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or hard (Song et al., 2000; Izhikevich et al., 2004; Burkitt et al., 2007; 
Lubenov and Siapas, 2008; Gilson et al., 2009; Clopath et al., 2010) 
boundaries have to be introduced.

All these observations pose a problem, because STDP can generi-
cally lead to the situation that individual pre- and post-synaptic 
spike pairs influence the synaptic strength of their connection and 
thereby in a recurrent way immediately also the activity in the net-
work. The question arises, thus, whether such fast synaptic changes 
would carry any functional significance or whether they will be 
averaged out by the ongoing network activity? At the moment this 
issue is left open because resolving it would require measuring 
or calculating the step-by-step changes of synaptic connectivity 
together with their activity for a large number of neurons and 
ideally for every spike pair.

Experimentally this is at the moment still impossible and so far 
there are also no theoretical tools available (apart from simulations) 
to address the issue of ongoing mutual interactions between activity 
and plasticity in networks. For this, analytical methods would be 
particularly helpful with which it would be possible to predict the 
dynamics of synaptic connections under STDP.

As discussed above, this is typically investigated with mean-field 
methods (van Rossum et al., 2000; Gütig et al., 2003) that have aver-
age values in their focus. However, here we would like to examine 
the fine temporal dynamics of each weight as, fundamentally, the 

IntroductIon
At the network level recent theoretical advances have made it pos-
sible to analytically calculate the activity patterns for certain types 
of simplified neuron models as long as one keeps the synaptic con-
nectivity fixed (Memmesheimer and Timme, 2006a,b). Concerning 
plasticity, the situation is reversed. When fixing the activity pattern 
or rather, when considering long-term activity averages, it is for 
many plasticity rules possible to calculate the overall development 
of synaptic weights. Older results exist which provide specific solu-
tions for estimating synaptic strengths in certain types of networks 
and learning rules, all of which however need to constrain struc-
ture or dynamics of the system in different ways (Hopfield, 1982; 
Miller and MacKay, 1994; Roberts, 2000; van Rossum et al., 2000; 
Kempter et al., 2001; Burkitt et al., 2007; Kolodziejski et al., 2008) 
and many of them do not resemble spike-timing-dependent plas-
ticity (STDP, Magee and Johnston, 1997; Markram et al., 1997). 
Concerning STDP, in large networks one finds that over longer 
times the distribution of synaptic efficiencies usually develops into 
either an unimodal (van Rossum et al., 2000; Gütig et al., 2003) or 
a bimodal (Song et al., 2000; Izhikevich et al., 2004) shape. These 
results mainly rely on simulations (Song et al., 2000; van Rossum 
et al., 2000) or mean-field approximations (van Rossum et al., 2000; 
Gütig et al., 2003). Additionally, in order to keep the weights beyond 
a given value, soft (van Rossum et al., 2000; Morrison et al., 2007) 
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concept of STDP needs to rely on temporally local (pulse–pulse) 
interactions. Thus, in the current study we will start addressing the 
issue of temporal locality by providing a general analytical frame-
work for calculating plasticity in a time-continuous way in networks 
with an arbitrary number of synapses using Hebbian plasticity 
rules. These are, for example, plain Hebbian or differential Hebbian 
learning, where the latter is known to have properties similar to 
STDP (Roberts, 1999; Wörgötter and Porr, 2004).

Naturally, the complexity of the solution is high and, while it 
could be used to investigate the interplay of activity and plastic-
ity in any network topology, we will here first look at three, still 
rather simple, cases of recurrent networks, which have been chosen 
because they could be considered as fundamental network building 
blocks. This allows us to arrive at several interesting observations 
which may be the starting point for the investigation of more com-
plex topologies of which we will give a brief example at the end.

For example, we find that in the investigated simple recurrent 
networks many fixed points exist where synapses stabilize in spite of 
the recurrently arriving inputs and that boundaries (soft or hard) are 
not required. More intriguing, this can lead to the situation that such 
a network can better stabilize when there is an asymmetric STDP 
curve in which the long-term potentiation (LTP) part dominates.

We will address these topics by organizing the paper in the 
following way. In Section “Materials and Methods” we define the 
system we are going to solve analytically, depict the three differ-
ent network structures the analytical solution is applied to and 
also describe the specifics of the recurrent connections. In Section 
“Results” we provide the analytical solution of our general Hebbian 
system and also verify several useful approximations. Next we use 
our solution to calculate all configurations in the investigated 
network structures that lead to non-divergent weights. Here, we 
describe the results under different conditions, i.e., with/out noise 
and with an asymmetric STDP rule. Finally, in Section “Discussion”, 
we put the results to a broader context. Detailed calculations can 
be found in Section “Appendix”.

MaterIals and Methods
stdP-lIke PlastIcIty rule
The general one-neuron system used as the basis of this study 
consists of N synapses with strength 

i
 that receive input from 

neurons i with continuous values x
i
. Each input produces an exci-

tatory post-synaptic potential (EPSP) which is modeled by filter 
functions h

i
 (see Figure 1A for an example). The output of the 

neuron is, thus:

v t x h t ti i i
i

N

( ) ( ) ( )= ( ) ⋅
=
∑ ∗ 

1  
(1)

where ( )( ) ( ) ( )ξ η ξ τ η τ τ∗ t t d= ∫ −
∞
0  describes a convolution.

Synapses change according to a generally formalized Hebbian 
plasticity rule




i
i

i it
d t

dt
F x h t G v t( ) :

( )
( ) [ ]( )= = [ ]µ ∗

 
(2)

where μ (set to 0.01 throughout the article) is the plasticity rate and 
F[] and G[] are linear functionals. However, although the ana-
lytical solution that we will present later on holds for the generally 

formalized plasticity rule (Eq. 2), we will only consider F = 1 (where 
1 is the identity) and G = d/dt. This is called differential Hebbian 
learning (Kosco, 1986; Klopf, 1988) and allows for the learning of 
temporal sequences of input events (Porr and Wörgötter, 2003). 
It resembles STDP (Roberts, 1999; Wörgötter and Porr, 2004). 
Another important setting for F and G is conventional Hebbian 
learning with F = G = 1.

To avoid that weight changes will follow spurious random corre-
lations one generally assumes that learning is a slow process, where 
inputs change much faster than weights, with d

i
/

i
 << d(x

i
 * h

i
)/

x
i
 * h

i
, μ → 0. In spite of this separation of time scales, such a 

simplification makes it still possible to investigate the dynamics 
of each weight separately. The separation simplifies Eq. 2 and we 
neglect all temporal derivatives of 

i
 on the right hand side which 

leads to  i i i j
N

j j jt F x h t t G x h t( ) [ ]( ) ( ) [ ]( )= =µ ∗ ∗Σ 1  where we used 
G Gj j j j[ ] [ ]Σ Σ =  as G[] is linear.

If we take 
i
 as the i-th component of a vector , we write its 

most general form

 ( ) ( ) ( ),t t t= µA  (3)

with A
ij
(t) = F[x

i
 * h

i
](t)G[x

j
 * h

j
](t) or in matrix form 

A x h x h( ) [ ]( ) [ ]( )t F t G t= ⋅∗ ∗  where   denotes the transposition of 
matrix . In the results section we will show that following closed-
form solution is possible

 ( ) ( ) ( ),t t t=B 0  (4)

however, B( )t  as such is quite complex. Nevertheless, we will also 
show that for our quasi-static assumption μ → 0 the approxi-
mation B( ) ( ) ,t dt

t= + ∫I Aµ τ τ
0

 where I is the identity matrix, 
is arguable.

