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This is performed by counting the number of dendrite intersec-
tions for concentric circles usually centered at the cell body, of 
gradually increasing radius. Although Sholl analysis proved to be 
a sensitive measure of changes in neuronal morphology (e.g., Kolb 
and Whishaw, 1998; Robinson and Kolb, 2004) it cannot detect 
dendritic changes which do not affect somatic-centered dendritic 
distribution (e.g., more or less “fan-out” branching). For that rea-
son researchers also use other measures including: distribution of 
segment lengths, branch diameter, branching angles, or branch 
order (an integer value that is incremented at every bifurcation, 
measuring topological distance from the soma; Smit and Uylings, 
1975; Cannon et al., 1999; Uylings and van Pelt, 2002). Some meas-
ures were even invented just to quantify certain aspects of neuronal 
geometry, e.g., asymmetry index (Van Pelt et al., 1992). Asymmetry 
index is a topological measure of a tree based on the number and 
connectivity pattern of the segments, thus disregarding features 
like the length of segments, their diameters, and the spatial embed-
ding. It ranges from 0 for perfectly symmetrical trees to one for 
perfectly asymmetrical trees. More recently an extension of the 
asymmetry index was proposed, named caulescence, which uses 
the weighted partition asymmetry of nodes along the main path 
(Brown et al., 2008). This factors out the influence of second-
ary subtrees and weights more heavily the bifurcations with the 
largest extent. Complexity of dendritic tree can also be evaluated 
with fractal dimension (Caserta et al., 1995; Smith et al., 1996; 
Soltys et al., 2001). Fractal dimension measure how “complicated” 
a self-similar object is, and how it fills space, as one zooms down to 
finer and finer scales. Nevertheless there is still no single measure 

IntroductIon
Information in the brain is processed by highly interconnected 
neuronal networks, where a typical cortical neuron receives sig-
nals from 1000 to 10000 neurons. To send and receive signals 
from such a large number of cells, neurons adopted elaborated 
branching structures. By tracing the extent and direction of den-
drites and axons it was possible to start discovering the basic 
organizational principles of the brain (Ramon y Cajal, 1911; 
Shepherd, 2003). For instance, the apical dendrites of pyramidal 
cells in the cortex have an elongated shape extending through 
multiple cortical layers. Later it was discovered that such shape 
may allow pyramidal cells to constitute a functional backbone 
of cortical microcolumn (Mountcastle, 1957). Another example 
illustrating the important relationship between neuronal shape 
and its function comes from modeling studies. Mainen and 
Sejnowski (1996) illustrated how geometry of dendritic trees can 
affect neuronal firing pattern. Altering dendritic size or topology 
can even cause profound changes in firing patterns from tonic 
to bursting (Krichmar et al., 2002; van Ooyen et al., 2002). Thus 
the shape of a neuron is an important factor influencing its con-
nectivity and function.

Considering the significance of neuronal arborization, many 
researchers have attempted to describe multiple aspects of neu-
ronal geometry in a quantitative manner (for review see Uylings 
and van Pelt, 2002; Brown et al., 2008). The simplest measures are 
length and number of neuronal branches. The other frequently 
used measure is Sholl analysis (Sholl, 1953) which informs about 
distribution of dendrites as a function of distance from the soma. 
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which quantifies our intuitive perception of how tree-like is this 
shape, or how much this cell resembles a pyramidal neuron. Those 
simple questions are easily answered by humans but are very dif-
ficult to quantify using computers. The reason is that perception 
of tree-like shape requires simultaneously combining a multitude 
of global and local measures like spatial distribution of segments, 
relative lengths and direction, connectivity, symmetry, space fill-
ing, etc. To overcome this problem we propose a completely new 
approach: we evaluate how much “tree-like” is a neuronal shape 
by measuring “how easy” is to reproduce that shape by using a 
tree-generating algorithm.

To generate tree-like structures we used a diffusion limited 
aggregation (DLA) model which is especially suitable to reproduce 
branching structures. It was shown that this DLA-based model 
was able to reproduce the spatial embedding of multiple neuronal 
types: granule cells, Purkinje cells, pyramidal cells, and dendritic 
and axonal trees of interneurons (Luczak, 2006). It was achieved 
by changing density of diffusing particles in selected regions of 
space, thus increasing or decreasing branching probability of DLA 
as it grows through those areas. Here we show how original DLA 
algorithm (with uniform density of particles) could be applied to 
calculate “diffusiveness” of an object which intuitively could be 
seen as a measure of tree-like shape.

