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is the rostral ventral respiratory group (rVRG), which is caudal to 
the preBötC and is a population of bulbo-spinal premotor neu-
rons that transmit central inspiratory drive to spinal motoneurons, 
whose axons innervate the diaphragm. Thus, within this hierarchi-
cal organization the preBötC determines the timing of inspiration 
(rhythmicity), whereas each subsequent layer modulates the shape 
and amplitude of the efferent signals which directly control the 
mechanics of inspiration.

In this paper, we focus on the connectivity and coherent firing in 
a subpopulation of neurons that comprise a significant portion of 
the inspiratory motor output in the respiratory column (Feldman 
et al., 1984). This study utilizes multielectrode array recordings 
from an in situ rat preparation allowing us to monitor the neuronal 
activity of many neurons simultaneously as well as the phrenic 
motor output (Baekey et al., 2001). In addition, we performed a 
statistical analysis of these data using bootstrap techniques allow-
ing us to identify temporal correlations (spike synchrony) between 
spike trains from different neurons that cannot be accounted for by 
chance. Synchronous activity may be derived from common input 
and as such, synchrony reflects the underlying connectivity from 
one layer to the next. In effect, recent experimental, theoretical and 

IntroductIon
Respiration is controlled by neuronal circuits in the brainstem 
that have been studied extensively using various approaches and 
experimental techniques. The respiratory rhythm is generated in 
the ventrolateral brainstem and while the exact mechanism respon-
sible for its genesis is debated (Del Negro et al., 2002; Rybak et al., 
2008) the pathway by which the brainstem relays inspiratory signals 
to the diaphragm is well documented. As such, the brainstem, in 
particular the ventral respiratory column, represents an excellent 
model to study the neuronal control of motor responses that are 
self-regulated, adaptive and malleable.

Independent of the underlying interactions between intrinsic 
cellular properties and extrinsic network properties to generate 
inspiration, the formation of inspiratory motor activity is amenable 
to a hierarchical model with three layers. The first and second lay-
ers are in the rostral ventrolateral respiratory column. This group 
of neurons contains distinct neuronal populations. The first layer 
is in the pre-Bötzinger complex (preBötC) and is involved in the 
initiation of inspiration (pre-inspiratory, pre-I), whereas the second 
layer is less defined anatomically and contributes to the ramping 
output pattern (inspiratory-augmenting, I-Aug). The third layer 
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computational studies have demonstrated that neurons receiv-
ing stochastic partially common inputs fire synchronous spikes 
(Galán et al., 2006b; Galán et al., 2007a; Ermentrout et al., 2008), 
a phenomenon known as stochastic synchronization. The fraction 
of synchronous spikes increases monotonically with increasing 
correlation (overlap) of the synaptic inputs (Galán et al., 2006b; 
Galán et al., 2007a; Ermentrout et al., 2008). Thus, the amount 
of synchrony between two spike trains that cannot be accounted 
for by chance reflects the amount of common input to the neu-
ronal pair. In the final part of the study, we use this relationship 
to model the connections between presynaptic neurons with 
divergent projections onto postsynaptic neurons. In summary, 
we have recorded from pre-motor inspiratory neurons and from 
their  pair-wise synchronization, we reverse-engineer the connec-
tivity with an upstream layer of inspiratory-augmenting neurons 
(I-Aug), which in turn is driven by the neurons in the preBötC 
referred to above.

The respiratory rhythm is quite variable and can be modulated 
in amplitude and frequency by external stimuli, such as low oxygen 
(hypoxia). Whereas the frequency and amplitude of respiration 
increase during acute hypoxia (Powell et al., 1998), subsequently, 
the respiratory frequency decreases below baseline and gradually 
recovers over the next few minutes in what is known as post-hypoxic 
frequency decline, PHFD (Coles and Dick, 1996; Dick et al., 2004). 
We hypothesized this behavior is reflected in the neuronal activity 
of the ventral respiratory column. Thus, we expected changes not 
only in the firing rates of the neurons but also in their temporal 
cross-correlations, e.g., spike synchronization. In this paper, we 
report our analysis revealing significant changes in spike synchrony 
across pre-motor neurons after hypoxia.

MaterIals and Methods
experIMental Methods
All experiments were performed in accordance with the guidelines 
of the Institutional Animal Care and Use Committee (IACUC) of 
Case Western Reserve University.

General surgical methods
For these experiments we used the working heart brainstem prepa-
ration (WHBP) of the rat (Paton, 1996) (Figure 1). Male Sprague-
Dawley rats (n = 6) (P21–P28, 60–100 g) were pretreated with 
heparin sodium (1000 units – IP), anesthetized with isoflurane 
(2–3%), then bisected below the diaphragm. The rostral half of the 
animal was submerged in cold artificial cerebrospinal fluid (aCSF) 
to decerebrate at the precollicular level. We removed the fur, skin 
and viscera, dissected the phrenic motor nerve and descending 
aorta and exposed the dorsal medullary surface.

After surgery, the preparation was moved to the recording cham-
ber and mounted supine in a stereotaxic frame. The distal end 
of the descending aorta was cannulated with a #4 French, double-
lumen catheter (Braintree Scientific) and perfused (21–28 ml/ 
min – Marlow Watson 505S peristaltic pump) with an iso-osmotic 
aCSF saturated with 95% O

2
/5% CO

2
. Perfusion pressure was moni-

tored through the other lumen (CWE TA-100 transducer-ampli-
fier). The preparation was immobilized with vecuronium bromide 
(0.4 mg/200 ml perfusate). Perfusion pressure was maintained at 
60–80 mmHg and corrected with 4 μM vasopressin (20 μl added 

to perfusate, as needed). Additionally, NaCN (0.1%, 50-μl bolus) 
was used to stimulate carotid chemoreceptors transiently initiating 
respiratory patterning in the preparation.

Electrode placement and neuronal sampling strategy
The distal end of the left phrenic nerve was drawn into a bipolar 
suction electrode. The signal was amplified (Grass P511), filtered 
(0.1–3 KHz) and digitized using a CED Power 1401 and Dell PC 
running Spike2 software. Pressure was adjusted to maintain an 
appropriate perfusion of the brainstem and pons indicated by a 
ramp patterned phrenic nerve output bursting at 15–30 breaths per 
minute and post inspiratory activity in the vagus nerve recording.

