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Hebbian-like learning rules were shown to arise from unsupervised 
learning paradigms such as principal components analysis (Oja, 
1982, 1989), independent components analysis (ICA; Intrator 
and Cooper, 1992; Bell and Sejnowski, 1995; Clopath et al., 2008), 
maximization of mutual information (MI; Linsker, 1989), sparse 
coding (Olshausen and Field, 1996; Smith and Lewicki, 2006), and 
predictive coding (Rao and Ballard, 1999). In spiking neurons, local 
STDP-like learning rules were obtained from optimization criteria 
such as maximization of information transmission (Chechik, 2003; 
Toyoizumi et al., 2005, 2007), information bottleneck (Klampfl 
et al., 2009), maximization of the neuron’s sensitivity to the input 
(Bell and Parra, 2005), reduction of the conditional entropy (Bohte 
and Mozer, 2007), slow-feature analysis (Sprekeler et al., 2007), and 
maximization of the expected reward (Xie and Seung, 2004; Pfister 
et al., 2006; Florian, 2007; Sprekeler et al., 2009).

The functional consequences of STDP have mainly been investi-
gated in simple integrate-and-fire neurons, where the range of tem-
poral dependencies in the postsynaptic spike train spans no more 
than the membrane time constant. Few studies have addressed the 
question of the synergy between STDP and more complex dynami-
cal properties on different timescales. In Seung (2003), more com-
plex dynamics were introduced not at the cell level, but through 
short-term plasticity of the synapses. The postsynaptic neuron was 
then able to become selective to temporal order in the input. Another 
elegant approach to this question was taken in Lengyel et al. (2005) 
in a model of hippocampal  autoassociative memory. Memories were 

IntroductIon
The experimental discovery of spike-timing-dependent plasticity 
(STDP) in the mid-nineties (Bell et al., 1997; Magee and Johnston, 
1997; Markram et al., 1997; Bi and Poo, 1998; Zhang et al., 1998) 
led to two questions, in particular. The first is: what is the simplest 
way of describing this complex phenomenon? This question has 
been answered in a couple of minimal models (phenomenological 
approach) whereby long-term potentiation (LTP) and long-term 
depression (LTD) are reduced to the behavior of a small number 
of variables (Gerstner et al., 1996; Kempter et al., 1999; Song et al., 
2000; van Rossum et al., 2000; Rubin et al., 2001; Gerstner and 
Kistler, 2002a; Froemke et al., 2006; Pfister and Gerstner, 2006; 
Clopath et al., 2010; see Morrison et al., 2008 for a review). Because 
they are inspired by in vitro plasticity experiments, the state variables 
usually depend solely on what is experimentally controlled, i.e., on 
spike times and possibly on the postsynaptic membrane potential. 
They are computationally cheap enough to be used in large-scale 
simulations (Morrison et al., 2007; Izhikevich and Edelman, 2008). 
The second question has to do with the functional role of STDP: 
what is STDP good for? The minimal models mentioned above can 
address this question only indirectly, by solving the dynamical equa-
tion of synaptic plasticity for input with given stationary properties 
(Kempter et al., 1999; van Rossum et al., 2000; Rubin et al., 2001). 
An alternative approach is to postulate a role for synaptic plastic-
ity, and formulate it in the mathematical framework of optimiza-
tion (“top-down approach”). Thus, in artificial neural networks, 
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encoded in the phase of firing of a population of neurons relative to 
an ongoing theta oscillation. Under the assumption that memories 
are stored using a classical form of STDP, they derived the form of 
the postsynaptic dynamics that would optimally achieve their recall. 
This turned out to match what they recorded in vitro, suggesting 
that STDP might optimally interact with the dynamical properties 
of the postsynaptic cell in this memory storage task.

More generally, optimality models are ideally suited to study plas-
ticity and dynamics together. Indeed, optimal learning rules contain 
an explicit reference to the dynamical properties of the postsynaptic 
cell, by means of the transfer function that maps input to output 
values. This function usually appears in the formulation of a gradient 
ascent on the objective function. In this article, we exploit this in order 
to relate STDP to spike-frequency adaptation (SFA), an important 
feature of the dynamics of a number of cell types found in cortex. 
Recent phenomenological models of STDP have emphasized the 
importance of the interaction between postsynaptic spikes in the 
LTP process (Senn et al., 2001; Pfister and Gerstner, 2006; Clopath 
et al., 2010). In these models, the amount of LTP obtained from a 
pre-before-post spike pair increases with the number of postsynaptic 
spikes fired in the recent past, which we call the “triplet effect” (com-
bination of one pre-spike and at least two post-spikes). The timescale 
of this post–post interaction was fitted to in vitro STDP experiments, 
and found to be very close to that of adaptation (100–150 ms).