MaterIals and Methods
reproducIng shape wIth dla
To reproduce shape using the DLA algorithm, the position of the 
first particle of the future aggregate must be defined. This par-
ticle called “seed” is positioned at the origin of the object to be 
reproduced (Figure 1A). The growth rule for DLA can be defined 
inductively as follows: introduce a randomly moving particle at a 
large distance from an n-particle aggregate, which sticks irrevers-
ibly at its point of first contact with the aggregate, thereby form-
ing an n + 1 particle aggregate. To reproduce shape with DLA, 
the above rule is modified, such that: a randomly moving particle 
sticks irreversibly at its point of first contact with the aggregate 

only if the point of that contact overlaps with a reproduced object 
(Figure 1B). By definition, every particle at the time of connecting 
to the aggregate has hit value equal to 1. Moving particles which 
contact the aggregate at the point not overlapping with the object 
are not connected (Figure 1C, particle on the right side). If such a 
moving particle in the next step moves to a place already occupied 
by the aggregate, then that particle is deleted, and the aggregate at 
that point registers a new hit (Figure 1D). In summary, the aggre-
gate grows to cover the object only at the points of contact with 
randomly moving particles.

For computational efficiency, instead of one moving particle, 
m simultaneously moving particles were introduced (Voss, 1984). 
Also for computational simplicity, DLA was generated on a square 
grid, where at every iteration step, particles move by one position 
in the grid, in a random direction. Initially particles are uniformly 
distributed, with the probability of occupying a single cell in the 
grid set to p = 0.3. Note that although it is possible to modify the 
shape of DLA by changing density of diffusing particles in selected 
regions to produce structures resembling specific neuronal type 
(Luczak, 2006), here we use a uniform particle density as in the 
original DLA algorithm to have a generic model applicable to all 
cell types. The algorithm is stopped if the aggregate does not grow 
for 100 iterations.

The example of typical DLA is shown in Figure 2A (in gray). To 
reproduce this shape a seed particle is placed at the origin of the 
DLA, and a new DLA is grown from that point to cover it. To ensure 
that there are enough particles to cover the object, the area with 
particles is >6 times larger than that area outlined by the analyzed 
object. For example, in case of DLA shown in Figure 2 a grid of size 
450 × 300 was used. Snapshots of the growing aggregate are shown 
in Figures 2A–C after 500, 1500, and 2500 iterations, respectively. 
In addition, in Figure 2C the position of moving particles after 
2500 iterations is shown. For a typical granule cell with the total 
length of about 4000 μm and spanning area along x- and y-axis 
400 μm × 400 μm, the size of the area with 1 μm2 particles would 
be 3 × 400 μm × 2 × 400 μm (along x- and y-axis respectively), with 

Figure 1 | reproduction of shape with the DLA algorithm. (A) The initial 
particle (seed) is placed as the origin of the aggregate to reproduce the given 
shape. (B) Randomly moving particles (gray) stick to the aggregate at the place 
of contact, forming new particles of the aggregate (blue). (C) Particles which 
contact the aggregate at places which do not overlap with the reproduced shape 

are not connected to the aggregate (right side particle). (D) The moving particle 
is deleted if it contacts the aggregate at a place which does not overlap with the 
reproduced shape and it moves in the next step at the place already occupied by 
the aggregate (red arrow). Numbers illustrate how many particles moved over 
(hit) that place of the aggregate – this number is called number of hits.
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The same algorithm can also be applied to reproduce 3D shapes. 
In that case, particles move randomly on a 3D grid instead of 2D. 
An example of DLA generated in 3D is in Figure 4A. To improve 
visualization of 3D DLA, lines between connected particles, rather 
than cubic particles, are drawn. In the same figure, to help distin-
guish intersecting lines from different branches, the lines’ width 
vary depending on distance from the origin. Unfortunately, the 
generation of larger DLA to reproduce 3D objects at a fine scale, not 
only poses a challenge with visualization but also with computer 
memory. For example, reproducing at 1 μm resolution granule 
cell which can span 400 μm × 400 μm × 400 μm requires >2 GB 
of memory.

shape dIffusIon Index
The distribution of number of hits as shown in Figure 3 is charac-
teristic for 2D DLAs. Reproduction of other types of shapes results 
in significantly different hit distributions which will be analyzed in 
more detail in the Results section. Therefore the distance between 
distribution of hits for DLA and distribution of hits for other shapes is 
a reliable measure for how DLA-like (“diffusive”) is a given shape.

