choice of covariance measurements, for instance, by 
focusing on particular time intervals of a task etc., may help to 
partly reduce the problem to those that are completely separable, 
as in Eq. 22.

dIscussIon
In this article, we addressed the problem of analyzing neural 
recordings with strong response heterogeneity. A key problem for 
these data sets is first and foremost the difficulty of visualizing the 
neural activities at the population level. Simply parsing through 
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previously studied data set (Machens et al., 2010). Many other 
data sets with strong response heterogeneity may be amenable to 
a similar analysis.
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prior to the dimensionality reduction. They show how to com-
bine these two separate steps into a single one using the theory 
of Gaussian processes. Their work is therefore complementary to 
ours, and could potentially be incorporated into the methodology 
introduced here.

Methods to summarize population activity have been employed 
in many different neurophysiological settings (Friedrich and 
Laurent, 2001; Stopfer et al., 2003; Paz et al., 2005; Narayanan and 
Laubach, 2009; Yu et al., 2009). Our main aim here was to modify 
these methods such that experimentally controlled parameters 
are taken into account and influence the construction of a new 
coordinate system. A first application of this method to neural 
responses from the prefrontal cortex revealed new aspects of a 
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aPPendIx
maxImIzatIon for two covarIance measurements
Assume that our goal is to separate the state space into two mutually 
orthogonal subspaces, such that most of the variance measured by 
C

1
 falls into one subspace, and most of the variance measured by C

2
 

into the orthogonal subspace. To do so, we define a matrix U
1
 whose 

columns contain a set of vectors u
i
 with i = 1,…,M, and a matrix 

U
2
 whose columns contain a set of vectors u

i
 with i = M + 1,…,N. 

All vectors are mutually orthonormal, so that u ui
T

j ij= δ . Our goal 
will then be to maximize

L U C U U C UT T= ( ) + ( )tr tr1 1 1 2 2 2 .
 

(29)

The orthogonality constraint is given by the condition 
U U U U IT T

1 1 2 2+ = . By the rules of traces, and using this constraint, 
we obtain

L U U C U U C

U U C I U U C

U U

T T

T T

T

= ( ) + ( )
= + −( )( )
=

tr tr

tr

tr

1 1 1 2 2 2

1 1 1 1 1 2

1 1 (CC C tr C1 2 2−( ) +) ( ).

The last line is maximized if the matrix U
1
 contains all the 

eigenvectors that correspond to the positive eigenvalues of C
1
 − C

2
. 

Consequently, the matrix U
2
 will contain all the eigenvectors cor-

responding to the negative eigenvalues of C
1
 − C

2
. The extremal 

eigenvalues of the difference matrix, i.e., the largest and the small-
est, correspond to the two eigenvectors that capture most of the 
variance in C

1
 and C

2
 under the given trade-off.

addItIve noIse does not affect the maxImum
To study the maximization problem under condition of additive 
noise, we assume n covariance measurements so that

C S Hi i= + ,  (30)

where S
i
 is the signal-part and H the noise part of the covariance 

matrix. Since the noise acts additively on the firing rates, every 
covariance measurement is polluted with the same amount of noise, 
H, compare Eq. 23. When maximizing Eq. 24 with respect to an 
orthogonal transform, U = [U

1
,…,U

n
], we will then target only the 

signal part of the covariance matrices, but not the noise part. To 
see that, we note that

L U C Ui
T

i i
i

n

= ( )
=
∑ tr

1  
(31)

=




=

∑tr U U Ci i
T

i
i

n

1  

(32)

= + −










=

−

=

−

∑∑tr U U C I U U Ci i
T

i i i
T

i

n

n
i

n

1

1

1

1

 

(33)

= − +
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−
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n
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1
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(34)

= −
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+ +
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−

∑tr trU U S S S Hi i
T

i n
i

n
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(35)

Accordingly, the projection operators, U Ui i
T , which project 

the variance into the relevant subspaces, target the difference of 
covariance matrices, C

i
 − C

n
, so that the noise drops out, since 

C
i
 − C

n
 = S

i
 − S

n
.

maxImIzatIon for n covarIance measurements
Maximization of Eq. 24,

L U C U UUi
T

i i
T

i

n

= ( ) =
=
∑ tr subject to 1

1  
(36)

is a quadratic optimization problem under quadratic constraints 
which can be solved numerically by any of a standard set of meth-
ods. A specific method to solve a related problem has been proposed 
in Bolla et al. (1998). Here, we present an algorithm based on a 
simple gradient ascent.

First, we need an initial guess for the U
i
. We suggest to use the 

first principal axes (eigenvector with largest eigenvalue) of the mar-
ginalized covariance matrix C

i
. This procedure, however, will gener-

ally yield a set of matrices U
i
 which are not mutually orthogonal. 

To orthogonalize these vectors, one can use the method of sym-
metric orthogonalization. Given the initial guess for the matrix, 
U = [U

1
,…,U

n
], the transform

U U U UT→ −( ) /1 2

 (37)

will yield a matrix with mutually orthogonal columns so that 
UTU = I. We will use this matrix U as our initial guess for the 
gradient ascent.

Next, let us define the matrix Q
i
 as an n × n matrix of zeros 

in which only the entry in the i-th column and i-th row is 1. The 
maximization over the captured variances, Eq. 36, can then be 
rewritten as

L U C UQ U U IT
i i

T

i

n

= ( ) =
=
∑ tr subject to ,

1  
(38)

which allows us to compactly write the matrix derivative of L as

∂
∂

=
=
∑L

U
C UQ

i

n

i i
1

.
 

(39)

Hence, to maximize L on the manifold of orthogonal matrices, 
U, we need to iterate the equations,

U U
L

U
→ + ∂

∂
α

 
(40)

U U U UT→ −( ) ,/1 2

 (41)

where the first equation performs a step toward the maxi-
mum, whose length is determined by the learning rate α, 
and the second step projects U back onto the manifold of 
orthogonal matrices.