We reason that STDP may be ideally tuned to SFA of the postsynap-
tic cell. We specifically study this idea within the framework of optimal 
information transmission (infomax) between input and output spike 
trains. We compare the performance of a learning rule derived from 
the infomax principle in Toyoizumi et al. (2005), to that of the triplet 
model developed in Pfister and Gerstner (2006). We also compare them 
to the standard pair-based learning window used in most STDP papers. 
Performance is measured in terms of information theoretic quantities. 
We find that the triplet learning rule yields a better performance than 
pair-STDP on a spatio-temporal receptive field formation task, and 
that this advantage crucially depends on the presence of postsynaptic 
SFA. This reflects a synergy between the triplet effect and adaptation. 
The reasons for this optimality are further studied by showing that the 
optimal model features a similar triplet effect when the postsynaptic 
neuron adapts. We also show that both the optimal and triplet learn-
ing rules increase the variability of the postsynaptic spike trains, and 
enlarge the frequency band in which signals are transmitted, extending 
it toward lower frequencies (1–5 Hz). Finally, we exploit the optimal 
model to predict the form of the STDP mechanism for two different 
target cell types. The results qualitatively agree with the in vitro data 
reported for excitatory synapses onto principal cells and those onto 
fast-spiking (FS) inhibitory interneurons. In the model, the learning 
windows are different because the intrinsic dynamical properties of the 
two postsynaptic cell types are different. This might be the functional 
reason for the target-cell specificity of STDP.

MaterIals and Methods
neuron Model
We simulate a single stochastic point neuron (Gerstner and Kistler, 
2002b) and a small portion of its incoming synapses (N = 1 for 
the simulation of in vitro experiments, N = 100 in the rest of the 
paper). Each postsynaptic potential (PSP) adds up linearly to form 
the total modeled synaptic drive
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(mV) are the synaptic weights. The effect of thousands of other 
synapses is not modeled explicitly, but treated as background 
noise. The firing activity of the neuron is entirely described by an 
 instantaneous firing density
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is the gain function, drawn in Figure 1A. Refractoriness and SFA 
both modulate the instantaneous firing rate via
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where y t t t
t

f
f( ) ( )= −Σ
post

postδ  is the postsynaptic spike train and 

0 < τ
R
  τ

A
 are the time constants of refractoriness and adaptation 

respectively. The firing rate thus becomes a compressive function of 
the average gain, as shown in Figure 1B. The response of the neuron 
to a step in input firing rate is depicted in Figure 1C.

For the simulation of in vitro STDP experiments, only one syn-
apse is investigated. The potential u is thus given a baseline u

b
 (to 

which the PSP of the single synapse will add) such that g(u
b
) yields 

a spontaneous firing rate of 7.5 Hz (Figure 1B).
In some of our simulations, postsynaptic SFA is switched off 

(q
A
 = 0). In order to preserve the same average firing rate given 

the same synaptic weights, r
0
 is rescaled accordingly (Figures 1A,B, 

dashed lines).
In the simulation of Figure 8, we add a third variable g

B
 in the after-

spike kernel M in order to model a FS inhibitory interneuron. This 
variable jumps down (q

B
 < 0) following every postsynaptic spike, and 

decays exponentially with time constant τ
B
 (with τ

R
  τ

B
 < τ

A
).

All simulations were written in Objective Caml and run on 
a standard desktop computer operated by Linux. We used sim-
ple Euler integration of all differential equations, with 1 ms time 
resolution (0.1 ms for the simulation of in vitro experiments). All 
parameters are listed in Table 1 together with their values.

PresynaPtIc fIrIng statIstIcs
To analyze the evolution of information transmission under dif-
ferent plasticity learning rules, we consider N = 100 periodic input 
spike of 5 s duration generated once and for all (see below). This 
“frozen noise” is then replayed continuously, feeding the postsy-
naptic neuron for as long as is necessary (e.g., for learning, or for 
MI estimation).



Frontiers in Computational Neuroscience www.frontiersin.org December 2010 | Volume 4 | Article 143 | 3

Hennequin et al. Optimal STDP in adaptive neurons

synchronous firing events will repeat in each period, giving rise to 
strong spatio-temporal correlations in the inputs. We are interested 
in seeing how different learning rules can exploit this correlational 
structure to improve the information carried by the postsynaptic 
activity about those presynaptic spike trains. We now describe 
what we mean by information transmission under this specific 
stimulation scenario.

InforMatIon theoretIc MeasureMents
The neuron can be seen as a noisy communication channel in 
which multidimensional signals are compressed and distorted 
before being transmitted to subsequent receivers. The goodness of a 
communication channel is traditionally measured by Shannon’s MI 
between the input and output variables, where the input is chosen 
randomly from some “alphabet” or vocabulary of symbols.