Interestingly, the distribution of hits for DLA could be well 

approximated by log-normal distribution: fit x
x

x( )= 1
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where x = 1, 2,..., 50 is the number of hits and μ = 1, σ = 0.96 for 

probability of particle at any given point p = 0.3. Thus to cover a 
4000-μm long granule cell at 1 μm resolution there is 288000 mov-
ing particles (hence 72 moving particles for every particle of the 
cell), which results that only a small fraction of moving particles 
is being used to cover typical cell.

As explained before, a randomly moving particle after hitting 
the aggregate either will become a new particle of the aggregate, or 
will be deleted depending on whether or not the place of contact 
overlaps with the reproduced shape (Figure 1). To illustrate how 
many times a particle of the aggregate was hit by moving particles 
during the growth process, the aggregate is color coded for total 
number of hits (Figure 2; color scale shown on the right). Figure 3 
illustrates the histogram of numbers of hits for an aggregate repro-
ducing structure of typical DLA in 2D. Most of the particles in that 
aggregate were hit only a few times, and only a small portion of 
particles were hit >10 times. Importantly, the distribution of hits 
was very consistent across different DLAs, which is reflected in small 
values of SD (less than 10% of mean value; Figure 3). Note that the 
particles do not penetrate very deep between existing branches as 
particles have much higher probability to hit only the outer parts 
of DLA. Thus the prominent branches screen internal regions of 
the aggregate, preventing them from growing further which is an 
important feature of DLA growth algorithm (Halsey, 1997).

Figure 2 | reproducing DLA. (A) Growing a DLA (blue) after 500 iterations to 
reproduce another DLA (gray). (B) The same aggregate after 1500 iterations. (C) 
The same aggregate after 2500 iterations. Distribution of randomly moving 
particles after 2500 iterations is shown in gray. For visualization, only part with 

DLA is shown, the full size of grid used for that simulation was 450 × 300. Color 
bar on the right indicates number of hits. Note that only points on the ends of 
aggregate which are not growing further have exceptionally large number of 
hits (insert).

Figure 3 | (A) Histogram of number of hits for an aggregate reproducing typical DLA (as in Figure 2C). For this estimate 250 DLAs were generated and 
reproduced. Red lines show mean value for each bin (continues line) and ±SD (dashed lines). The black line shows fit of this experimental distribution with 
log-normal distribution. (B) The same histogram as in (A) on logarithmic scale.
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results
shape dIffusIon Index for saMple objects
To illustrate values of SDI for different 2D objects we investigated a 
branching structure, square, and line (Figure 5). As expected, SDI 
was closest to 1 for the branching structure (SDI = 0.79 ± 0.04; 
mean ± SD; Figure 5A), and its distribution of hits (Figure 5B) 
was very similar as for DLA (Figure 3B). Note that not entire shape is 
covered (black points in Figure 5A show places with zero hits) after 
the end condition is reached for DLA algorithm (stop if no further 
growth for 100 iterations). This is because if a point is not repro-
duced when DLA is first growing through this area then later other 
branches will screen moving particles from ever reaching this point. 
If the point which was missed to be reproduced was at the begin-
ning of a branch then the entire branch could not be reproduced, 
if this point was its only connection to the aggregate. Fortunately 
often in practice, to correctly estimate SDI it does not matter if 
part of a shape is not reproduced. This is because usually statistical 
properties of one part of an object are similar to other parts of that 
object. Thus missing one of multiple similar branches has little effect 
on distribution of hits. The other solution to this problem would 
be to estimate SDI multiple times for the same object and report 
average SDI. Because DLA relies on stochastic process, different 
parts of a shape will be reproduced or missed at each run of the 
algorithm. Usually repeating the SDI calculation results in a spread 
of SDI values within ±5%. The consistency of the results is shown 
in Figures 5B,D,F, where dashed lines represent ±1 SD calculated 
from 50 repetitions of the algorithm for the same object.