Relation to spike-timing-dependent plasticity
In order to show that F = 1 and G = d/dt resembles STDP we use 
a simplified version of the system, namely a system with N = 2 
(see Figure 1C), however, where only one of the synapses is plas-
tic (

1
); the other stays fixed (

2
 = 1). In order to get the correct 

STDP protocol, we now present two pulses to this system, one 
at t = 0 to the input connected with the plastic synapse, hence a 
pre-synaptic spike, and another at t = T to the other input. As we 
are using a linear model and as the corresponding weight 

2
 is 

set to a fixed value of 1, a pulse at the input is also a pulse at the 
output, hence creating the pendant of a post-synaptic spike. The 
equivalence of relating differential Hebbian plasticity with STDP 
arises essentially from this and its implications are discussed in 
detail in Saudargiene et al. (2004) and Tamosiunaite et al. (2007). 
Recently also Clopath et al. (2010) related voltage-based Hebbian 
learning to STDP.

For such a network structure, it is possible to analytically cal-
culate the shape of the STDP curve. We start with Eq. 3 where we 
focus on the first entry of (t): 

1
(t). The second synapse stays 

fixed: 
2
(t) = 

2
.

 1 1 1 1 1 1

1 1 2

( ) ( ) ( ) ( )

( )

t x h t
d

dt
x h t t

x h t
d

dt
x h

= ⋅( ) ( ) ⋅

+ ⋅( )

µ

µ

∗ ∗

∗ ∗ 22 2( ) ⋅( )t   (5)
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of the method developed in this paper. The next structure is a 
small network with two neurons and only one plastic synapse 
(see Figure 2A). This network structure is equivalent to just one 
neuron with a plastic recurrent connection of total delay d. This is 
due to our assumption of linearity. The last structure we consider 
is a network with three neurons and two plastic synapses (see 
Figure 2C). Here the equivalence is to a single neuron with two 
plastic recurrent connections. Note, these two structures could 
be considered as part of a larger recurrent network, where – after 
some intermittent stages – activity arrives back at its origin (with 
unchanging synapses in between). Hence, recurrent structure 
like those could be seen as simple network building blocks and 
in the end we shortly discuss larger network structures (i.e., a 
ring of neurons) that have similar stability properties as those 
building blocks.

For the input we will use input spike distributions with first 
moment P (expectation value) that comes in three different condi-
tions. The firing will be without any noise and thus, periodic, with 
Gaussian noise using a mean value of P and a standard deviation 
of σ = 5 ms and, additionally, we will also apply a purely Poisson 
distributed firing with rate P (hence no periodic input).

As our model is linear, it can not as such produce spikes on 
its own. However, we could at any point introduce a threshold so 
that each time a pulse exceeds this threshold a spike would travel 
along the axon to the next neuron via its synapses. In our first order 
approximation we do not need this threshold, however, we could 
apply it afterward.

InPut Pulse tIMIng and aMPlItude
The external input to the system is a sequence of δ-function spikes, 
which are being transformed into PSPs by convolving the nor-
malized filter function h with the input sequence. As the model is 
linear, outputs are graded pulses, which result from the weighted 
linear summation of all inputs at the soma of the neuron (Eq. 1). 
As we do not use spike thresholds, these outputs directly provide 
the recurrent part of the input to the system.

We need to calculate the complete input time function, notable 
the timing and amplitude of all pulses that enter a neuron. We 
investigate recurrent systems with an external input of periodic-
ity P with delays d

i
, i = 1,…,R (in this study we only consider 

R = 1 and 2 but the analysis holds for R ∈ N). To get a better 
intuition for recurrences in networks like those described above 
(Figures 2A,C) we can compare each recurrence to a modulo 
operation. We find all pulse timings pt by iterating the map 
pt

c+1
 = mod (pt

c
 + d

i
, P) until pt pt

c Ns+ = =
1 0

. The total number of 
relevant pulse times N

s
 = P/gcd(P,d

1
,…,d

R
) depends on the great-

est common divisor (gcd) of P and all R delays d
i
. For instance, 

all relevant pulse times for P = 75 and d = 60 are pt
c
 = {0, 60, 

45, 30, 15}. This gives us the timings of the pulses. In order to 
calculate the amplitude G of each pulse of a system with R recur-
rent connections, we need to go further and solve this linear 
system of equations: G = (I − L)−1λ where L is a matrix that 
handles the delayed recurrences and λ the external input; I is 
the identity matrix. The details of the derivation are provided in 
Section “Pulse Timings and Amplitude” in the Appendix. Having 
calculated the pulse amplitudes we are now able to calculate 
the weight change.

First, we calculate the influence of a single pulse on the weight 


1
. To this end we set x

2
(t) = 0 for all t and x

1
(t) = δ(t) which is a 

spike at t = 0. It simplifies the convolution to a temporal shift in the 
filter function h h t t t t h di i: ( ) ( ) ( ) .− = ∫ − −

∞
0 δ τ τ τ  This leaves us with 

a first order differential equation with following solution:

 

   

1 1 0 1
2

1 1 1 0 1

1

2
s s

s s s

t t h t

t t t

( ) ( )

( ) ( )

= ( ) 





⇒ = − ( ) =

exp µ

∆ ss t h t0 1
21

2
1( ) 



 −



exp µ ( )  (6)

Filters usually have the property that they decay to 0 after a while 
which turns the exponential function into 1 and results in no weight 
change. Thus, a single pulse or a rate produced by a single input 
does not have any influence on the weight when not combined with 
another pulse. For these pulse–pulse correlations we have to set 
the other input to have a pulse at t = T: x

2
(t) = δ(t − T). If we use a 

simplification (with all the details in Kolodziejski et al., 2008) the 
result of the differential Eq. 5 for very long times writes

∆ ∆ ∆   



= ≈ + −

=

→∞ →∞

=

∞

∫lim ( ) lim ( ) ( ) ( )
t t

st t h h T d1 1

0

2 0
  

µ τ τ τ

22 2
sign( )

( )
| |T h T

β α
α β σ

−
+

( )  (7)

where we used here and throughout the manuscript

h t tt t( ) ( ),= −( )− −1

σ
α βe e Θ

 
(8)

Hence, different values of the pulse timing T lead to different ∆ 
values, which, when plotted in Figure 1B against T, resemble a fully 
symmetrical STDP curve (for more details see Porr and Wörgötter, 
2003; Saudargiene et al., 2004; Tamosiunaite et al., 2007; Kolodziejski 
et al., 2008). The shape and symmetry of the STDP curve depends 
purely on the filters’ shape, thus on the post- synaptic potentials’ 
(PSPs) shapes (see Figure 1A). Thus, with different filters h for x

1
 

and for x
2
 one could get either LTP or long-term depression (LTD)-

dominated curves (see Figure 2c in Porr and Wörgötter, 2003).
We used h(t) with parameters a = 0.009, β = 0.0099, and σ = 0.029. 