To generate the time-varying rates of the N processes  underlying 
this frozen noise, we first draw point events at a constant Poisson 
rate of 10 Hz, and then smooth them with a Gaussian kernel of 
width 150 ms. Rates are further multiplicatively normalized so 
that each presynaptic neuron fires an average of 10 spikes per 
second. We emphasize that this process describes the statistics of 
the inputs across different learning experiments. When we mention 
“independent trials,” we mean a set of experiments which have 
their own independent realizations of those input spike trains. 
However, in one learning experiment, a single such set of N input 
spike trains is chosen and replayed continuously as input to the 
postsynaptic neuron. The input is therefore deterministic and 
periodic. When the periodic input is generated, some neurons 
can happen to fire at some point during those 5 s within a few 
milliseconds of each other, and by virtue of the periodicity, these 
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Figure 1 | Stochastic neuron model. (A) The gain function g(u) (Eq. 4, solid 
line here) shows the momentary rate of a non-refractory neuron as a function of 
the membrane potential u. (B) The mean rate 〈g[u(t)]M(t)〉 of a neuron with 
refractoriness and adaptation is lower (solid red line). The baseline potential ub 
used in the simulation is defined as the membrane potential that yields a 
spontaneous firing rate of 7.5 Hz (green arrow and dashed line). In some 
simulations, we need to switch off adaptation, but we want the same holding 
potential ub to evoke the same 7.5 Hz output firing rate. The slope r0 of the gain 

function is therefore rescaled (A, dashed curve) so that the frequency curves in 
the adaptation and no-adaptation cases (B, solid and dashed red curves) cross at 
u = ub. (C) Example response property of an adaptive neuron. A single neuron 
receives synaptic inputs from 100 Poisson spike trains with a time-varying rate. 
The experiment is repeated 1000 times independently. Bottom: the input rate 
jumps from 10 to 50 Hz, stays there for half a second and returns back to 10 Hz 
(bottom). Middle: Peri-stimulus time histogram (PSTH, 4 ms bin). Top: example 
spike trains (first 100 trials).

Table 1 | Baseline values of all parameters defined in the text.

 Neuron model Optimal rule Triplet rule Pair rule Weight bounds

τm 20 ms ηo 0.04 η3 1.0 η2 1.0 wmin 0 mV

g0 1 Hz (35) τC 20 ms τ+ 16.8 ms τ+ 16.8 ms wmax 4 mV

r0 9.25 Hz (3.25) τg 10 s τ− 33.7 ms τ− 33.7 ms a 9

β 0.5 mV−1 γ 1 (0) τy 114 ms    

uT 15 mV gtarg ad hoc A2
− 2.8×10−3 A2

− 2.8×10−3  

τR 2 ms λ 0.0094 A3
+ 6.5×10−3 A2

+ 5.6×10−3  

τA 150 ms   ρtarg ad hoc ρtarg ad hoc  

qR 100   τρ 10 s τρ 10 s  

qA 1 (0)        

Some parameters were set to different values when the neuron was non-adapting (italic numbers). Similarly, some parameters were different for the simulations of 
in vitro experiment (bold faces).
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neuron model gives us the probability that a word YK occurred at 
time t – not necessarily the time at which the word was actually 
picked – (Toyoizumi et al., 2005):

P Y t g t g t

Y Y
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R A
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where ρ
k
 = ρ(t + k∆) and Yk

K  is one if there is a spike in the word 
at position k, and 0 otherwise. To compute the conditional prob-
ability of occurrence of a word YK knowing the phase φ, we have 
to further average Eq. 7:
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where Φ(t) = 1 + (t mod Nφ) denotes the phase at time t. Averaging 
over multiple times with same phase also averages over the initial 
conditions [g

R
(t),g

A
(t)], so that they do not appear in Eq. 8. The 

average in Eq. 8 is estimated using a set of 10 randomly chosen 
times t

i
 with Φ(t

i
) = φ.

The full probability of observing a word YK is given by 
P Y N P YK N K( ) / ( | )= =1 1φ φ

φ φΣ  where P(YK | φ) is computed as 
described above. Owing to the knowledge of the model that 
underlies spike generation, and to this huge averaging over all the 
possible phases, the obtained P(YK) is a very good estimate of the 
true density. We can then take a Monte-Carlo approach to esti-
mate the entropies, using the set  S of randomly picked words: 
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Here, the input is deterministic and periodic (Figure 2A). We 
therefore define the quality of information transmission by the 
reduction of uncertainty about the phase of the current input if 
we observe a certain output spike train at an unknown time. In 
discrete time (with time bin ∆ = 1 ms), there are only Nφ = 5000 
possible phases since the input has a period of 5 s. Therefore, the 
maximum number of bits that the noisy postsynaptic neuron can 
transmit is log

2
(Nφ)  12.3 bits. We further assume that an observer 

of the output neuron can only see “words” corresponding to spike 
trains of finite duration T = K∆. We assume T = 1 s for most of 
the paper, which corresponds to K = 1000 time bins. This choice 
is justified below.