Reproducing line results in much lower values of SDI 
(SDI = 0.29 ± 0.04). Due to lack of screening from other branches, all 
parts of the line are hit by particles (Figure 5C). As opposed to DLA, 
the earlier covered parts of a line receive more hits than the outer-
most parts due to longer exposure. Therefore the hit distribution 
for the line is heavily skewed toward the right side (Figure 5D).

For solid shapes like a square in Figure 5E, the SDI is also 
significantly lower (SDI = 0.4 ± 0.012) as compared with DLA. 
Initially every particle hitting the aggregate becomes part of 
aggregate, as all connecting particles overlap with the object. 

2D DLA (Figure 3), and μ = 2.46, σ = 0.6 for 3D DLA (Figure 
4B). In the range of interest between 1 and 50 hits, the divergence 
of fit from the mean of experimentally measured distribution 
is always smaller than 1 SD (Figure 3). This parameterization 
will allow for a simpler comparison between hit distribution 
of DLA and hit distribution of analyzed shape. The distance 
between both distributions is defined as D fit dx= ∑ < > − < > , 
where |…| denote absolute value, d is hit distribution of ana-
lyzed shape, and <…> denote normalization to unit area (log-
normal distribution has already unit area on the interval 0-inf, 
but because here we use interval 1–50 the area is slightly lower 
and such normalization improves fit for DLA). Thus for shape 
similar to DLA, the value of D will be close to 0, and will increase 
for more dissimilar shapes.

To express “diffusiveness” of an object, as measured with D, on 
a simple scale between 0 and 1 we propose to introduce shape dif-
fusion index (SDI), which will be 1 for DLA-like shapes and will 
decrease toward 0 for less “diffusive” shapes. For that SDI is defined 
as SDI = exp(–D). (Matlab code is available at author’s website).

real neuron Morphology data
Files with intracellularly labeled, reconstructed, and digitalized neu-
rons were obtained from the Duke-Southampton on-line archive of 
neuronal morphology (http://neuron.duke.edu/cells/cellArchive.
html; Cannon et al., 1998). For this analysis, the following groups 
of neurons were used: 38 granule cells from rat dentate gyrus, 55 
CA1 hippocampal pyramidal cells stained with biocytin in whole 
anesthetized rats (Pyapali and Turner, 1994, 1996; Turner et al., 
1995; Pyapali et al., 1998), 13 interneurons from rat dentate gyrus 
in brain slices stained with biocytin (Mott et al., 1997), and three 
Purkinje cells from the cerebellar cortex of adult guinea pigs, labeled 
with horseradish peroxidase, and completely reconstructed from 
serial sections (Rapp et al., 1994; downloaded from http://www.
krasnow.gmu.edu/ascoli/CNG, Ascoli et al., 2001). For 2D analyses 
of neurons, values along z-axis were set to 0. The choice of diverse 
neuronal samples enabled the testing of SDI’s general applicability 
to analyze a variety of cell types.

Figure 4 | (A) An example of a DLA generated in 3D. To facilitate visualization 
only lines connecting centers of particles are shown. To distinguish intersecting 
lines from separate branches, the lines are assigned different width reflecting 
distance from the center of the aggregate. (B) Histogram of number of hits for 

an aggregate reproducing typical 3D DLA (as in A). Red lines show mean 
value (continues line) and ±SD (dashed lines). The black line shows fit of 
this experimental distribution with log-normal distribution plotted on 
logarithmic scale.
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same. An example of SDI for a DLA at different scales is shown 
in Figure 6. Note that as spatial resolution of DLA decreases SDI 
changes from 0.9 to 0.45 approaching value typical for a solid object 
(Figures 6A–C). Similarly, when particle size become very small, 
multiple particle are needed to cover any “pixel” of the reproduced 
shape as it would be collection of solid objects, which also reduces 
SDI (Figure 6D).

neurons – analysIs In 2d
To evaluate diffusiveness of neuronal shape we analyzed dendritic 
trees of four different neuronal types: pyramidal cells, interneurons, 
Purkinje cells, and granule cells (Figure 7). The seed particle was 
located at the cell body of the reproduced neuron. This allowed 
generated DLA to grow in outward directions as actual neuronal 
processes. To investigate the scale at which a given neuron can be 
best reproduced with DLA models, different particle sizes were 
used: 1, 2, 4, 8, 16, and 32 μm.