The 16-channel microelectrode array was secured on a stere-
otaxic frame aligning the tungsten electrodes (10–12 MΩ) perpen-
dicular to the neural surface with eight electrodes on either side 
of the brainstem. Each set of eight was divided into two sagittally 
oriented linear rows of four electrodes separated by 250 μm while 
electrodes within each row are separated by 300 μm. Stereotaxic 
coordinates were used to position electrodes bilaterally among 
inspiratory pre-motor neurons in the rVRG. Each electrode was 
positioned in steps as small as a micron to isolate a single extracel-
lular potential (Figure 1). In cases where more than one neuron 
was recorded on a single electrode, the principle component analy-
sis (PCA) feature of the Spike2 software was used to discriminate 
individual spike trains (spike sorting). The independent depth 
adjustment of each electrode optimized the yield of parallel single 
neuron recordings.

Experimental protocol
With many single neurons monitored in the rVRG and a satisfac-
tory nerve recording (signal-to-noise ratio >3), a 10-min baseline 
recording was made to characterize the recorded neurons, assess 
baseline synchrony, and for comparison with the poststimulus 
activity. After the baseline recording, the preparation was exposed 
to hypoxic perfusate (8% O

2
/5% CO

2
) for 15–25 s evoking a hypoxic 

ventilatory response followed by PHFD (Dick et al., 2001). Signals 
were recorded in Spike2 software for subsequent off-line analysis.

data analysIs
Table 1 summarizes the source of the experimental data sets con-
sidered in this study. We recorded from brainstem respiratory neu-
rons of six different rats. We recorded simultaneously from 8 to 23 
neurons in a preparation and exposed each preparation to brief 
hypoxia (see Experimental Protocol) up to three times. While our 
recordings included inspiratory, expiratory, and non-modulated 
activity patterns, our analysis focused on the inspiratory activity. 
The total number of pairs of inspiratory neurons was 562. Some 
neuronal pairs were duplicates because each stimulation was con-
sidered as a different experiment, as the hypoxic stimuli were tran-
sient and reversible. If only one hypoxic exposure was analyzed for 
each animal, i.e., if each pair was considered once in our analysis, 
then the total number of pairs would be 203. However, these results 
were qualitatively the same as those for the 562 pairs.

Epochs (80 s) of the recordings were analyzed for baseline and 
PHFD. The recorded data included extracellular potentials from the 
microelectrode array and phrenic nerve activity (PNA). Multi-fiber 
PNA was “integrated” (low-pass filtered) with a linear integrator 
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The following measures were computed from a 10-min base-
line period in order to ensure that there was only one neuron per 
channel and to characterize the cell-type: (1) Autocorrelation his-
tograms were created for each spike train to ensure that it repre-
sents the activity of a single neuron (not shown). A spike train 
with potentials from two or more neurons would include short 
intervals not constrained by refractoriness. (2) Cycle-triggered 
histograms (Figures 2C,D) were used to classify activity patterns 
with significant respiratory modulation according to the phase 
(inspiratory – I, or expiratory – E) in which they are more active 
and by trends in their burst patterns (augmenting, decrement-
ing or plateau). The cycle-triggered histograms were computed 
as the cross-correlation function of a spike train with respect to 
the phase of the phrenic nerve signal. The phase was calculated by 
linear interpolation of time between the beginning and the end 
of the respiratory cycle. Specifically, if t

k
 denotes the beginning 

of the k-th cycle, or equivalently, the end of the (k − 1)-th cycle, 
the phase is defined as: ϕ(t) = (t − t

k
)/(t

k+1
 − t

k
) for t

k
 ≤ t < t

k+1
. The 

beginning of the respiratory cycle, i.e., the trigger, was considered 
as the termination of inspiration.

Firing rates
The firing rate of a neuron is calculated as the inverse of the 
median interspike interval (ISI). This is a good approximation 
to the intraburst firing frequency. In other words, if two spike 
trains have different number of bursts but the firing frequency 
during the bursts is the same, then the firing rate will return very 
similar values.

using a 100-ms time constant to obtain a moving-time average 
of activity (Figures 2A,B) and using this integrated PNA, time 
stamps were added to indicate the onset of each inspiratory and 
expiratory phase. Action potentials of single neurons were con-
verted to times of occurrence, i.e., spike trains (Figures 2A,B). These 
processed epochs were exported to Matlab (version R2008a) for 
further analysis.
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Figure 1 | Multielectrode array technology (A) was applied to an in situ 
perfused rat preparation (B) to obtain ensemble recordings (C). (A) The 
electrode array had 16 tungsten microelectrodes with impedance 10–12 MΩ. 
Each individual electrode was positioned with a micromotor in steps as small 
as 1 μm over a range of 1 cm. (B) Decerebrate P21–P28 rats were 
retrogradely perfused through the descending aorta with artificial 

cerebrospinal fluid bubbled with 95% O2/5% CO2. These preparations 
generate spontaneous respiratory pattern, which was monitored from phrenic 
nerve activity. (C) Extracellular action potentials were digitized and recorded 
using CED Spike2 software and a Power1401 data acquisition system. (The 
amplitude calibration as labeled is for seven of the recordings; the exception 
is I4 for which it is 0.2 V).

Table 1 | Origin of the data and number of cells and pairs investigated.