The maximum of h(t) is at t
max

 = (log(β) − log(a))/(β − a). The width 
of the STDP curve measured at biological synapses is usually about 
T = ±50 ms (Bi and Poo, 1998; Caporale and Dan, 2008). Thus, as 
our filter ceases to 10−4 at around t ≈ 1000, we define 1000 time steps 
as 50 ms (which corresponds to a = 0.18 ms−1 and β = 0.198 ms−1) to 
which we will refer throughout the text.

Not only the shape of the STDP curve is determined by the filter 
function (Eq. 8) but also the shape of the pulses. As our model is 
linear, each pulse could be thought of as a weighted delta function 
(pseudo spike) convoluted with the filter function.

network structures and InPuts
Although our method would allow investigating general network 
structures, we will concentrate on only three very simple, but fun-
damental ones.

The first structure consists of a single neuron with two plastic 
synapses (see Figure 1D). Although quite simple, the analytical 
solution of this feed-forward structure demonstrates the power 
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Now, as we know the complete analytical solution of Eq. 3, we 
investigate approximations and their errors in order to judge their 
usefulness for further considerations. To estimate the approxi-
mation errors we can use δ functions as inputs to the system. 
Furthermore, we assume that all h

i
 = h are equal. The pulses are 

again modeled as δ functions δ(t − t
i
) for times t

i
 which sim-

plifies the convolution to a temporal shift in the filter function 
h h t t t t h di i: ( ) ( ) ( ) .− = ∫ − −

∞
0 δ τ τ τ  This leads for elements of A(t) 

to A
ij
(t) = F[h](t − t

i
)G[h](t − t

j
) where t

i
 and t

j
 are the pulse tim-

ings of neuron x
i
 and x

j
 respectively. We will use the filter shown 

in Figure 1A, given by Eq. 8.
The different approximation errors are exemplified in Figure 1E. 

For this we are using a single pulse pair at two synapses (see Figure 1C) 
for which we calculate the final synaptic strength  =

→∞
lim ( )
τ

τ  
(Eq. 9). This has been performed for differential Hebbian learn-
ing, but we remark that the error is identical for Hebbian learning. 
For this setup, weight changes are computed in three ways: without 
any approximations, yielding  (Eqs. 9 and 11); using the trun-
cated solution only, yielding E k,( ); and using the truncated solution 
while also expanding the exponential function, yielding S k,( ). Thus, 
we use  and compare it to approximations ⋅,( ),k  calculating the 
error as: ∆⋅ ⋅= −,( ) ,( ) .k k    This is plotted in Figure 1E for different 
approximations against the plasticity rate μ on a log-log scale where 
we set the maximal value of the input filter h to 1. As approxima-
tions E,(k) and S,(k) become very similar for k > 2, only four curves 
are shown. We observe that the behavior of the difference-error ∆

·,(k)
 

follows the order of the approximation used. The error for the linear 
expansion approximation S,(k = 2) is slightly higher than that from 
its corresponding truncation approximation E,(k = 2). However, 
using a plasticity rate of μ = 0.001 already results in a difference-
error value of 10−8 compared to 10−2 when using the same value for 
μ and the maximum of h. Therefore, one can in most applications 
use even the simplest possible linear approximation S,(k = 2) to 
calculate the change in synaptic strength.

As this calculation has been based on two pulses at two syn-
apses only, we need to ask how the error develops when using N 
synapses and complex pulse trains. For this we first consider pulse 
trains, which are grouped “vertically” into groups with each input 
firing at most once. Filters of pulses within a group will overlap 
but we assume that grouping is possible such that adjacent groups 
are spaced with a temporal distance sufficient to prevent overlap 
between filter responses of temporally adjacent groups. Thus we 
calculate  in the same way as above leading to: B B⋅ →∞ ⋅=,( ) ,( )lim ( ).k kτ

τ  
When using such a temporal tiling, B⋅,( )k  depends only on the pulse 
timing matrix T with elements T

ij
 = t

j
 − t

i
. Then, we get the synaptic 

strength after M groups by calculating the product over all groups 
m to  M k m

M
k m t, ,( ) ,( )( ) ( ).⋅ = ⋅= ⋅Π 1 0

B T
This solution is easy to compute. Because a product of matri-

ces results in a summation of matrix elements, the error does not 
increase exponentially but only linearly in M. Because of this it 
follows that even after 10000 pulses the error is still of an order of 
only 10−4 given the example above (see Figure 1E).

Finally we estimate how the error behaves when filters overlap. 
This mainly happens during bursts of pulses with temporarily high 
spiking frequencies, which are, in general, rare events. However, 
using the solution which assumes independent temporal intervals 
instead of the time-continuous calculation (Eq. 4), only includes 

results
analytIcal solutIon of weIght dynaMIcs
Here we are going to develop a closed-form for the matrix B(t) 
which governs the temporal development (Eq. 4) of the weights 
(t) according to Eq. 3. This solution is not trivial as the matrix 
A(t) is also a function of time. This problem is often found in 
quantum mechanics and the main problem is that matrices usu-
ally do not commute. A solution exists, however, it includes an 
infinite series, called the Magnus series (see Magnus, 1954 for more 
details), with

 V ( ) exp ( )t t t= ⋅ ( )0  (9)

where (t
0
) are the synaptic strengths at time t

0
, hence before plas-

ticity, and V(t) is the solution of following equation

V
V

V
V( ) ( ),

( )

exp( ( ))
, .t t

t

t n
n

n

=
− −









= { }
=

∞

∑µ βA A
1 0  

(10)

Here the braces η ξ η ξ ξ ξ, [ [[ , ], ] ]n{ } =    are nested commu-
tators [η,] = η − η and β

n
 are the coefficients of the Taylor 

expansion of V/(1 − exp(−V)) around V = 0. Equation 10 is solved 
through integration by iteration to the Magnus series:

V( ) ( ) [ ( ), ( )]

( ), [ ( ), ( )]

t t d

d

t

= +

+ 




∫

∫

µ µ τ τ τ

µ τ σ σ σ
τ

A A

A

2

0

3

0

2

4

A

A A 

+ [ ] +

∫

∫

0

3
4

012

t

t

d

t d o

τ

µ τ τ τ µ[ ( ), ( )], ( ) ( )A A A
 

(11)

with A( ) ( ) .t d
t= ∫0 A τ τ  Thus, Eq. 9 combined with Eq. 11, gives us 

analytically the time development of all weights connected to a 
neuron under Hebbian plasticity in the limit of small plasticity 
rates μ. With this we are able to calculate without simulations 
in principle directly the synaptic strengths of N synapses given 
N different pulse trains. This property will be useful to analyti-
cally calculate the fixed-point values of the weights of our small 
network structures.

Approximations for the analytical solution
Before we apply the solution to our network structures, we trans-
form it into a computable form and provide error estimates. As the 
commutators in the infinite series in Eq. 11 are generally non-zero 
we truncate the series and neglect iterations above degree (k). We 
write the truncated solution as BE k kt t,( ) ( )( ) exp ( ).= V  For two syn-
apses this is solved directly later on, most often, however this needs 
to be calculated by expanding the exponential function. We denote 
this approximation, where we neglect terms of both the exponential 
as well as the Magnus series greater than of order (k), with an S 
instead of an E, i.e., S,(k), thus BS k p q

p q k
p

qt q t,( ) , ( )) ( / . ( )) ).( (= + = =
⋅ ≤I Σ 2 11 V  

Notice that in the limit k → ∞ the approximation transforms into 
the general solution (Eq. 9). This solution is computable for arbi-
trary input patterns.
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number of periods P: (n) = (n + ·P) for  ≥ 1 and n large 
enough. Here in this study we concentrate on the analytical solu-
tion for  = 1.