The values of SDI across scales and neuronal types are sum-
marized in Figure 7A. The spatial scale for which given cell type 
has the highest mean SDI indicates resolution at which it has 
most diffusive shape, or more precisely, resolution at which it 
is the most similar to DLA. Among all analyzed neurons the 
most diffusive shape showed Purkinje cells SDI = 0.78 ± 0.03 
(mean ± SEM) at the scale of 1 μm (Figures 7A,B). At larger 

For that the aggregate grows fast until it reaches the border of the 
square. Note that DLA cannot fill out completely solid shapes as 
growing branches prevent other particles from filling gaps. The 
distribution of hits for solid objects is composed of two parts 
(Figure 5F). It reflects large number of hits for points at the object 
border (right side of distribution), and usually a single hit for 
particles inside of the square (left side of distribution). Similarly, 
for reconstructions of objects in 3D, the highest values of SDI 
were obtained for 3D branching structure (SDI = 0.69 ± 0.1) 
and much lower values for line (SDI = 0.28 ± 0.4) and for cube 
(SDI = 0.26 ± 0.3).

scale
For example, studying an oak tree at scales of millimeters is appro-
priate to investigate shape of a leaf or bark patterns, but to study 
branching patterns of a tree, the scale of meters is more suitable. In 
the same way a given object may be shaped by diffusive-like proc-
esses only at a particular scale. Therefore it is important to investi-
gate the shape diffusiveness at different spatial scales. To measure at 
what spatial resolution a given object is, the most similar to the DLA 
shape a SDI can be calculated for different sizes of particles creating 
aggregate. For computational convenience, instead of increasing 
size of moving particles in relation to the reproduced object, the 
size of the object can be decreased, while keeping particle size the 

Figure 5 | examples of reproducing different shapes with DLA algorithm in 
2D. (A) Reproducing branching structure. Black points indicate points of original 
shape which are not covered after the algorithm was terminated. Full size of grid 
used for that simulation was 300 × 150. (B) Hit distribution for shape in (A). Red 
lines indicate mean and ±SD from 50 reproductions of that shape. Black line 
shows fit of DLA distribution (the same as in Figure 3B). The x-axis is plotted 
below 0 to visualize logarithmic distribution of scale ticks (0 is indicated by 

horizontal dashed line). The good match between fit and this distribution indicates 
high diffusiveness of this shape. (C,D) Reproducing line and corresponding hit 
distribution. Because every particle of the line is at the border of that shape, thus 
each particle of line receives a large number of hits. (e) Reproducing solid square, 
and corresponding hit distribution in (F). Note that initially every new particle is 
connected to the aggregate due to overlap with the square, this results in a 
disproportionally large number of single hits as compared to DLA (first bin in F).
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of neurons correctly classified (chance level is 25%). Result are 
summarized in Table 1. To avoid overfitting, the classifier was 
trained using all neurons except the predicted cell (leave-one-
out cross-validation). Using non-linear methods like quadratic 
discriminant analysis or k-nearest neighbor classifier resulted 
in only minor improvement (87% correctly classified neurons). 
Even though an 87% success rate may not look too impressive, it 
compares favorably with other neuronal measures. For example, 
Cannon et al. (1999) used 31 different measures to quantitatively 
characterize 4 groups of neurons: granule cells, interneurons, and 
pyramidal cells from CA1 and CA3 regions. No single measure 
was significantly different for all pair-wise comparisons between 
groups (p < 0.001; Kolmogorov–Smirnov test), and only 2 out of 
31 measures were significantly different between cells types used 
here: granule cells, interneurons and CA1 pyramidal cells (those 
two measures evaluate distribution of mass along principal axes: 
Vm