Preparation Stimulation Total number Number Number 

number number of cells of i-cells of i-pairs

1 1 12 5 10

2 1 8 4 6

3 1 23 17 136

 2 23 17 136

 3 23 17 136

4 1 9 6 15

 2 9 6 15

5 1 12 7 21

 2 12 7 21

 3 12 7 21

6 1 11 6 15

 2 11 6 15

 3 10 6 15

 Totals 175 111 562
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et al., 2006a, 2007b), which are equivalent to the cross-correlation 
coefficient of two spike trains convolved with a Gaussian or a 
step function of width 2δ. In fact, the algorithm described above 
is mathematically equivalent to the latter case but without cal-
culating the convolution explicitly. This way, we only need to 
store spike times in the computer’s memory and not the whole 
binary traces (1 = spike, 0 = no spike) representing the firing of 
each neuron, which would be required to calculate the convo-
lution explicitly. Because the binary traces are sparse, i.e., they 
contain many more 0’s than 1’s, by keeping the spike times only 
we save a significant fraction of memory space, which in turn 
speeds the computational implementation of our synchrony 
algorithm considerably. For example, the analysis presented in 
Figure 2 took just a few seconds to run fully in Matlab R2008a 
on a Dell PC with an Intel® Xeon® CPU (1.60 GHz with 2GB 
RAM). Furthermore, since this measure of synchrony is funda-
mentally a cross-correlation matrix, it allows us to run a cluster-
ing analysis to identify neuronal pairs that are more coherent 
among themselves than with respect to other neuronal groups 
(see Figure 4). This technique has demonstrated the existence 
of synchronized assemblies among inspiratory neurons of the 
central pattern generator of respiration (Baekey et al., 2009), 
which is upstream of the network investigated here.

Raw synchrony as a cross-correlation coefficient between 
spike trains
Our experiments are designed to quantify spike synchrony across 
neurons in the respiratory column, and their modulation across 
different states of the preparation. Spike synchronization between 
neuron X and Y is calculated in the following way. Let ti

x  be the 
time of the i-th spike in channel X and let t j

y  be the time of the 
j-th spike in neuron Y. For each spike time pair ( , ),t ti

x
j
y  the relative 

separation is compared to a tolerance, δ = 2 ms. We then define 
R

xy
 as the number of pairs such that | | .t ti

x
j
y− ≤ δ  Analogously we 

define R
xx

 as the number of pairs such that | |t ti
x

j
x− ≤ δ and R

yy
 as 

the number of pairs such that | | .t ti
y

j
y− ≤ δ  A raw estimate of spike 

synchrony then reads:

ˆ .S
R

R R
xy

xy

xx yy

raw =  (1)

If δ is sufficiently small, i.e., much smaller than the typical 
ISI, and the two neurons fire at the same rate, expression (1) 
yields the fraction of spikes that occur at the same time in both 
neurons. This measure resembles the definitions of neuronal 
synchronization and spike time reliability reported in various 
publications (Hunter et al., 1998; Schreiber et al., 2004; Galán 
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Figure 2 | Simultaneous recordings of neurons (n = 8) in the rostral 
ventral respiratory group (raster plots) and integrated phrenic nerve 
activity (∫PNA, see Data Analysis) before (A) and after (B) hypoxia. (A,B) The 
complete 80-s epochs analyzed; raster plots of eight simultaneously recorded 
neurons (those in Figure 1) and ∫PNA. In (B), immediately after hypoxia (8% O2, 
5% CO2, and 87% N2 for 15 s), respiratory frequency is less than that before 

hypoxia (A) and amplitude of ∫PNA displays. (C,D) Cycle-triggered averages 
(CTA) of spike activity during the epochs. Recordings were from the caudal VRC 
and include neurons with inspiratory- (I1, I2, I3, I4), expiratory- (E1, E2, E3), and a 
non-respiratory (N1)-modulated activity. Except for I1 and E1, major features of 
the activity profiles in the CTA did not change after hypoxia. (e,F) Action potential 
firing frequency decreased after hypoxia.
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coMputatIonal sIMulatIons and network Model
General considerations about the model
The purpose of the computer simulations is to investigate a mini-
malist model of the brainstem inspiratory network that replicates 
the following features of the experimental data: (1) during baseline 
conditions, significant spike synchrony in pairs of inspiratory pre-
motor neurons reflects common synaptic inputs; (2) after hypoxia, 
the firing rate of inspiratory premotor neurons decreases signifi-
cantly due to decreased excitation or increased inhibition; and 
(3) after hypoxia, there are significant changes in synchrony that 
cannot be explained by chance nor by the reduction in the firing 
rates. Most of these changes are negative (synchrony decreases) 
but some are positive.

Our network simulations, although original, borrow several ele-
ments from previously published models. We employ simplified but 
realistic models of the single neuron dynamics, as is the case with 
other models of the respiratory network (Rybak et al., 2004, 2008) and 
divide the network into a pre-inspiratory population, an inspiratory 
population and an inspiratory premotor population (see Figure 6). 
We record from the inspiratory premotor population in our experi-
ments. These neurons project to motoneurons whose axons form the 
phrenic nerve, which are not included in our model.

The single-cell dynamics have been adapted from the neuro-
nal model recently proposed by Izhikevich, which is basically a 
quadratic integrate-and-fire model with realistic phase-resetting 
properties. This model consists of two variables, the membrane 
potential and a recovery variable, both with a resetting threshold 
(Izhikevich, 2004).

Recent experimental work has provided evidence for functional 
SK channels (a subtype of calcium dependent potassium channels) 
in pre-motor neurons (Tonkovic-Capin et al., 2003). These channels, 
similar to other potassium channels, endow neurons with type II 
excitability, which can be modeled as neurons with a resonator-like 
phase-resetting curve (Galán et al., 2006a). Therefore we use the 
Izhikevich model of resonator neuron for the pre-motor population 
and for simplicity, for the inspiratory population as well. For the pre-
inspiratory neurons in the preBötC we use a similar model but with 
a saw-tooth drive, I(t) that mimics the intrinsic bursting properties 
of these neurons along the lines of models previously published by 
other groups (Butera et al., 1999a,b; Del Negro et al., 2001).

In order to produce population wide activity that is synchro-
nized on the time scale of the inspiratory burst, all pre-inspiratory 
neurons were driven by a saw-tooth drive, I(t), and noise was added 
to produce a temporal dispersion of spiking activity. The resulting 
pattern of pre-inspiratory activity mimicked the pattern described 
in previous models where biophysical mechanisms producing a 
slow wave, saw-tooth-like membrane potential trajectory were 
incorporated along with heterogeneity of cellular and synaptic 
properties (Butera et al., 1999a,b; Del Negro et al., 2001). We note 
that this form of coherent activity may also be facilitated by the 
presence of gap junctions in the system (Rekling et al., 2000; Bou-
Flores and Berger, 2001; Solomon et al., 2001).