Therefore, in order to calculate those fixed-point weights, the 
following system of equations needs to be solved:

ˆ ( )B−( )⋅ =I  n 0  (12)

with n large enough so that the weights have already converged. 
ˆ ( , )B B= +n P n  is defined to include all relevant pulse correlations; 

it is, thus, similar to B. The roots of this system represent the fixed-
points which are stable if all eigenvalues of B̂ are negative.

In the next step we will use the E,(k = 2) simplification for B̂ 
which is I + μ ∫

U
A(τ)dτ with U being an interval that includes 

all relevant correlations. A detailed definition is given in Section 
“Fixed-Point Analysis” in the Appendix. With this we will arrive 
at an analytical solution of the weight dynamics of the recurrent 
structures. If we include this simplification into Eq. 12 we get

A( ) ( ) .τ τd n
U

⋅ =∫  0
 

(13)

Now we have to write down matrix A to get its integral. With R 
recurrences and a single input, A is of dimension R + 1. The first 
R rows and columns describe the in- and outputs to the plastic 
synapses and the last row and the last column the in- and output 
to the constant input synapse. We define its input as K, which is 
a sum of δ functions always at the beginning of each period. The 
inputs to the plastic synapses are given by the pulse amplitudes 
G (Eq. A.2), however, delayed by different delay times d

i
. Putting 

everything together, we have to solve following integral:

an additional error of order k = 2 due to the linearity of the filter 
functions h. The error after matrix multiplication results in the 
square of the lowest term of the Magnus series (Eq. 11).

Thus, the easily computable group decomposition B⋅,( )k  will yield 
accurate enough results even for long, non-bursting pulse trains.

fIxed-PoInt analysIs
Now we are able to calculate the temporal development of the 
weight dynamics in our networks. Most interesting are those devel-
opments that eventually lead to a stable, thus non-diverging, weight 
dynamics. Here, we develop the equations with which configura-
tions of parameters (i.e., periodicity and delays of the recurrences) 
can be identified that lead to stable weights.

As mentioned, some of those (P, d
i
) configurations converge 

to stable weight configurations, others do not. In order to reveal 
whether a configuration is stable, hence whether the plastic weights 
do not diverge, the nullclines (  = 0) need to have stable crossing 
points in the open region ]−1, +1[R with R being the number of 
recurrent connections (±1 would lead to diverging activity since 
a constant input is added periodically for a theoretically infinite 
number of times). A crossing point outside this interval is never sta-
ble because of the recurrent connections involved [(n + 1) = (n) 
with  > 1 always diverges].

For the calculations we place all input pulses on a discrete grid, 
but calculate correlations by continuous analytical integration. 
Hence, the weight change in the discretized version of Eq. 4 is 
(n) = B(n,m)·(m) where B(n,m) denotes B(t) with lower and 
upper boundaries m and n respectively. Weights are ( periodically 
or asymptotically) stable if they take the same value after a certain 
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Figure 1 | Setup (A–D) and verification (e) of the approximation of eq. 4. 
(A) Two pulses xi and xj at times ti and tj respectively are convolved with filter h. 
(B) Depending on the time difference T, differential Hebbian plasticity leads to a 
STDP-like weight change curve ∆ (Porr and Wörgötter, 2003; Kolodziejski et al., 
2008). The maximum is at tmax = (log(β) − log(a))/(β − a). (C) A simple network 
with only a single plastic synapse with which the relation of differential Hebbian 
plasticity to spike-timing-dependent plasticity is shown. (D) The used 
feed-forward network with two plastic synapses. (e) Here we show the degree 

of consistency between our general solution and the proposed approximations. 
To this end we plot the difference ∆⋅ ⋅= −,( ) ,( )| |k k    (see Approximations for the 
Analytical Solution) between the approximation and the exact solution of Eq. 3 
for one input pulse pair against the plasticity rate μ on a log-log scale. Here, a 
filter function h with a = 0.1, β = 0.2, σ = 0.25, and maxth(t) = 1 is used (Eq. 8). 
The temporal difference T = ti − tj, between the two input pulses was varied over 
the length of the used filter functions (here between 1 and 100 steps) and error 
bars representing the standard deviation are given.
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where ν τ τ τ τT

t
t h dh T d d, ( ) ( ). ( )/ .

− = ∫ −1 0  and ν τT

t
t h T, ( ) ( ).

+ = ∫ −1 0  
dh d d( )/ . .τ τ τ  Here we use two input neurons (N = 2), which receive 
inputs at t = 0 and T, respectively. Overall, this results in following 
solution for the weight after a pulse pair ( lim ( )),( ) ,( )

B BE E2 2=
→∞τ

τ  with 

the calculations provided in Section “Feed-Forward Structure” in 

the Appendix (special solution for r = 1)











BE
T

T

T

T
,( )

cos

sin

sin

cos
.2 =

( )
− ( )

( )
( )







µν
µν

µν
µν

 
(17)

Having found the analytical solution we now determine dynam-
ics of the temporal development by calculating the eigenvalues λ

i
 

of BE ,( )2 −I  which are:

λ µν λ µν1 21 1= ( ) − = ( ) −exp i exp -i 

T T .
 

(18)

This shows clearly that the weights oscillate around 0 and that 
the oscillations of the weights are damped if the real parts of the 
eigenvalues λ

i
 are smaller than 0. This constraint holds for almost 

all T values as ℜ( ) =λi cos µνT( ) − =1 0 is only true for a multiple of 
the number 2 π. However, 0 ≤ <µν π

T  holds since we assume μ to be 
small. Furthermore, µνT = 0  is trivial and does not lead to any weight 
change at all. Hence, the weights will continuously shrink to 0.

Recurrent networks
Next, we investigate the stability of the two neuron model with 
a single recurrence (see Figure 2A) for which we need the previ-
ously provided solution for Eq. 13. In small panels to the right 
of Figure 2B we show three different temporal developments 
of the plastic weight. The top panel depicts a divergent weight 
(P = 100 ms and d = 85 ms), the middle panel a convergent 
weight development (P = 100 ms and d = 60 ms) and the bottom 
panel an oscillating weight (P = 59 ms and d = 94 ms). In the 
main panel of Figure 2B the weight values of all configurations 
for 0 < P < 100 ms and 0 < d < 100 ms (which is 0–2.0 times 
the characteristic STDP length of 50 ms) are plotted. In case of 
convergence the final weight is depicted, however, if the weight 
diverges, no point is plotted at all (white regions). For oscillating 
weights we plot the mean value.

Figure 2B reveals that if (P, d) is stable, then (nP, nd) with n ≥ 1 
is also stable (lines through origin). However, weights will not be 
the same for (P, d) and (nP, nd). The stability statement only holds 
for configurations in which the weight has not reached a value 
whose absolute value is ≥1. This immediately leads to divergence 
and is the reason why the lines through the origin not always start 
at the origin.