1
 and Cmx; p < 0.001; Cannon et al., 1999). To compare those 

results more directly with SDI a first principal component was 
calculated to reduce vector of six SDI values describing each neu-
ron to just one number (pc1). Using Kolmogorov–Smirnov test, 
distribution of pc1 values was significantly different (p < 0.0001) 
between analyzed here groups of granule cells, interneurons and 
CA1 pyramidal cells. Thus those analyses show that despite large 

scales, SDI for Purkinje cells was significantly smaller. Pyramidal 
neurons showed the highest SDI = 0.74 ± 0.06 at the scale of 2 μm 
(Figures 7A,E), which was gradually decreasing for larger scales. 
When analyzed separately, apical dendrites usually had higher SDI 
than basal dendrites (SDI

apic
 = 0.73 ± 0.06, SDI

bas
 = 0.62 ± 0.06 

at 2 μm). Dendritic trees of granule cells have much simpler 
shapes as compared to Purkinje cells or pyramidal neurons, 
and only at more coarse scales did granule cells resemble DLA. 
Thus as expected, values of SDI for granule cells were lower, and 
the maximum SDI = 0.71 ± 0.07 was at larger spatial scale of 
4 μm; (Figures 7A,C). Interneurons had similar values of SDI as 
granule cells, but shifted to even larger spatial scales (maximum 
SDI = 0.71 ± 0.06 for 16 μm, Figures 7A,D).

Although measuring diffusiveness of a shape provides new 
and interesting information per se, in practice usefulness of such 
a measure depends on how well it can detect meaningful shape 
differences among analyzed neurons. To test such defined useful-
ness of SDI for neuroanatomical analyses, we used this measure 
to discriminate among different neuronal types. Each neuron 
was characterized by six numbers corresponding to SDI values 
calculated at scales: 1, 2, 4, 8, 16, and 32 μm. Using a linear dis-
criminant analysis (Hastie et al., 2001) resulted in a well above 
chance discrimination among four neuronal types with 86% 

Figure 6 | reproducing an object at different scales. (A) Reproducing 
DLA at the scale at which it was generated. (B) Reproducing the same 
DLA as in (A) at twice smaller spatial resolution. (C) The same as (A) at 
four times smaller resolution. Full size of grid used for those 

simulations was 450 × 300, 225 × 150, and 112 × 75 respectively. 
(D) Reproducing DLA at four-times higher spatial resolution. Note in the insert 
that in this case multiple moving particles are required to fill one particle 
of DLA.
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neurons – analysIs In 3d
Neurons have elaborate 3D shapes, so while analyses in 2D are 
good for method development and an initial assessment, they may 
not give accurate reflection of 3D embedding. For that reason we 
repeated calculations of SDI for the same cells in 3D. Due to expo-
nentially larger computational time and the computer memory 
demands required to generate DLA in 3D, neurons were analyzed 
only at five spatial scales (2, 4, 8, 16, and 32 μm). The results for 
all neuronal types are summarized in Figure 8A. Similarly to 2D 
analyses, Purkinje cells showed increasingly higher SDI for smaller 
scales. Other cells also show results consistent with 2D analyses 
with the highest SDI values at the intermediate scales. Nevertheless 
values of SDI for 3D neurons could not be directly derived from 2D 
SDI. The main difference between reproducing 2D and 3D shapes 

Figure 7 | examples of neurons reproduced in 2D. Each neuron is illustrated at spatial scales giving the largest SDI for that cell type. (A) Values of SDI for 
different types of neurons at different spatial scales (blue – pyramidal cell, green – Purkinje cell, red – granule cell, cyan – interneuron). Dashed line shows ±SEM. 
(B) Purkinje cell. (C) Granule cell. (D) Dendritic tree of interneuron. (e) Pyramidal cell.

Table 1 | results of discrimination among neuronal classes using SDi 

calculated in 2D (linear discriminant analysis).

Predicted type Actual neuronal type

 interneuron Purkinje granule Pyramidal

Interneuron 12 0 5 2

Purkinje 0 3 0 0

Granule 1 0 29 3

Pyramidal 0 0 4 50

variability of neuronal shapes, SDI can be used for reliable dis-
crimination among cell classes, giving better results than most 
other neuroanatomical measures.
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Figure 8 | examples of neurons reproduced in 3D. Each neuron is illustrated at the same scale as in Figure 7 to facilitate a comparison of spatial distribution of 
hits between neurons reproduced in 2D and 3D. (A) Values of SDI for different types of neurons at different spatial scales (blue – pyramidal cell, green – Purkinje cell, 
red – granule cell, cyan – interneuron). Dashed line shows ±SEM. (B) Purkinje cell. (C) Granule cell. (D) Dendritic tree of interneuron. (e) Pyramidal cell.