Network architecture
Stochastic synchronization is an efficient mechanism for generat-
ing coherent activity in neuronal networks (Galán et al., 2006b). 
This phenomenon emerges when uncoupled neurons receive 

Bootstrapping and bootstrap-corrected synchrony
Expression (1) quantifies the total amount of synchronization, 
including the fraction of synchronous spikes that would occur by 
chance in two uncoupled neurons receiving independent inputs. 
We therefore refer to it as raw synchrony. Since we are interested 
in the synchronous events that occur as a result of network inter-
actions, we need to subtract the amount of synchrony expected 
by chance, Sxy

0 , which is higher, the higher the firing rates of the 
neurons. To this end, we apply a standard bootstrap technique: we 
use surrogate data obtained by shuffling the spike times of each 
neuron independently.

By shuffling we mean that the ISI from the actual record-
ings are randomly permuted. For example: Let the times of 
four successive spikes be {t

1
, t

2
, t

3
, t

4
}. The ISI are {∆

1
 = t

2
 − t

1
, 

∆
2
 = t

3
 − t

2
, ∆

3
 = t

4
 − t

3
}. A randomly shuffled sequence of ISI {∆

2
, 

∆
3
, ∆

1
} results in the shuffled spike train {t

1
, t

1
 + ∆

2
, t

1
 + ∆

2
 + ∆

3
, 

t
1
 + ∆

2
 + ∆

3
 + ∆

1
} = {t

1
, t

1
 − t

2
 + t

3
, t

1
 − t

2
 + t

4
, t

4
}, which has the 

same ISI distribution as the original spike train as well as the 
same mean firing rate. Note that shuffling preserves the times of 
the first and last spikes. As a result, all shuffles will have at least 
these two spikes fully synchronized. To correct for this artifactual 
“synchrony” the shuffled sequence was randomly shifted up to 
hundred milliseconds.

Because the firing pattern of each neuron is typically dif-
ferent during inspiration and expiration, we shuffle the spikes 
separately for the inspiratory and the expiratory phase. This way 
the ISI distribution of the surrogates during inspiration is iden-
tical with the ISI distribution of the experimental data during 
inspiration, and analogously, during expiration. Spike-shuffling, 
however, alters the timing of the spikes randomly and there-
fore, the auto- and cross-correlations of the actual data are not 
preserved in the surrogates. Since the spikes of each neuron are 
shuffled independently, the level of synchrony in the surrogate 
data represents the amount of synchrony that can be accounted 
for by chance. Obviously, this value depends on how the spikes 
were shuffled, i.e., on the random realization of the surrogate data 
set. Thus, in order to be more rigorous, we first generate N = 300 
surrogate data sets for each neuronal pair XY and then calculate 
the distribution of synchrony values. The 99th percentile of this 
distribution is our estimate of synchrony by chance, ˆ .Sxy

0  This 
implies that if the synchrony level for that pair in the actual data, 
Ŝxy

raw is greater than ˆ ,Sxy
0  then that synchrony level is significant 

with 99% confidence. Moreover, the difference ˆ ˆS Sxy xy
raw − 0  repre-

sents the amount of synchrony that cannot be accounted for by 
chance and is therefore due to temporal correlations emerging 
from network interactions. Our bootstrap-corrected synchrony 
measure, S

xy
 thus reads:

S
S S S S

xy
xy xy xy xy= − >






ˆ ˆ , ˆ ˆ

,

raw rawif

otherwise

0 0

0
 (2)

Note that S
xy

 reports the level of non-trivial spike synchroniza-
tion. Indeed, for two different neurons, S

xy
 is the amount of syn-

chrony that cannot be accounted for by chance, and for the same 
neuron, S

xx
 is always zero, since a spike train is always perfectly 

synchronized with itself but this synchrony is trivial.
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from each inspiratory-augmenting neuron plotted versus its rank 
in the population follows a power-law distribution. The rank equals 
one for the neuron with the largest number of projections and 
equals the total number of neurons for the neuron with the smallest 
number of projections. The power-law distribution is not essential 
to reproduce the experimental data. In fact, a distribution that 
decays exponentially with the rank yields qualitatively the same 
results, and so will any distribution that decays sufficiently fast with 
the rank, as it guarantees that the inspiratory-augmenting neurons 
are not equally driving the premotor neurons. This implies that 
some are strong drivers (hubs) but most are weak. In particular, 
the power-law distribution as a function of the rank, P(r), that we 
consider has the form: P(r) = P

max
r−A, with A = log(P

max
/P

min
)/log(N). 

Although a uniform distribution can account for different levels of 
synchrony between pre-motor pairs, it can neither reproduce the 
range of synchrony nor the synchrony changes after brief hypoxia 
that we observed in the experiments.

In addition to the network topology, the fast synaptic kinetics 
(τ ∼ 10 ms) contribute to the overall level of stochastic synchroniza-
tion in the pre-motor population, as recently shown in simulations 
and experiments in other parts of the brain (Galán et al., 2008).

Implementation details
The dynamics of the r-th neuron in each subpopulation is deter-
mined by the membrane potential, V and a recovery variable, U. The 
parameters of the model are chosen so that the membrane potential 
is in mV and time in ms. When the membrane potential exceeds 
30 mV, the membrane potential is reset to V = c and the recovery 
variable is reset to U = d (see Table 2).The superscripts indicate 
the neuronal type of each subpopulation: p for pre-inspiratory (30 
neurons), i for inspiratory-augmenting (90 neurons) and m for pre-
motor (100 neurons). The dynamics of the synaptic conductances 
for each neuron, r, are denoted by G. The superscripts indicate the 
neuronal type and the nature of the synaptic conductance: I for 
inhibitory, E for excitatory. The synaptic connections are denoted 
by J and are generated randomly with the probabilities described 
in the previous paragraph every time the simulation program runs. 
The superscripts of J refer to the layers being connected: pi for 
pre-inspiratory to inspiratory-augmenting neurons, and im for 
inspiratory-augmenting to premotor neurons. The sign “+” as a 
superscript means that only the excitatory connections are consid-
ered and the inhibitory connections are ignored. Analogously, the 