We skip the detailed calculations (including the definition for s )  
here, given in Section “Fixed-Point Analysis” in the Appendix, and 
directly write the result where only correlations in the interval U have 
been considered and the pulse amplitudes G (Eq. A.2) were applied:

a di jU , τ τ( )∫ = ⋅ ⋅ − + − +( )=== − ∑∑∑ Γ Γ ∆k l j il

P

k

P

m s

s
l k d d mP

11

q d k d mP

p d k d mP

iU k ik

P

m s

s

jU k j

τ τ

τ τ

( ) = ⋅ − − +( )
( ) = ⋅ + +

∫ ∑∑
∫

==−
Γ ∆

Γ ∆





1
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==−

=−

∑∑
∫ ∑

k

P

m s

s

U m s

s
b d mP

1

τ τ ∆ .

 

(15)

Obviously, the number of fixed points is not restricted to one 
and there exist many configuration with more than one fixed-
point. However, we will show below that if a configuration is sta-
ble, than it does not matter how many fixed points in the  interval 
]−1, 1[ exist.

Here we would like to stress again that we are not interested in 
average quantities (no mean-field approach) but in the fine tem-
poral dynamics of each single weight and additionally that a non-
diverging weight is also a necessary condition for a non-diverging 
overall activity as we do not use any kind of boundaries.

Now, we have all tools ready to analyze the network struc-
tures (Figures 1C and 2A,C) starting without additional noise, 
thereafter with noise and finally by also considering asymmetrical 
STDP rules.

analysIs of the network structures wIthout noIse
First, we will investigate the structures, which we introduced in the 
beginning of this study, in the absence of noise. The feed-forward 
structure always displays oscillation of weights and activity whereas 
the recurrent structures show more complex behavior. Depending 
on the network parameters, the weights either diverge, converge to 
a fixed-point or oscillate.

Feed-forward single neuron model
Here we look in more detail at symmetrical differential Hebbian 
plasticity with two plastic synapses (see Figure 1D) where the 
simplification E,(k = 2) is analytically fully solvable. We have also 
based the error analysis provided in Figure 1E on these calcula-
tions. For the approximation E,(k = 2) the matrix results in
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Tt
t

t
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three different values of P: 0.5, 1.0, and 1.5 times the characteristic 
STDP time window (we leave out the 2.0 times as we do not get any-
thing novel at higher periodicity values according to Figure 2B).

Starting with P = 25 ms (Figure 2D) it is apparent that only a few 
inhibitory connections evolved (only about 10%). However, when 
moving to higher P values (Figures 2E,F), more and more inhibi-
tory connections show up. If we had plotted (not shown) the ratio 
of excitatory connections, we would find that at about P = 100 ms 
the ratio of excitatory connections reaches 0.5 and for all smaller 
values the ratio is always >0.5, thus more excitatory connections 
develop. We note that all properties mentioned in this paragraph 
remain essentially the same, when adding noise to the input.

Figures 2E,F reveal that the main regions (upper-right, 
middle) move to higher (d

1
, d

2
) configurations and enlarge at 

the same time. In addition, new regions originate at smaller 
(d

1
, d

2
) configurations.

The total number of fixed points N
0
 scaled by the number of 

the possible configurations, of which there are P2, also grows with 
increasing periodicity (see Figure 3, black dots). In the next sec-
tion we will compare the number of fixed points to two different 
noisy input protocols.

analysIs of the network structures wIth noIse
Above we used deterministic timing at the input to our system. As 
this is not realistic, we will now use two different types of noise. 
The first one is Gaussian jitter around the given periodicity value 

Additionally, Figure 2B shows that excitatory and inhibitory 
regions always alternate and that the two regions for d < P (below 
diagonal) are almost of the same size as the many regions for d > P 
(above diagonal). Furthermore, if the first delayed pulse is closer to 
its input pulse (i.e., d < P/2), than the final weight is inhibitory. By 
contrast, if the first delayed pulse is closer to the consecutive input 
pulse (i.e., P/2 < d < P), than the final weight is excitatory. In the 
excitatory case, the pulse at the plastic synapse is followed by another 
pulse. This resembles a causal relationship which should lead to a 
weight growth. The opposite is true for the inhibitory case.

We also conducted a perturbation analysis in which we per-
turbed the weight for each configuration with increasing amplitude 
until the weight could not converge back to its fixed point. It turns 
out that the crucial measure for stability is whether the absolute 
value of the sum of the fixed-point value and the perturbation 
amplitude exceeds 1. This is true for almost all configurations with 
stable weights which is why we do not need to plot the results of 
the perturbation analysis.

Another property of the system is that the final weights are iden-
tical for (P, d + nP) configurations for all n ≥ 1 (see Figure 2B, in 
particular the black dashed line at P = 40 ms). Thus, if the weight 
for e.g., P = 40 ms and d = 25 ms converges to , so does the weight 
for P = 40 ms and d = 65 ms. We use this property to simplify the 
convergence plots of the network structure with three neurons or 
two quasi recurrences (Figures 2D–F) and only depict fixed points 
for delay values up to the periodicity P. We show the fixed points for 
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Figure 2 | Stable fixed points of the single (A) and double (C) recurrence 
networks without noise. (B) The color code indicates the actual weight 
values of each fixed-point dependent on the parameter P and d (delay) of the 
network. Parameter configurations which lead to divergent weights are not 
shown (i.e., are white). The three panels on the right side of (B) exemplify the 
three possible temporal weight developments (from top to bottom: divergent, 

convergent, and oscillating). (D–F) Dependent on two delays d1 and d2 the 
stable fixed points for the three neuron structure (C) are shown. Each panel 
uses a different P value (D: 25 ms; e: 50 ms; F: 75 ms). Note that we only 
need to plot one of the two weights as the other weight is just a reflection in 
the diagonal; the diagonal as such represents the single recurrence weights 
(half of the value).
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or even losing their stability. However, in a few trials they still 
happen to survive which leads to the regions with many rarely 
stable configurations.

It is clearly visible that the number of stable configurations for 
the structure with a single recurrence substantially decreases. This 
is, however, not the case for the double recurrence structure. There, 
the number of stable configurations increases (see red border in 
Figures 4G,H) because of the compact structure. However, this 
effect starts above P = 30 ms which is revealed by Figure 3. In this 
figure we plot the number of stable (non-divergent) configurations 
N

0
 normalized by the maximum possible configurations (P2) against 

the periodicity P. Only between about 30 and 60 ms noise increases 
the number of stable configurations by about 20%. Above 60 ms 
the smaller non-compact areas that lose stability dominate over the 
border areas that gained stability. Above a certain periodicity the 
smaller areas become large enough so that noise becomes advanta-
geous again and border regions become stable. Therefore, the effect 
that noise slightly increases stability reoccurs periodically. Figure 3 
also shows clearly that Poisson statistics leads to slightly more stable 
configurations than adding Gaussian noise. Most important, how-
ever, is the fact that noise does not deteriorate the system, i.e., the 
number of stable configurations stays almost unchanged.

