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In this work we consider the head as a multi compartment nested 
set and assume homogeneity and isotropy, hence the conductivity 
function σ(x) that contains the value of the conductivity of the 
different tissues is approximated by a positive piecewise constant 
function. We analyze the sensitivity of the solution u to the FP with 
respect to the conductivity σ(x) by means of the TSF and the GSF 
and compare the results.

The paper is organized as follows. In Section “The Mathematical 
Model” we present the mathematical model. The TSF are intro-
duced in Section “Materials and Methods.” Differential and integral 
equations are stated. In Section “Results,” we present the GSF. Based 
on Rubio et al. (2009) we calculate the GSF of u with respect to σ(x). 
We performed numerical experiments in a simple head model and 
present some conclusions.

The MaTheMaTical Model
The electrical activity of the brain consists of currents generated 
by biochemical sources at cellular level. The electric and magnetic 
fields that they produce can be estimated by means of Maxwell’s 
equations (see Sarvas, 1987; Hamalainen et al., 1993). Based on 
the properties of the tissues involved, the velocity of propagation 
of the electromagnetic waves caused by potential changes within 
the brain is such that the effect may be detected simultaneously 
at any point in the brain or in the surrounding tissues. This fact 
justifies the use of a static approximation of Maxwell’s equations. 
This approximation uncouples the equations for the magnetic and 
electric fields leading to the following second order partial differ-
ential equation (PDE)

∇⋅ ∇ = ∇⋅ ∈( ( ) ( )) ( ) ,σ x u x J x x Gi  (1)

inTroducTion
The electric process underlying the generation of the electroen-
cephalography (EEG) signals can be modeled as a set of current 
sources within the brain. Considering the velocity of propagation of 
the electric waves in the brain, the static approximation of Maxwell’s 
equations can be used to describe this process (see Hamalainen 
et al., 1993). The resulting model is a 3D Poisson-type equation 
with interfaces that relates the electric potential u in the head G 
with the impressed current J

i
 often represented by an electric dipole, 

i.e., J
i
(x) = Mδ(x − q), where δ is the Dirac distribution, q is a fixed 

point in the brain which represents the dipole location, and M is the 
dipole moment. The parameters of the model are the conductivity 
of the different tissues, σ(x), x ∈ G, the diameters of the different 
compartments of the head, and the moment and location of the 
dipole: M ∈ R3, q ∈ G respectively. The forward problem (FP) of 
EEG consists in finding the electric potential u in the head for a 
given current source J

i
. Conversely the inverse problem (IP) of EEG 

consists in finding the location q that produces a given scalp data u. 
An accurate solution to the IP could provide useful information to 
treat neurological diseases such as epilepsy. In order to solve the IP 
we need first to solve the FP. In this context it is important to analyze 
the sensitivity of the solutions to the FP with respect to the different 
parameters of the model since this information could help us to 
choose the points on the scalp where the data are to be collected.

In the literature two different sensitivity functions are frequently 
used: the traditional sensitivity functions (TSF) defined as ∂u/∂θ 
that measures the variations of the output u when the parameter θ 
changes and the generalized sensitivity functions (GSF) that deter-
mine at which time instants the output of a dynamical system has 
more information about the value of its parameters in order to 
carry on an estimation process.
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These functions s
i
(x) give local information and are used to 

determine the parameter to which the model is more sensitive. 
Note that the value of s

i
(x) depends on the dimensions and the 

units of the parameter θ
i
, then, in order to compare the sensitiv-

ity with respect to different parameters “normalized sensitivities” 
can be introduced, where the quotient between the relative errors 
of the output (numerator) and the relative error of the parameter 
(denominator) is considered.

In the next subsection we derive the differential sensitivity equa-
tions (see Stanley, 1999; Burns et al., 2005) for the interface problem 
(3)–(5) introduced in Section “The Mathematical Model.”

Differential equations for the TSF
We consider three parameters in our model: the conductivity values 
for each sub domain G

i
, i.e., σ

1
, σ

2
, σ

3.
 Thus the vector of parameters 

is θ = (θ
1
, θ

2, 
θ

3
) = (σ

1
, σ

2
, σ

3
), and the sensitivity functions to be 

considered are:

s x
u

x s x
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These functions satisfy the following state equations that can be 
derived from (3) by formal differentiation (see Stanley, 1999):
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The boundary condition for each s
i
 can be derived from (4) 

observing that the normal ν on the external surface Γ = ∂G does 
not depend on the σ

i
, i = 1, 2, 3.