common fluctuating inputs, for example, synaptic barrages from 
divergent presynaptic terminals. Because this connectivity pat-
tern is ubiquitous in the brain, stochastic synchronization can 
account for most temporal correlations observed in neural circuits. 
We therefore hypothesize that this is the phenomenon underly-
ing spike synchronization in the brainstem inspiratory network. 
Since feed-forward divergent projections are sufficient to cause 
downstream synchrony, we modeled a pure feed-forward network 
(i.e., no connections within each layer). A simplified diagram is 
shown in Figure 6 (left) to illustrate the fundamental features of 
the simulated network: pre-inspiratory neurons in the pre-Bötz-
inger complex (excitatory (+) and inhibitory (−) open circles); 
inspiratory-augmenting neurons in the area of the pre-Bötzinger 
complex (3 circles: red, yellow, and blue); and pre-motor neu-
rons in the rVRG (9 circles: red, orange, purple, green, and blue). 
The similarity of the colors between any two premotor neurons 
indicates the proportion of common inputs, i.e., the blending of 
the primary colors: red, blue and yellow. While not all inputs to 
pre-motor neurons necessarily originate from the inspiratory-
augmenting population in the pre-Bötzinger area, a significant 
portion do (Schwarzacher et al., 1995). For the purpose our model 
the exact anatomical location of the neurons is not essential. Note 
that in our model the concept of layer is topological, not anatomi-
cal: it refers to how neurons are connected, and not to where they 
are precisely located.

Recently published data demonstrate that a fraction of 
inspiratory pacemaker neurons in the pre-Bötzinger complex 
are inhibitory, as they express the glycine transporter 2 (GlyT2) 
gene (Morgado-Valle et al., 2010). We assume in our model that 
the majority of pre-inspiratory neurons are inhibitory. Although 
there is no direct evidence for this assumption, it is consistent with 
recent studies demonstrating that a major fraction of all inspiratory 
neurons in the rodent brainstem slice preparation are glycinergic 
(Winter et al., 2010).

In our model, both excitatory and inhibitory pre-Bötzinger 
complex neurons provide divergent connections to the inspira-
tory-augmenting population. Each of the pre-inspiratory “pace-
maker” neurons has the same connection probability with any 
inspiratory-augmenting neuron. Modifying the ratio between 
inhibition and excitation while keeping the other parameters of 
the network unchanged, we determined that there must be at least 
15% excitation (ratio inhibition/excitation = 85/15) in order for 
the premotor neurons to fire some spikes. However, the firing rate, 
the synchrony values and their changes after hypoxia were only 
comparable with the experimental results when the fraction of 
excitatory pre-inspiratory neurons was in the range between 25% 
and 45%. When that fraction was over 50%, the median bootstrap 
corrected synchrony between premotor neurons took large values 
(around 0.6 and higher) before and after hypoxia, indicating that 
most pairs were highly synchronized, contrary to what we observed 
experimentally. In the simulations producing the results shown in 
the figures, we took 70% of the pre-inspiratory neurons as inhibi-
tory and 30% as excitatory (ratio 70/30).

The inspiratory-augmenting population in turn provides 
divergent excitatory connections to pre-motor neurons, but not 
with equal probability. The connection probability ranges from 
P

min
 = 10% to P

max
 = 30%. Moreover, the number of projections 

Table 2 | Parameters used in the simulations and their values.

Parameter Value

ap, ai, am 0.20

bp, bi, bm 0.21

c −65

d 2

giE, giI 0.08

gmE, gmI 0.02

τiE, τiI, τmE, τmI 10

E
E
 0

E
I
 −75

σ 0.5 
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the arctangent function is a sigmoid with a horizontal asymptote 
for large negative values of V

0
. That means that for two different 

starting conditions V0
1, and V0

2 such that V0
1 0  and V0

2 0 , the 
difference in time to reach threshold is negligible. Indeed, chang-
ing the value of c, d or the resting potential of the neurons has no 
effect on the frequency or synchrony in our model.

Modeling the dynamics after hypoxic stimulation
We hypothesize that hypoxic stimulation facilitates the recruitment 
of pre-inspiratory neurons. In our model, this implies that the 
inspiratory-augmenting neurons are being more inhibited, provid-
ing less excitation to the premotor neurons (Figure 6, right). As 
a result, the premotor neurons will have shorter and fewer bursts 
of activity, as observed in our experiments. In the simulations, the 
recruitment of pre-inspiratory cells is equivalent to adding more 
inhibitory neurons (10%), as compared to the network before 
hypoxia.

results
experIMental data
We recorded multielectrode data from six animals in the rVRG that 
included pre-motor inspiratory neurons, as reported in Table 1. A 
representative example of the recorded data for a given experiment 
is displayed in Figures 1C and 2. The raster plots show the firing 
of eight neurons over 80 s before and after hypoxia (Figures 2A,B, 
respectively). Integrated PNA is shown below the raster plots. The 
cross-correlation function between the phase of the phrenic nerve 
signal and the activity of each neuron, also known as cycle-triggered 
histogram (see Materials and Methods), is plotted in Figures 2C,D. 
These histograms allowed classification of the neurons according to 
the phase of the cycle when they were maximally active: inspiratory 
pre-motor neurons (I1–I4) were active during the burst of PNA 
(inspiration), whereas expiratory neurons (E1–E3) discharge when 
PNA was quiescent (expiration). One neuron was not modulated 
by respiration (N1). Neuronal firing frequency, calculated as the 
reciprocal of the median ISI (see Materials and Methods), is dis-
played in Figures 2E,F.

In the remaining analysis, we focused on the premotor neurons 
with inspiratory activity before and after hypoxia. After hypoxia 
there is an apparent decrease in the number and duration of bursts 
in these neurons. We then investigated whether the changes in spik-
ing activity were consistent across neurons and whether, on a finer 
time scale, neurons are also tightly synchronized to each other.