with DLA is in the larger penetrability of moving particles in 3D. 
For example for neurons projected to 2D the most outer parts 
effectively screen inner parts of dendritic tree, which causes a dis-
proportionally large number of hits for outer parts (Figures 7B–E). 
In contrast, in 3D due to the additional degree of freedom (z-axis) 
particles can avoid more easily outer parts and reach inner branches 
(Figures 8B–E). This results in significantly different distribution of 
hits for branching shapes in 2D and 3D as shown in case of DLA in 
Figures 3 and 4B. Despite whose differences neuronal types could 
be differentiated with SDI measured in 2D with similar accuracy 
as in 3D. Using linear discriminant analysis as described before 
showed that 83% of neurons were correctly classified (chance level 
is 25%; Table 2).

dIscussIon
In this paper we propose a Diffusion Limited Aggregate model 
as a “benchmark” for “diffusive” shape. Although DLA grows by 
connecting particles diffusing in space, DLA can also be seen as 
diffusing into space, where dendrites have the highest probability 
of growing in the direction of the largest local concentration of 
“trophic” particles. As a result, DLA forms complex tree-like 
shapes. Note that the seemingly simple concept of “tree-like 
shape” is in fact very difficult to quantitatively describe. For 
example, we would consider as a tree only a shape with a par-
ticular type of connectivity pattern, and with particular spatial 
distribution of segments, branching angles, relative lengths, ori-
entation, etc. By using the DLA model to reproduce analyzed 
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objects, we can quantify the tree-like resemblance of an object by 
simply measuring performance of the DLA algorithm. Thus this 
approach presents a conceptual change where the use a compu-
tational model allows to assess complex properties of an object, 
which otherwise would be very difficult to quantify with any 
other existing measures.

MeasurIng dIffusIveness
In general there is no single best measure to evaluate similarities 
between two objects or even graphs (Loncaric, 1998; Pelillo et al., 
1998; Veltkamp and Hagedoorn, 1999; Osada et al., 2002). For that 
reason, generally, classifying objects into categories (e.g. car, animal, 
table, stool, etc.) remains still an unsolved problem in computer 
science (Rui et al., 1997). Thus the question of how to measure 
the similarity of a given shape to DLA is difficult to answer. The 
standard approach to this problem would be to measure: branching 
patterns including branching directions and angles, spatial extent 
of pattern in multiple directions, lengths and curvatures of branch 
segments, etc. Because so many different global and local measures 
would be necessary to extract and compare with DLA shape, this 
approach seems difficult to implement successfully. Here we pro-
pose a different solution: we use the DLA algorithm and measure 
its performance in reproducing a given pattern.

Performance of DLA algorithms could be measured in variety 
of ways, e.g.: how quickly it can cover shape; how completely it 
covers; how broad is the distribution of hits, etc. From all of the 
different measures we tried, the distance to the hit distribution of 
DLA provided the most reliable measure of similarity to DLA-like 
shapes. Because it is not convenient to use a distribution which 
is described with >50 numbers (probability for each hit values) 
we tried to fit the hit distribution of DLA with variety of known 
functions. We found a log-normal distribution to be well fitting 
all parts of the experimental distribution for 2D and 3D analyses. 
It is not obvious why a log-normal distribution, which describes 
the multiplicative product of many independent random variables, 
would be the best here, but the analytical investigation of the exact 
formula for the hit distribution of DLA and its relation to log-
normal distribution is beyond the scope of this paper. Likely, part 
of the explanation is that the outermost parts of the aggregate have 
exponentially higher probability of being hit by randomly moving 
particles than the more inner parts of aggregate.