∂
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= =∂
s

ii
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| , , .0 1 2 3

The equations (5) of continuity of u at the transition surfaces 
lead to:
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that relates the measured electric potential u and the impressed 
current J

i
.

The volume G (head model) consists of nested homogeneous 
sets, one surrounded by the next one where the conductivity values 
are given.

We consider G Gj j= = 1
3 , denoted from the inner one to the outer 

one by: G
1
, the brain, G

2
, the skull, and G

3
, the scalp. We denote 

Γ = ∂G the external surface of G and by S
1
 = ∂G

1
, S

2
 = ∂G

2
 − ∂G

1
 

the surfaces between G
1
 and G

2
 and G

2
 and G

3
 respectively.

The positive, discontinuous and piecewise constant function 
σ(x) that contains the conductivity values of the different tissues 
at each point is:

σ

σ
σ
σ

( ) .x

x G

x G

x G
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(2)

Assuming that the potential and its normal derivative times the 
conductivity function are continuous across the transition surfaces, 
the resulting boundary value problem is:

∇⋅ ∇ = ∈( ( ) ( )) ( )σ x u x F x x G  (3)

∂
∂

= ∈∂u x
x G

( )
,

ν
0

 
(4)

subject to:

[ ] ( ) , .u x
u

i
S

S
i

i

−

−

= ∂
∂







= =0 0 1 2σ
ν

 

(5)

where [·] denotes the difference between the values of the functions 
inside the brackets through the indicated surface, ν is the external 
normal vector and F(x) = ∇·J

i
(x).

If F is regular enough, there exist solutions (in a weak sense) to 

(3) provided that F verifies F x dx
G

( ) .=∫ 0  They are unique up to a 

constant (see Troparevsky and Rubio, 2003).
When J

i
 is an electric dipole, existence and uniqueness of solu-

tions were studied in El Badia (2000).

MaTerials and MeThods
TradiTional sensiTiviTy FuncTions
The TSF is a common tool used to measure the variation of the 
output u of a system with respect to changes in its parameter θ = (θ

1
, 

θ
2
,…,θ

p
). Assuming smoothness of u, they are defined as the partial 

derivative of u with respect to each θ
i
, namely:

s x
u

x i pi

i

( ) ( ), ,...,= ∂
∂

=
θ

1
 

(6)

The sensitivity functions are related to u by the Taylor approxi-
mation of first order. In the case of the system modeled by equa-
tions (1)–(5), considering u as a function of x ∈ G and the vector 
of parameters θ = (σ

1
, σ

3, 
σ

3
), i.e., u = u(x, σ

1
, σ

1
, σ

3, 
σ

3
) and fixing 

x, σ
2
, σ

3
, we have:
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If we take x ∈ G
1
 in (13), since σ

1
∆u = F in G

1
 we obtain:
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(14)

Similarly we can choose x ∈ G
2
 or x ∈ G

3
 to obtain the corre-

sponding integral equations.
Remark Note that only the values of s

1
 on the transition surfaces 

appear in the right hand side of (14).
Letting x x S→ ∈ 1

 in (14), and recalling that:

lim ( )
| |
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| |
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−
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3

2π

ΩΩ−
∫

{ }x  

(15)

we can obtain an equation involving only values of s
1
 on the 

 transition surfaces.

Generalized sensiTiviTy FuncTion
The GSF was introduced by Thomaseth and Cobelli (1999) to ana-
lyze qualitatively where the information about model parameters 
is concentrated during identification experiments. It was meant to 
understand how the estimation is related to observed system out-
puts, taking into account correlations between the model param-
eters. We recall the definition and some properties of the GSF, for 
details we refer to Thomaseth and Cobelli (1999).

Consider a non-linear parametric dynamical system:

u t f t u( ) ( , , )= θ  
(16)

u(t
0
) = u

0
 (17)

with a set of discrete time observations at t
1
…t

n
:

y h t e j nj j j( ) ( , ) , ,...,θ θ= + = 1
 

(18)

where u(t), f(t, u, θ), ∈ RN, θ ∈ Rp, h(t, θ) ∈ R, and e
j
, ∈ R is the 

measurement noise assumed to be independently and identically 
distributed with zero mean and known variance v j

2. It is assumed 
that there exists a true θ

0
 such that the observed data y

j
 correspond 

to that parameter value.
Let us consider the minimization of the weighted residual sum 

of squares:

J y
y h t

v

j j

jj

n
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0

0

2

2
1

=
−( )
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∑

 

(19)

A value θ̂ where the minimum is attained is an estimator 
of θ

0
.