For the 111 inspiratory pre-motor neurons, we observed a 
significant reduction of action potentials after hypoxia (p < 0.05, 
Wilcoxon sign rank test, Figure 3A). However, the intraburst firing 
frequency did not significantly change (Figure 3B). These results 
suggested that the inputs rather than the firing threshold of the neu-
rons had changed, specifically an increase in inhibitory or decrease 
in excitatory inputs. We determined coincident (within a 2-ms time 
window) spikes during the 80-s epochs for each neuronal pair and 
found that the number of coincident events decreased significantly 
after hypoxia (p < 0.05 and Wilcoxon sign rank test, Figure 3C). This 
decrease could have resulted from the overall decrease in firing rate. 
Therefore, we calculated the harmonic mean of the action potentials 
for each neuron in the pair before and after hypoxia and found that 
it also decreased significantly (Figure 3D). However, we could not 

sign “−” as a superscript means that only the inhibitory connections 
are considered and the excitatory connections are ignored. The 
variable S tracks the firing of presynaptic neurons; S = 0, unless 
the presynaptic neuron fired at the previous time point, then S = 1. 
The dynamical equations were integrated in time with the Euler 
method (dt = 0.5 ms).

Dynamics of the pre-inspiratory population with an intrinsic 
saw-tooth drive, I(t) and background Gaussian noise, η(t) with 
standard deviation, σ:
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In the absence of stimulation the neurons of the model rest 
around −60 mV. Neither the resting potential nor the resetting 
parameters c and d play a significant role in the dynamics of this 
quadratic integrate-and-fire model. In this type of model, the 
time T to reach the resetting threshold from any starting value of 
the membrane potential V

0
, is given by the arctangent function: 

T V V I( ) arctan / ,0 0∼ ( ) where I is the driving current. Note, that 
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was not significant and mapped to zero. Figure 4A, shows the raw 
synchrony matrix, the 99th percentile of the synchrony distribution 
(described as synchrony confidence limit) and the bootstrap-cor-
rected synchrony, before (top) and after (bottom) hypoxia for the 
experiment shown in Figure 2. Synchrony was significant among 
a subgroup of inspiratory pre-motor neurons but not among the 
rest, with the exception of two expiratory neurons that were weakly 
synchronized (E2–E3). In the bootstrap-corrected synchrony after 
hypoxia (Figure 4B), one pair of inspiratory neurons increased its 
synchrony (I3–I4) but two other pairs (I2–I3 and I2–I4) decreased 
their synchrony. The dendrograms derived from the bootstrap-
corrected synchrony matrices reflected these changes and revealed 
a tight cluster of inspiratory neurons (I2, I3, and I4) that changed 
synchrony slightly after hypoxia (Figure 4C).

We observed the same trend for the bootstrap-corrected syn-
chrony across the whole set of inspiratory pre-motor neurons 
(Figure 5A): 162 pairs (29%) decreased their synchrony after 
hypoxia; 86 pairs (15%) increased; and 314 pairs (56%) were not 
significantly synchronized either before or after hypoxia. Those who 
were synchronized before and/or after hypoxia had a significant 
trend to decrease their synchrony (p < 0.05, Wilcoxon sign rank 
test), as revealed by the histogram of difference in synchrony, which 

conclude that the decrease in synchronous spikes resulted from the 
decrease in firing rate. Because neuronal synchrony was defined by 
the cross-correlation coefficient between two spike trains, which 
was the number of coincident spikes divided by the harmonic mean 
of the spikes fired by each neuron (see Materials and Methods), we 
compared the numerator of this expression with the denominator, 
before (Figure 3E) and after (Figure 3F) hypoxia. In both cases, 
the numerator grew faster than the denominator as the number 
of fired spikes increased. The quadratic fit had a slightly shallower 
slope after compared to before hypoxia, suggesting that hypoxia 
reduced the overall level of raw neuronal synchrony across pairs 
of inspiratory pre-motor neurons.

To exclude effects of firing rate on neuronal synchrony, we used a 
bootstrap technique as explained in Materials and Methods. Briefly, 
for each neuron we generated surrogate spike trains with the same 
number of spikes and the same ISI distribution as the real data 
and calculated the neuronal synchronization between each pair 
of surrogate spike trains. We repeated this process 300 times to 
obtain a distribution of synchrony values for the surrogate data 
sets. If the synchrony value of the real data was greater than the 
99th percentile of that distribution, then synchrony was significant 
with a 99% confidence. Otherwise, the synchrony of the real data 
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Figure 3 | Changes in activity of the recorded inspiratory premotor 
neurons (n=111) before and after hypoxia. (A) The total number of spikes 
discriminated divided by the duration of the analyzed epoch (T = 80 s) before 
(x-axis) versus after (y-axis) hypoxia. In this and (B–D), the diagonal solid line is 
the line of identity. The majority of points, especially for the neurons that have 
the highest average frequency before hypoxia, are below the line of identity. The 
horizontal and vertical dashed lines plot the means before and after hypoxia, 
respectively [also for (B–D)]. The intersection of the dashed lines (11.0 ± 0.9 
before versus 8.7 ±0.7 after hypoxia) is below the line of identity. (B) Firing 
frequency (Fx) of activity as the inverse of the mean ISI before versus after 
hypoxia. The intersection of the means is close to the line of identity (26.1 ± 2.3 
before versus 24.3 ± 2.3 after hypoxia). (C) The frequency of coincident action 
potentials (Nxy, pairs of spikes occurring within 2 ms) decreased after hypoxia. 
The intersection of the dashed lines (1.2 ± 0.1 before versus 0.9 ± 0.1 after 

hypoxia) is below the line of identity. The color of the points is defined by where 
the points landed on the curve in Figure 5 with values of synchrony corrected by 
the bootstrap method: red represents an increase in bootstrap-corrected 
synchrony; blue, a decrease; and black has no synchrony (these points are at the 
origin in Figure 5). This color coding is the same for all panels. (D) Harmonic 
mean of the number of fired spikes in each pair (√NxNy), before and after 
hypoxia. The intersection of the dashed lines (10.0 ± 0.2 before versus 7.4 ± 0.2 
after hypoxia) is below the line of identity. (e) The relationship between 
coincident spikes (Nxy) and spike occurrence (√NxNy) before hypoxia. The 
dashed line is the relationship showing that as spike frequency increases, there 
is a greater probability of coincident spikes. (F) The relationship between 
coincident spikes (Nxy) and spike occurrence (√NxNy) after hypoxia. As before 
hypoxia, there is a greater probability of coincident spikes with increasing firing 
frequency. Means shown with errors as SEM.
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stimulation, synchrony decreased across approximately two-thirds 
and increased across one-third of those pairs. These synchrony 
changes were independent of the decrease in the number of spikes 
after hypoxia.