Similar to the feed-forward structure, weights sometimes change 
from positive to negative values (or vice versa), hence they switch 
from being excitatory to being inhibitory which is not known from 
biology. However, this could be easily solved if we exchange our 
linear synapse with two non-linear synapses (one that is linear in 
the positive regime and 0 elsewhere and the other vice versa), so 
that such a push–pull mechanism covers the full linear range. This 
is the conventional way of addressing this issue (Pollen and Ronner, 
1982; Ferster, 1988; Palmer et al., 1991; Heeger, 1993; Wörgötter 
et al., 1998). Note, however, in general we found that without noise 
switching is rather rare in our recurrent structures anyways. Even 
with additional noise weights tend to switch only if the final weight 
is close to 0.

analysIs of the network structures wIth  
asyMMetrIc stdP rules
In biological systems, the STDP curve is not symmetrical (Bi and 
Poo, 1998; Caporale and Dan, 2008). In order to achieve an asym-
metric differential Hebbian plasticity curve, we leave the positive 
part which describes the strengthening of the weight (LTP) as it is 
and shrink or stretch the negative part which describes the weak-
ening (LTD). This is done by multiplying negative weight changes 
with a factor r.

Feed-forward structure
For the feed-forward structure we calculated the temporal development 
analytically (see Section “Feed-Forward Structure” in the Appendix) 
and find that the general behavior is not changed by the asymmetry. 
This becomes visible from the eigenvalues of the system:

λ µν ρ λ µν ρ1 21 1= ( ) − = −( ) −exp i exp i 

T T .
 

(19)

Both oscillation and damping still exist, however, damp-
ing constant and frequency of the oscillation is scaled by the 
 asymmetry r.

P with a standard deviation of 5 ms. The second one is Poisson 
firing with rate P. Due to the stochastic nature of the signals, ana-
lytical results cannot be obtained anymore and we have to rely 
on simulations.

Feed-forward structure
The general behavior of the feed-forward structure does not change 
in the presence of either noise. Although the oscillations are not 
“perfect” anymore, weights are still oscillating and eventually they 
decay to 0.

Recurrent structures
For the recurrent structures the situation is different as noise is 
able to change an initially unstable configuration to now exhibit 
a convergent weight development and vice versa. In Figure 4 we 
show the stability of the weights for different configurations. Here, 
red stands for highly stable weights (i.e., all trials lead to conver-
gence) and blue for rarely stable ones (i.e., only a few trials lead to 
convergence). Stability in between where half of the trials lead to 
convergence is very rare, so we included those configurations to 
the rarely stable ones. In order to compare the noise results with 
those for no noise, we include the no noise stable regions in gray 
in Figure 4. Additionally, the color of each configuration that is 
stable both with and without noise is lighter (i.e., light red and 
light blue). We do not plot the actual final weight values as those 
are not largely different from the no noise ones.

For the two neuron structure, a few of the branches in 
Figures 4A,B completely disappeared, others moved slightly. The 
two main branches for d < T (below diagonal) remain highly sta-
ble, however, only in the “core”. The more diffuse, non-compact 
regions, i.e., regions with detached stable configurations become 
either completely unstable or at least rarely stable. Noise affects 
the input periodicity, thus configurations that are stable for a large 
range of different P values survive when noise has been added. By 
contrast, configurations within non-compact regions are always 
deflected toward unstable configurations, thus, compromising 
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no noise0.06
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Figure 3 | Number of configurations N0 that lead to stable weights 
multiplied with the probability that such a configuration leads to 
stability (see Figure 4) with respect to the periodicity P. Additionally, N0 
is normalized by the maximum possible configurations (P 2) and we plot the 
results without noise (black), with Poisson distributed firing with rate 
P (blue) and Gaussian distributed periodicity with mean P and a variance of 
5 ms (red).
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asymmetric STDP curve yields more stable configurations than a 
symmetric one. Here, a dominant LTP part is advantageous over 
a dominant LTD part. This situation changes when we introduce 
noise. An STDP curve with a dominant LTD part results now in 
more stable configurations than a LTP-dominant STDP curve. 
However, almost all asymmetric STDP curves lead to many more 
stable configurations as compared to a symmetric STDP curve. 
Here we note again that making the input spiking obeying the 
Poisson statistics is advantageous over adding Gaussian noise (if 
comparing absolute numbers).

Next, we consider the double recurrence structure (Figure 
5B) where the number of stable configurations were also counted 
up to P = 50 ms. Here, the no noise result looks more similar to 
the results with noise; two peaks, one for an LTP-dominant and 
one for an LTD-dominant STDP curve, are visible. However, 
adding noise to the system again changes the relative heights of 
the peaks: the STDP curve with more LTD becomes advanta-
geous over the STDP curve with more LTP. Similar to the single 

Recurrent structures
Now we come to the recurrent structures. Here, similar to the 
introduction of noise, the situation is different. With an additional 
asymmetry the number of stable configurations changes. In the 
following, we depict the number of stable configuration achieved 
with a certain asymmetry r = 2a (logarithmic representation) by 
N

a
. Thus, the number of stable configuration for the symmetric 

STDP curve is still N
0
. Then, to better compare the different results, 

we normalize N
a
 to the symmetric number N

0
 plotting N

a
/N

0
 in 

Figure 5. It is worthwhile to note that the total (not the relative) 
number of stable configurations without noise is reduced for any 
value of a for the single recurrence structure and stays almost 
unchanged for the double recurrence structure (see Figure 3).

First, we look in more detail at the single recurrence structure 
(Figure 5A). We plot the normalized number N

a
/N

0
 of stable con-

figurations up to a periodicity of P = 50 ms. The respective N
0
 

values can be found in the caption of Figure 5. The no noise results 
have a peak for positive and for negative asymmetries, thus an 
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Figure 4 | Stable fixed-points of the single (A,B) and double (C–H) 
recurrence network with noise. The color code indicates the stability of each 
point. (Light)red is for points which are stable at each trial (out of 10 
simulations) and (light)blue for rarely stable points. In gray are the no noise 
fixed points; light colors indicate that a point is stable with and without noise. 
(A,B) Those panels show the weight stability where the firing was distributed 

following Poisson statistics (A) using P as rate. (B) Shows the results with 
Gaussian noise with a mean P and a variance 5 ms. (C–H) Three neuron 
structure; the left column depicts the converged weights for P = 25 ms, the 
middle for P = 50 ms, and the right for P = 75 ms. (C–e) Poisson distributed 
firing with rate P, (F–H) Gaussian distributed periodicity with mean P and a 
variance of 5 ms.
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at the level of PSPs, which are here modeled by ways of the filter 
function h. This way closed-form solutions can be found. Spiking 
could be introduced by ways of a threshold. Introducing such a 
threshold essentially leads to the reduction of activity (eliminat-
ing all small linearly summed signals) but the general recurrence 
is not altered.

The first network investigated was a simple feed-forward struc-
ture (see Figure 1C) which displays oscillating weights which decay 
to 0. This observation is interesting and not expected as this net-
work and its inputs represent a fully symmetrical situation. Hence, 
oscillation should occur, one would think, but without damping. 
Asymmetrical STDP curves do not alter this observation, because 
the asymmetry of the STDP curve only affects the frequency of 
the weight oscillation.

The focus of the current study, however, was to investigate 
recurrent network structures without averaging the activity. 
The two small recurrent networks studied here can be seen as 
fundamental network building blocks. This is due to the fact 
that the direct recurrent connections used here could also be 
replaced by a network, the output of which providing the recur-
rent signals. This seems to be similar to Roberts (2004), Burkitt 
et al. (2007), and Gilson et al. (2009), however, in those studies 
only average activities are considered. Roberts (2004) does not 
treat plasticity, Burkitt et al. (2007) and Gilson et al. (2009) 
do not have self-connections, and Roberts (2004) and Burkitt 
et al. (2007) do not have delays included. Without delays, self-
connections would be cumbersome to implement in a general 
way (i.e., for different delays a different number of neurons 
need to be interposed). However, Burkitt et al. (2007) and also 
Gilson et al. (2009) could easily extend their models to include 
self-connections.