Note that in order to solve the PDE systems that correspond 
to the sensitivity functions s

i
(x) one needs the values of u and 

∂u/∂v on the transition surfaces and the value of the Laplacian 
∆u on G.

As for the equation (3), the sensitivity equations may only have 
solution in a weak sense.

Integral equations
Integral equations for the sensitivity functions can also be stated. 
They are useful to perform numerical approximations. We present 
the ones corresponding to s

1
(x).

Recall that s
1
 satisfies:
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Applying green integral identity:

s s dx s s dS
G Gi i
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∂  

(11)

in each G
i
, i = 1,2 and choosing Φ such that ∆Φ(x, y) = −4πδ(x − y), 

i.e., Φ(x, y) = 1/|x − y| we arrive to:
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Combining the former equation with (7), the boundary condi-
tion (9) and the continuity conditions at the transition surfaces 
(10) we obtain:

− + −

−

∫4 4

4

1 1 1 1 2 2

1

1

π χ σ π χ σ

π χ

s x G x x y u y dy s x G x

s x

G

( ) ( ) ( , ) ( ) ( ) ( )

( )

Φ ∆

GG x s
v

dSy

u

v
dSy

v
s

S

S S

3 1 2 1

2 3 1

1

1 2

( ) ( )

( )

= − ∂
∂

+ ∂
∂

+ − ∂
∂

+

+ +

∫

∫ ∫

σ σ

σ σ

Φ

Φ Φ
ddSy

s y
v

dSy
G

+ − ∂
∂∂ +

∫( ) ( ) .σ σ3 4 1

Φ

 

(13)



Frontiers in Computational Neuroscience www.frontiersin.org September 2010 | Volume 4 | Article 138 | 4

Troparevsky et al. Sensitivity analysis for EEG

In Rubio et al. (2009) it was proved that choosing an arbitrary 
order for the observation points x

j
, the function:

GSFinc( )
( , )

( )
( , ), ,..., .x F

h x

x
h x j nj

q j

j

j= ×
∇

⋅∇ =−1

2
1

θ
σ

θθ

 

(24)

is well-defined, that is, the value of GSF
inc

(x) at a given observation 
point x ∈ ∂G does not depend on the order given to the observa-
tions points. Thus, we choose an order for the observation points 
on the scalp and perform the calculations.

resulTs
We calculate the TSF and the GSF of u with respect to σ

1
 for a 

dipole source J
i
(x) = Mδ(x − q) for different locations q ∈ G

1
 

in a spherical head model. This approximation for the head 
allows us to calculate the solution by the series formula appear-
ing in Zhang (1995). Differentiating this series with respect to 
σ

1
 we obtain the sensitivity function s

1
 for the case of nested 

homogeneous spherical sets. We compare their values to find 
out the information that they provide about the variations on 
the scalp potential u when σ

1
 changes. The values of the sen-

sitivities were simulated considering that the observations are 
measurements of the electric potential on the scalp collected 
by means of a set of electrodes with 10-10B configuration and 
that the “spike-instants” where the values of u are considered, 
were detected and marked on the data by experts. We con-
sider the conductivity values in (2): σ

1
 = 0.33, σ

2
 = 0.0042, 

σ
3
 = 0.33(1/(Ω/m)) (see Geddes and Baker, 1967). We choose 

an order to enumerate the electrode positions and calculate 
the GSF

inc
 and the TSF with respect to σ

1
 for different radial 

and tangential dipoles. The results obtained are shown in the 
figures below. Since no comparison between sensitivities for 
different parameters is presented, we have not normalized the 
values and have plotted the values of the absolute value of 
TSF directly. In Figure 1 we plot the values of GSF

inc
 at the 20 

electrode positions for the same dipole location r
q
 = (0.3, 0.4, 

0) and different dipoles moments, a radial one M = (3, 4, 0) 
and a tangential one M = (−4, 3, 0).