We propose that these effects can be accounted for by 
enhanced inhibitory input, as sketched in Figure 6. The inspira-
tory pre- motor neurons receive excitatory divergent input from 

is clearly skewed to the left (Figure 5B). Obviously, since most pairs 
were not synchronized either before or after synchrony, consider-
ing all pairs in the analysis would not yield significant changes of 
synchrony at the population level.

Summarizing the experimental results, we observed signifi-
cant synchrony across approximately half of the pairs of inspira-
tory pre-motor neurons before hypoxia. After transient hypoxic 
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Figure 4 | Color-coded synchrony matrices (A, B) and dendrogram (C) 
display the synchrony among pairs of recorded neurons for the experiment in 
Figures 1 and 2. (A) Left-hand Column, the raw synchrony (not corrected for 
firing rate); Middle Column, upper confidence limit of synchrony in shuffled data, 
the bootstrap correction for the dependence of synchrony on the firing rate; and 
Right-hand Column, corrected synchrony (raw synchrony-synchrony of the 
shuffles). Top Row, synchrony in recordings before hypoxia; Bottom Row, after 

hypoxia. After bootstrap correction, the majority of pairs appear not to be 
synchronized, however, three of six pairs of premotor I neurons are synchronized. 
(B) The effect of brief hypoxia on synchrony (after-before hypoxia). One pair (red, 
I3 and I4) increases whereas the other three pairs decrease synchrony. (C) A 
dendrogram shows the clustering of neurons before (left) and after (right) 
hypoxia. In summary, these different graphics complement each other and 
consistently reveal significant changes in synchrony before and after hypoxia.
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Figure 5 | group data showing increases and decreases in synchrony 
before and after hypoxia. (A) The magnitude of bootstrap-corrected synchrony 
before hypoxia (x-axis) plotted against that after hypoxia (y-axis) for all pairs of 
neurons recorded. The diagonal dashed gray line is the line of identity. Blue dots 
above this line indicate pairs where synchrony increased after hypoxia; the red 

dots below indicate that synchrony decreased. Black dots, located at the origin, 
represent pairs that were not significantly synchronized either before or after 
hypoxia. (B) Histogram representing the synchrony difference (after–before). 
Blue, red, and black match with (A) Clearly, more pairs decreased than 
increased synchrony.
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after hypoxia (Figure 8D). As in the experiments, the number of 
coincident spikes versus the harmonic mean of the number of 
spikes in the pair fit a quadratic function whose slope at any point 
was slightly lower after hypoxia, which indicates an overall trend 
across the population to decrease synchrony after hypoxia. A boot-
strap analysis of the simulated data was applied to disentangle the 
amount of synchrony and synchrony changes that can be explained 
by chance from the contribution due to the network architecture 
and its modification following hypoxia. The bootstrap-corrected 
synchrony is shown in Figure 9. As in the experimental data, neu-
ronal synchronization can increase or decrease after hypoxia, but 
the decrease (58% of 4950 pairs) was much more pronounced 
across all pairs than the increase (38%). Also 4% of pairs did not 
show significant synchrony before or after hypoxia. As a result, the 
histogram of the synchrony change was significantly skewed to the 
left (p < 0.05, Wilcoxon sign rank test).

dIscussIon
In our analysis of ensemble recordings of inspiratory premo-
tor neurons in the rVRG, we applied state-of-the-art statistical 
tools and obtained several novel results. First, subpopulations of 
pre-motor neurons had synchronized spike activity indicating a 
common drive from upstream inspiratory neurons. Second, this 
synchrony was malleable. Physiological stimuli modulated syn-
chrony: it decreased in most pairs but increased in others, sug-
gesting alterations of the functional network connectivity. The 
synchrony changes are independent of changes in the firing rate. 
Third, whereas the intraburst firing frequency of the premotor 

 inspiratory- augmenting neurons in the preBötC, which in turn 
receive mostly inhibitory divergent input from preBötC pre-inspir-
atory neurons. A recruitment of more inhibitory pre-I neurons fol-
lowing hypoxia could account for the overall increase of inhibition 
in the hierarchical network. At the same time, the divergent projec-
tions between layers create temporal correlations across postsynaptic 
cells receiving overlapping inputs, which translates to significant 
spike synchronization. In Figure 6, neurons with similar colors are 
temporally correlated: the more similar the colors, the higher the 
synchrony. Note that after hypoxia, the elimination of a presynaptic 
input increases synchrony among some premotor pairs (red and blue 
or green and blue) but decreases synchrony among others (orange 
and green). To test our hypothesis, we implemented a computational 
model of the network dynamics with these ingredients (see details 
in Materials and Methods) and analyzed the simulated network 
dynamics in the same fashion as the experimental data.

coMputatIonal sIMulatIons
Figure 7 displays the raster plots of neuronal activity for the whole 
network during an inspiratory burst. The analysis of the traces 
for the pre-motor inspiratory population is presented in Figures 8 
and 9. Figure 8A reveals a significant decrease in the number of 
fired spikes after hypoxia. However, the firing rate of the neurons 
(Figure 8B), calculated as the inverse of the mean ISI did not change 
significantly. This means that once the neurons started firing, they 
fired with the same frequency as before but they fired with inter-
ruptions (gaps) after hypoxia, as displayed in Figure 7. The number 
of coincident spikes over the simulated time interval also decreased 
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Spinal Phrenic Motor Nucleus
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Figure 6 | Simplified diagram of the simulated network before (left) and 
after (right) hypoxia. The top layers [two Open Circles and three Filled Circles 
(Red, Yellow, and Blue)] contain two types of neurons in the preBötC; the 
excitatory and inhibitory Pre-I neurons as well as the excitatory I-Aug neurons. 
After hypoxia, there is a recruitment of inhibitory pre-I neurons in the preBötC 
which turns off some of the I-Aug activity in the preBötC [Yellow filled circle 
becomes inactive (gray with X)]. The third layer (nine Filled Circles) contains I-Aug 

neurons of the rVRG. The vast majority of these are bulbo-spinal premotor 
neurons and transmit central respiratory drive to spinal motor neurons. The 
blending of colors represents the degree of overlapping input and hence, the 
more similar the colors, the higher the synchrony. The elimination of a 
presynaptic input increases synchrony among some premotor pairs (red and 
blue or green and blue) but decreases synchrony among others (orange 
and green).
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synchronization observed in our experiments. Moreover, there is 
no direct evidence for a selective increase in feed-forward inhibi-
tion as opposed to depression of excitatory inputs from the pre-
inspiratory population after hypoxia. The assumptions used in our 
computational model should rather be considered as a proof of 
principle for plausible features of the respiratory column to be 
investigated in future.