As a side remark, almost all of the above mentioned stud-
ies only consider pair-wise STDP correlations although a 
method for three-pair couplings exists (Pfister and Gerstner, 
2006). By contrast, differential Hebbian plasticity treats multi-
correlations naturally.

In the much cited study of Bi and Poo (1998) a clear asymmetry 
is visible in the STDP curve (Figure 7 of Bi and Poo, 1998): the 
part which describes the strengthening of synaptic efficiency, LTP, 
is more pronounced than the LTD part. In general, asymmetrical 

recurrence structure, there are more stable configurations when 
using Poisson noise, however, with Gaussian noise the boost in 
stability for asymmetrical as compared to the symmetrical STDP 
curve is larger. If we compare the number of stable configura-
tions between LTP-dominant and LTD-dominant STDP curves 
we find that without noise about 55.0% LTP-dominant configura-
tions of the total number of configurations exists. With Gaussian 
noise this ratio decreases to 41.7% and with Poisson statistics 
to 44.0%.

The dynamics of the structures examined here (and the reason-
ing should extend to all possible structures) would allow only for 
diverging weights if we set a → ±∞. As this would correspond to 
an STDP curve with pure LTP or LTD respectively, the dynamics 
pushes the weight only in one direction (either positive or nega-
tive) which leads to no fixed point (see Eqs. 14 and 15). This is also 
indicated in Figure 5 where the number of configurations leading 
to convergence is severely reduced even for a = ±4.

dIscussIon
Real neurons often display rich, non-stationary, firing patterns by 
which all synaptic weights will be affected. The so far existing solu-
tions which describe Hebbian learning, on the other hand, constrain 
the temporal dynamics of the system or limit plasticity to a subset of 
synapses. With the solution presented here we can calculate weight 
changes for the first time without these restrictions. This is a valu-
able step forward in our understanding of synaptic dynamics of 
general Hebbian plasticity as well as of STDP (which is a special 
case of the general Hebbian plasticity rule) in different networks. 
Specifically, we have presented the time-continuous solution for 
the synaptic change of general Hebbian plasticity (Eqs 9 and 11), 
its approximation for general spiking or continuous inputs as well 
as a specific solution for non-bursting pulse trains. Of practical 
importance is the fact that the error of the computable approxima-
tions remains small even for long pulse trains.

We think that there is in general no intuitive access, which 
would allow us to understand the temporal development of activ-
ity and plasticity in networks with recurrent connections. Even 
small structures driven by periodic activity, such as the ones inves-
tigated here, display unexpected and counterintuitive behavior. 
The systems investigated are linear and summation takes place 

no noise
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-2-4 0 2 4
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-2-4 0 2 4
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1 recurrence 2 recurrences
20

10

0

15
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/
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A B

Figure 5 | Number of stable configurations Na with respect to the 
asymmetry a of the STDP curve normalized by the number of stable 
configurations without asymmetry N0. The part that leads to a reduction in 
synaptic efficiency (LTD-side) is scaled by 2a. (A) This panel shows the number of 
stable configurations of the single recurrence and (B) for the double recurrence 

structure both up to a periodicity of P = 50 ms. The results that were obtained 
without noise are depicted by the solid line, the results with Gaussian noise by the 
dash-dotted line and the results with Poisson statistics by the dotted line. The N0 
values for no noise, Gaussian and Poisson are 737, 73, 105 for the single recurrence 
network and for the double recurrence network they are 6464, 5693, 7435.
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stable regions. The difference between Gaussian and Poisson 
statistic is small, however, we found that Poisson statistics, thus 
the statistics most often used to describe neuronal spiking (Bair 
et al., 1994; Shadlen and Newsome, 1998; Dayan and Abbott, 
2001), yields more stability. More importantly, noise does not 
deteriorate but even improves the system. The benefits of noise 
for neuronal signal processing has been discussed in several 
other studies (Fellous et al., 2003; Deco and Romo, 2008). The 
fact that synaptic stability benefits from noise, especially in the 
more complex double-recurrent structures, adds to this discus-
sion. In our networks noise helps to reach out to nearby stable 
regions to exploit their stability.

The temporal development of multi-synapse systems and the 
conditions of stability are still not well understood. Some conver-
gence conditions have been found (see for example Hopfield, 1982; 
Miller and MacKay, 1994; Roberts, 2000; van Rossum et al., 2000; 
Kempter et al., 2001; Burkitt et al., 2007; Kolodziejski et al., 2008), 
however, in general the synaptic strengths of such networks will 
diverge or oscillate. This is undesired, because network stability is 
important for the formation of, e.g., stable memories or receptive 
fields. Using the time-continuous solution for linear Hebbian plas-
ticity described here serves therefore as a starting point to better 
understand mechanisms, structures and conditions for which sta-
ble network configurations will emerge. The rich dynamics, which 
govern many closed-loop adaptive, network based physical systems 
can, thus, now be better understood and predicted, which might 
have substantial future influence for the guided design of network 
controlled systems.

An important next step to improve our understanding of the 
interaction of plasticity and activity is to increase the complex-
ity of the investigated network structures. Raising the number of 
recurrences is straightforward as we have already presented a gen-
eral method to solve such networks. It will be more challenging 
to include plastic synapses at more than one neuron. Figure 6A 
shows as a small outlook such a possible network structure where 
we used N = 5 “building blocks” (see Figure 2C) each receiving 
constant periodic input (i.e., pulses), activity from itself (self-
connection) and from the previous neuron (ring-connection). In 
this example we set all delays to the same value (d

i
 = d and d

is
 = d) 

and the input has periodicity P (see Figures 6C,D). Each neuron 
i receives its first input spike at time t = (i − 1)·P/N. Both the 
self-connection and the ring-connection are eligible to changes 
and Figures 6C,D show that, similar to our fundamental building 
blocks (see Figures 1D and 2A,C), configurations which lead to 
converging weights exist. The  temporal development depicted in 
Figure 6B exemplifies the typical behavior found in those networks: 
due to its symmetry all self-connections and all ring-connections 
converge each to practically the same weight value. Many possible 
network topologies could visioned using those or similar building 
blocks. Hence, investigating those structures in more detail goes 
beyond the scope of this paper.

Also more complex input protocols must be investigated. 
The current study suggest that dynamically stable recurrent sub-
 structures can exist within larger networks. Similar results exist for 
the generation of stable activity patterns in (non-plastic) networks 
(Memmesheimer and Timme, 2006a,b). These studies may allow 
us to gradually approach a better understanding of  dynamically 

STDP curves are found in many studies (see Caporale and Dan, 
2008 for a review) where sometimes the situation is reversed (LTD 
more pronounced than LTP). Many theoretical studies of large-scale 
network development use STDP curves with stronger LTD part, 
because in many cases it has been found that otherwise weights 
will diverge (Song et al., 2000; Izhikevich et al., 2004). The current 
study, on the other hand, suggests that collective divergent behavior 
could also be prevented by more specific network designs. Here we 
were able to show that stability without boundaries is possible. We 
observe that – at least in those small linear networks – many fixed 
points exist for different types of STDP curves. Notably there are 
almost always more fixed points for asymmetrical as compared 
to the symmetrical STDP curve. Furthermore, the notion that an 
LTD dominance would be beneficial for stability does not seem 
to be unequivocally correct. Even in the presence of noise large 
numbers of fixed points are found when using LTP-dominated 
STDP curves.