In Figure 2, we show the absolute value of the TSF on the scalp 
for the same dipole location r

q
 = (0.3, 0.4, 0) and different dipoles 

moments. The stars indicate the positions of the scalp electrodes. 
In order to compare both sensitivity functions we have put an M 
at the position of the electrode where the two highest values of 
GSF

inc
 are achieved.

discussion
From the experiments we conclude that in this example TSF 
and GSF do not seem to provide the same information. It can be 
noted that in Figures 2B and D the maximum is not located at 
the electrode where TSF would suggest. Since the GSF is defined 
taking into account the influence that parameter variations have 
on the estimator θ̂, theoretically it seems to be more suitable 
to look at the values of the GSF before performing the param-
eter estimation. More examples in different domains had to 
be performed and a theoretical analysis about the information 
provided of both sensitivity functions must be done. In future, 

The GSF at t
k
 are defined as:

gs t
t

F h t h t

k n l

k

jj

k
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,..., ,
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=
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1
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 (20)

where F is the corresponding p × p Fisher information matrix:

F
t

h t h t
j

j j
T

j

n
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=
∑ 1

2 0 0
1 σ

θ θθ θ( )
( , ) ( , )

 

(21)

and the symbol “·” in (20) represents element-by-element vector 
multiplication and ∇θh is the gradient that contains the derivatives 
of h with respect to each component of the parameter vector θ, that 
is the sensitivity of h with respect to the parameters. Thus, GSF are 
defined only at the discrete time points t

1
,…,t

n
 where measure-

ments are taken. Note that gs(t
k
) involves all the contributions of 

those measurements up to and including t
k
. On the other hand the 

incremental GSF (GSF
inc

), defined by:

GSFinc( )
( , )

( )
( , ), ,...,t F

h t

t
h t k nk

k

k

k= × ∇ ⋅∇ =−1

2
1θ

θ
θ

σ
θ

 
(22)

gives the information provided by the single measurements t
k
. Note 

from (20) and (21) that the TSF have to be calculated in order to 
compute the GSF.

Remark The relationship between the GSF and the estimator 
of θ becomes clear if we introduce a continuous version of the 
parameter estimation problem supposing we have the measure-
ments of the output for all t ∈ [0,T]. In this case the minimization 
of J in (19) can be thought in a space of probability (continuous 
version) leading to:

J P
y t h t

v t
dP t

T

( , )
( ) ( , )

( )
( )θ θ= −

∫
2

2
0

where t
j
 ∈ [0,T] and P is a probability function defined in 

[0,T]. In this frame the Fisher information matrix becomes 

F T dP tij
T

v t

h t h t

i j
( , ) ( )

( )

( , ) ( , )θ θ
θ

θ
θ= ∫ ∂

∂
∂
∂0

1
2  and its inverse is, asymptoti-

cally and approximately, the covariant matrix of the estimator θ̂ 
of θ. The generalized sensitivity at t ∈ [0,T] is the diagonal of 

F P F P t( , ) ( , )[ , ]θ θ0
1

0 0
−  (see Banks et al., 2008).

Now we can come back to the FP of EEG modeled by equations 
(1)–(5). In this case we cannot calculate the GSF corresponding to 
the PDE system that models the FP of EEG straightforward since 
instead of a dynamical system, in this case the independent variable 
is x ∈ G ⊂ R3. The available data is now the value of the potential 
u at given points on the scalp x

j
 contaminated with noise and the 

observations are given by:

y x u x e x j nj j j j( ) ( , ) , , ,...,= + ∈ =θ Γ 1
 

(23)

where the observation errors e
j
 ∈ R are assumed to satisfy the stand-

ard statistical assumptions. We assume that there exists a value 
parameter θ

0
 such that the data set {y

j
} has the form given in (23) 

when θ = θ
0
.
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Figure 1 | generalized sensitivity gSFinc (in absolute value) for the dipole position rq = (0.3, 0.4, 0) and different moments: right: M = (3, 4, 0) (radial) Left: 
M = (−4, 3, 0).

Figure 2 | Traditional sensitivity functions (in absolute value) for the dipole position rq = (0.3, 0.4, 0) and different moments (DM) M, (A) DM M = (6, 8, 0) 
(radial) (B) DM M = (1, −1, 1) (C) DM M = (4, 3, −2) (D) DM M = (4, −3, 0) (tangential).
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based on these sensitivities, an optimal distribution of scalp 
electrodes may be determined in order to estimate the param-
eters of the model.
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