As explained in the Methods section, the hit distribution is cal-
culated for range of hits 1–50. Nevertheless in some cases there are 
also parts of the reproduced shape which were never hit by diffusing 
particle (for example see area marked in black in Figures 5A,E or 

Figures 6A–D). Although the number of points with 0 hits is also 
informative about shape diffusiveness, it was not included in the 
calculation of SDI due to the high variation in number of zero hits 
across similar objects and even for repeated analyses of the same 
object. For example, if by chance the initial part of a branch was 
not hit by any particle then the entire branch would have zero hits 
(e.g., Figure 6B, right-middle branch). In another simulation, this 
branch could be completely cover with hits, resulting in a large vari-
ability of size of area with zero hits. On the other hand, for branches 
covered with hits the relative number of particles with 1–50 hits was 
very stable as illustrated in Figure 3 where SD is closely following 
the mean. Fortunately, for objects like neurons where branches are 
similar to each other, missing a branch or its parts had little effect on 
SDI which could be reliably evaluated only from covered branches. 
In practice this problem in only limited to 2D shapes. For neurons 
in 3D, particles more freely penetrate dendritic trees resulting in 
almost always complete coverage of neurons (compare color-coded 
distribution of hits in Figures 7B–E and Figures 8B–E).

relatIon to other Measures
Shape diffusiveness index is a complex measure which cannot be 
easily expressed with an equation. Instead SDI is defined based 
on hit distribution resulted from a probabilistic, iterative algo-
rithm. SDI also cannot be directly related to a simple measure 
like mean segment lengths, because SDI depends on a non-trivial 
combination of a variety of parameters like relative spatial dis-
tribution of segments, connectivity pattern, branching angles, 
etc. Another difficulty with relating SDI to other measures is its 
non-monotonic dependence on spatial resolution, which allows 
the investigation of the spatial scale for branching processes. For 
example, for a granule cell, as shown in Figure 7A (red line), 
initially with the increasing spatial scale the value of SDI is also 
increasing, but when further increasing spatial scale above 4 μm, 
SDI is decreasing. Similarly, SDI cannot be directly related to 
more complex measures like fractal dimension, which unlike SDI, 
monotonically increases for more solid objects. That SDI is not 
easily related to other measures is also another reflection that 
with the current measures it would be difficult to quantify the 
similarity of an object to DLA.

Calculating SDI at multiple scales proved to be a reliable measure 
to discriminate neuronal types (Tables 1 and 2). Nevertheless at a 
single spatial scale, SDI may fail to differentiate between neuronal 
types (for instance see Figure 7A at scale of 4 μm where SDI values 
of pyramidal cells and granule cells highly overlap). Furthermore 
some trees may be a mixture of different types of branching struc-
tures (e.g., dendritic and axonal tree of a neuron) and without 
separating them, SDI may not provide accurate results. As men-
tioned earlier, it is important to remember that every measure has 
its limitations, SDI including.

future dIrectIons
Shape diffusiveness index seems to be in good agreement with 
an intuitive assessment of the similarity between an analyzed 
shape and DLA. Nevertheless, what is really needed is a measure 
of similarity not to an artificial structure, but to a specific type 
of shape. For example, it would be beneficial to have a meas-
ure describing if a particular neuron looks like a normal and 

Table 2 | results of discrimination among neuronal classes using SDi 

calculated in 3D (linear discriminant analysis).

Predicted type Actual neuronal type

 interneuron Purkinje granule Pyramidal

Interneuron 11 0 6 0

Purkinje 0 3 0 0

Granule 2 0 30 9

Pyramidal 0 0 2 46
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shape to, e.g., pyramidal neuron. It could be implemented in 
an analogous fashion to the DLA model, where by evaluating 
“how easy” it is to reproduce shape of a given neuron by using 
model proposed by Ascoli and Krichmar (2000), Samsonovich 
and Ascoli (2005), Eberhard et al. (2006), Koene et al. (2009), 
or Cuntz et al. (2010), could provide a good measure capable 
of competing with an experienced anatomist to quickly spot 
unusual neuronal trees.
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healthy Purkinje cell. For instance, such a measure would be of 
interest when screening for irregularities in dendritic morphol-
ogy caused by disease, drug, and/or aging. To achieve this, an 
approach suggested by this study would be to generate not a 
generic DLA model, but instead a DLA-based model of a spe-
cific neuronal type, and this tailored model would be used to 
reproduce an analyzed shape (modifying density of particles in 
space will result in DLAs resembling different neuronal types). 
Importantly, the method proposed here is not restricted to DLA 
models only. Most likely, any other model of neuronal growth 
could be successfully used to quantify the similarity of a given 