How robust is our model? We have quantified how excitation and 
inhibition from the pre-inspiratory population affect the results of 
the computational model (data not shown). The firing rate, syn-
chrony values and their changes after hypoxia were comparable 
with the experimental results when excitation was between 25% and 
45%, keeping other neuron (threshold, etc.) and network parameters 
(synaptic strengths, connection probabilities, etc.) unchanged. This 
effective range may well vary as those parameters change. As a result, 
the validity of our model should not be limited when the actual ratio 
of excitation and inhibition is experimentally determined.

inspiratory neurons was similar before and after hypoxia, the total 
number of spikes fired decreased significantly. Thus, the firing 
threshold of the pre-motor neurons may have been unaffected 
poststimulus; rather the neurons received less net excitation after 
hypoxia. Fourth, a simple computational model of inspiratory 
neurons in the ventral respiratory column reproduced efficiently 
the experimental observations. The model consisted of a feed-
forward network with three layers: the pre-inspiratory cells, the 
inspiratory-augmenting neurons, and the pre-motor neurons. To 
qualitatively reproduce the experimental results, a key element of 
the model was that not all the inspiratory-augmenting neurons 
were equivalent: some projected onto many pre-motor neurons 
(hubs), while most projected onto just a few.

We should emphasize, however, that there is currently no direct 
evidence for the network architecture hypothesized in our stud-
ies. Consequently, besides common fluctuating inputs there may 
be other connectivity patterns contributing to the short timescale 
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Figure 7 | illustrative example of output from the computational model for 
an entire inspiratory burst. Before hypoxia (A) and after hypoxia (B) there was a 
recruitment of inhibitory pre-inspiratory preBötC neurons which resulted in 
enhanced inhibition of preBötC inspiratory-augmenting neurons, some of which 

were turned off. This led to a reduction of common inputs to the rVRG premotor 
neurons which in turn reduced the firing and altered spike synchronization among 
these neurons. The sudden termination of the burst is consistent with the 
experimental data of inspiratory neurons shown in Figures 2C,D.
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 gravitational force between two bodies, and move towards each 
other. In addition, there is an ongoing friction force quantified by 
a parameter γ that acts on every particle (neuron). The dissipative 
forces slow down the particles by opposing the attractive forces, 
which facilitates the agglomeration of particles representing neu-
rons that tend to fire synchronously. At the end of the recording, 
clusters in the N-dimensional space identify assemblies of synchro-
nized neurons. If δ and γ are properly chosen, our clustering analysis 
based on our synchrony measure (Figure 4) yields similar results 

Our analysis of multielectrode recordings has similarities and 
differences with respect to a previously published method, gravity 
analysis (Lindsey et al., 1997; Lindsey and Gerstein, 2006) which 
has been used to detect moments of synchrony in ensemble record-
ings. In gravity analysis, each neuron is represented as a particle 
in an N-dimensional space, N being the total number of neurons 
recorded. At the beginning of the recording, neurons are equi-
distant to each other. As time progresses, when two neurons fire 
within a time window δ, they attract each other, analogously to the 
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strongly support this idea. However, to validate this hypothesis 
further, the changes in neuronal synchronization across pre-motor 
neurons should co-vary with the shape and pattern of the phrenic 
nerve signal, i.e., the motor output of the network.

In our analysis, we have focused on the dynamics of inspiratory 
pre-motor neurons. There are two reasons why we focused specifi-
cally on these neurons and not on expiratory neurons. The first 
reason is a convenient anatomical feature: inspiratory pre-motor 
neurons are localized in a relatively well segregated area that facili-
tates the simultaneous recording from many of them. The second 
and most important reason, is that they are part of the effector 
output of the network that ultimately control the motoneuron 
activity and hence, the phrenic output and diaphragm. Whereas 
we have shown that spike synchronization within inspiratory pre-
motor populations is significant and malleable, we surmise that 
the neuronal dynamics of expiratory populations along the ventral 
respiratory column are crucial to explain the natural variability of 
the respiratory rhythm. This will be investigated in future work 
with the techniques and analyses reported here.
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as the gravity analysis (data not shown). However, our analysis is 
computationally more efficient. In addition, our analysis does not 
require the parameter γ which has to be chosen heuristically in 
gravity analysis with an appropriate choice being crucial for the 
algorithm to work.

What is the physiological relevance of malleable synchronization 
in the respiratory column? Neuronal synchronization can transmit 
and process information at a low metabolic cost (Buzsaki, 2006). 
Action potentials are metabolically expensive, therefore, the imple-
mentation of firing rate codes for every purpose of brain function 
can be inefficient. In contrast, for a fixed and relatively low fir-
ing rate, neurons can synchronize their action potentials leading 
to a constructive summation of postsynaptic currents in down-
stream neurons or muscle fibers. The following two assumptions 
are implicit in this argument: (1) projections from neurons that 
are capable of synchronizing their spikes converge onto the same 
downstream target; (2) the postsynaptic currents are integrated 
sufficiently fast (within a few milliseconds), so that downstream 
targets can sum independent coincident spikes. Interestingly, both 
requirements are met across several areas of the brain including the 
olfactory bulb (Lagier et al., 2004; Galán et al., 2006b) hippocampus 
(Buzsaki, 2002; Vida et al., 2006), cerebellum (de Solages et al., 
2008; Middleton et al., 2008) and neocortex (Hasenstaub et al., 
2005). Thus synchrony across pre-motor and motor neurons in 
the respiratory control network may be an efficient way of regu-
lating diaphragm contraction. Our data and simulations showing 
significant spike synchrony among inspiratory pre-motor neurons 
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