The studies of Izhikevich et al. (2004), Burkitt et al. (2007), 
Morrison et al. (2007), Lubenov and Siapas (2008), Gilson et al. 
(2009), and Clopath et al. (2010) have considered fully as well as 
randomly connected networks with external drive, where they 
need to apply soft or even hard boundaries to stabilize weights. By 
contrast here we have looked at small recurrent networks without 
averaging and without boundaries. Thus, these approaches cannot 
be directly compared. Our results, however, appear promising. It 
may well be that networks with specific topologies can be con-
structed (or generated by self-organization), where stability exists 
using STDP for a large number of input patters without boundaries 
or weight-normalization.

Additionally, there exists a Hebbian rule that is not using 
boundaries either. It has been shown that the so called BCM rule 
(Bienenstock et al., 1982) is a rate description-based rule which 
is analogous to the STDP rule (Izhikevich and Desai, 2003; Pfister 
and Gerstner, 2006). However, to get weights stabilized, BCM is 
using an additional variable that pushes the weights so that the 
output activity is close to a set value. This rule, besides that it relies 
on a rate model, uses the activity to limit the weights in an indirect 
way, similar to other homeostasis mechanisms (Turrigiano and 
Nelson, 2004). Thus, it is possible that the BCM rule among others 
makes the weights diverge or rather diffuse which, nevertheless, 
would lead to a state with a finite and stable mean activity. Such 
a behavior does not emerge in our model as a single diverging 
weight will eventually reach infinity resulting in an infinite activ-
ity. Besides, our focus here is on the fine temporal dynamics of 
the weights.

Furthermore, we observe that noise has an influence on 
the recurrent structures (see Figures 2A,C). For some input 
periodicities P the number of stable configurations decreases, 
for other  settings it grows. Growth is found especially for the 
double- recurrent structure. A reduced number of stable con-
figurations is mainly visible in areas with many initially stable 
isolated points from where such a point can be easily “nudged 
out” to an unstable domain by noise. Such a nudging effect, how-
ever, is also the reason why the number of stable configurations 
can increase. Our results show that stable regions either enlarge 
at their boundaries or within dense but not fully covered areas. 
Here initially unstable data points are “nudged in” to adjacent 
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changing modular networks going beyond the currently still 
dominating unifying approaches, which mostly only consider feed-
forward structures or randomly connected networks with average 
activities. This will require intensive studies but we hope that the 
current contribution can provide useful analytical tools and first 
insights into these very difficult problems.
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aPPendIx
Pulse tIMIngs and aMPlItude
In the main text we only calculated the timings of the pulses. 
In order to determine the amplitude of each pulse of a system 
with R recurrent connections, we need to go further and solve 
a linear system of equations. Doing this we need to assume that 
the weights eventually converge, therefore being constant.

In more detail, in each period of length P there are at most 
P pulses, each having different amplitude. Within each period 
each pulse gets multiplied by certain weights (which we assume 
to be constant) and is then delayed. Additionally, the input pro-
vides the neuron with another pulse of amplitude 1. Hence, if 
we write the pulse amplitudes in a vector G and put the mul-
tiplicative factors (i.e., the weights) into a matrix L always at 
the delayed position, we find the pulse amplitude G of the next 
period according to

G LG ( ) ( )k P k+ = +  (A.1)

with  = (1,0,…,0)T. Additionally, we set Λn m m ii, = = ω  and 
Λn m mi, ≠ = 0  where m

i
 = mod (n − d

i
,P). Since Eq. A.1 is linear, 

the amplitudes of the pulses will converge to a certain amplitude 
G G=

→∞
lim ( )

k

k  and we get

G L = − −( ) .I 1

 (A.2)

The solution results in equations that involve high polynomial 
terms and are, thus, complicated to simplify. An example for the 
pulse timings with P = 10, d

1
 = 4 and d

2
 = 6 (here in arbitrary units) 

can be found below:
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  (A.3)

where U is defined to be a meaningful range. It is, however, simpler 
to restrict the pulse timings to a meaningful range S (defined later) 
to arrive at a comprehensive description of the equations. In this 
case, the integral needs to range from 0 to ∞ and we have to start 
with all possible pulses for the input in this range.

The input K t t nPn s( ) ( )= −=
∞Σ δ  (concerning s see below) to the 

constant synapse is a sum of δ functions always at the beginning of a 
period. As already mentioned in the main part, the δ function δ(t − t

i
) 

for pulse time t
i
 simplifies the convolution to a temporal shift in the 

filter function h t t h d h t ti i: ( ) ( ) ( ).∫ − − = −
∞
0 δ τ τ τ  Further on, the 

inputs x
i
 to the plastic synapses are given by the pulse amplitudes G, 

however, delayed by different delay times d
i
. Thus, we have to exchange 

the inputs x
i
 with the full representation of all pulses of the whole 

temporal development from time s · P (at which the pulse amplitudes 
G already converged) to infinity: x nP d ki n s k

P
k i= ⋅ − − −=

∞
=Σ Σ Γ1 δ τ( ). 

At the same time we simplify all the δ functions of the input.
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Next, we neglect all terms but one on the pre-synaptic site (index 
n) as spiking is repetitive anyways. Additionally, we reduce the range 
of the sum from infinity to a meaningful range S that is determined 
by the time window W of the STDP curve under consideration 
(e.g., 50 ms in the main part): S s s= −[ , ]  with s W P= /  where 
 is the ceiling function.

fIxed-PoInt analysIs
In order to get the fixed points, we start with Eq. 14
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In the limit of t to infinity matrix A (t) changes into A and so 
do the secondary diagonal elements

ν ν η α β
α β ση ηT

t
Tt t T h T, ,( ) lim ( ) ( )

( )
( ).= = −

+→∞
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2  (C.3)

and the diagonal elements vanish to 0 as lim ( )
t

h t
→∞

= 0 and h(0) = 0. 
Furthermore, we find that 

  ν ν νT T T= = −+ −, , ,1 1
 for the considered 

filter function νT  is positive definite as a is smaller than β. Therefore 
A results in
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As the square is  A2 2= −ν ρT I , we get for an error of order 
E,(k = 2):
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where
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This solution was used to calculate the difference ∆
·,(k)

 for different 
values of T in Figure 1E.
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where we replaced ∫ +
∞
0 h T dh d d( ). ( )/ .τ τ τ τ  with the weight change 

function ∆(T) representing STDP. The final step is to find all roots 
of the R top-most rows of matrix (see Eq. 14) which lead to a nega-
tive Jacobi matrix at this point. Those are the stable fixed-points.

feed-forward structure
As we use the E,(k = 2) approximation, we truncate the Magnus 
series after the first term and additionally assume that the negative 
changes (since we can set T > 0 without loss of generality, only 
h T dh d( ) ( )/τ τ τ− ⋅  yields negative changes) are scaled by r which 
resembles the asymmetric STDP curve. The first term writes then
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where the two inputs receive a pulse at t = 0 and at t = T respectively. 
The functions νT t, ( )±1  have an analytical solution which is
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