The discretized output spike trains of size K (binary vec-
tors), called YK, can be observed at random times and play the 
role of the output variable. The input random variable is the 
phase φ of the input. The quality of information transmission 
is quantified by the MI, i.e., the difference between the total 
response entropy H P( ) ( )Y YK K

YK
= log2  and the noise entropy 

H PY YK K

YK
| ( | ) .

|
φ φ

φ φ
( ) = log2  Here 〈·〉 denotes the ensemble 

average. In order to compute these entropies, we need to be able 
to estimate the probability of occurrence of any sample word YK, 
knowing and not knowing the phase. To do so, a large amount of 
data is first generated. The noisy neuron is fed continuously for a 
large number of periods N

p
 = 100 with a single periodic set of input 

spike trains and a fixed set of synaptic weights. The output spikes 
are recorded with ∆ = 1 ms precision. From this very long output 
spike train, we randomly pick words of length K and gather them 
in a set  S. We take |S| = 1000. This is our sample data.

In general, estimating the probability of a random binary vec-
tor of size K is very difficult if K is large. Luckily, we have a sta-
tistical model for how spike trains are generated (Eq. 3), which 
considerably reduces the amount of data needed to produce a 
good estimate. Specifically, if the refractory state of the neuron 
[g

R
(t),g

A
(t)] is known at time t (initial conditions), then the prob-

ability 1 − exp(−ρ
k
∆)  ρ

k
∆ of the postsynaptic neuron spiking is 

also known for each of the K time bins following t (Eqs 3–5). The 
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Figure 2 | information transmission through a noisy postsynaptic neuron. 
(A) Schematic representation of the feed-forward network. Five-second input 
spike trains repeat continuously in time (periodic input) and drive a noisy and 
possibly adapting output neuron via plastic synapses. It is assumed that an 
observer of the output spike train has access to portions YK of it, called “words,” 
of duration T = K∆. The observer does not have access to a clock, and therefore 
has a flat prior expectation over possible phases before observing a word. The 
goodness of the system, given a set of synaptic weights w, is measured by the 
reduction of uncertainty about the phase, gained from the observation of an 
output word YK (mutual information, see text). (B) For a random set of synaptic 

weights (20 weights at 4 mV, the rest at 0), the mutual information (MI) is 
reported as a function of the output word size K∆. Asymptotically, the MI 
converges to the theoretical limit given by log2(Nφ) ( 12.3 bits. In the rest of this 
study, 1-s output words are considered (square). (C) Mutual information (MI, top) 
and information per spike (MI’, bottom) as a function of the average firing rate. 
Black: with SFA. Green: without SFA. Each dot is obtained by setting a fraction of 
randomly chosen synaptic efficacies to the upper bound (4 mV) and the rest to 
0. The higher the fraction of non-zero weights, the higher the firing rate. The 
information per spike is a relevant quantity because spike generation 
costs energy.
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η
o
 is a small learning rate. The first term C

j
 is Hebbian in the sense 

that it reflects the correlations between the input and output spike 
trains. B

post
 is purely postsynaptic: it compares the instantaneous 

gain g to its average g  (information term), as well as the average 
gain to its target value g

targ
 (homeostasis). The average g  is estimated 

online by a low pass filter of g with time constant τ
g
. The time course 

of these quantities is shown in Figure 3A for example spike trains 
of 1 s duration, for γ = 0.

Because of the competition between the three objectives in 
Eq. 11, the homeostatic constraint does not yield the exact desired 
gain g

targ
. In practice, we set the value of g

targ
 empirically, such that 

the actual mean firing rate approaches the desired value.
Finally, we use τ

C
, η

o
, and λ as three free parameters to fit the 

results of in vitro STDP pairing experiments (Figure 8). τ
C
 is set 

empirically equal to the membrane time constant τ
m
 = 20 ms, 

while η
o
 and λ are determined through a least-squares fit of the 

experimental data. The learning rate η
o
 can be rescaled arbitrarily. 

In the simulations of receptive-field development (Figures 4–6), 
λ is set to 0 so as not to perturb unnecessarily the prime objec-
tive of maximizing information transmission. It is also possible 
to remove the homeostasis constraint (γ = 0) in the presence 
of SFA. As can be seen in Figure 2C, the MI has a maximum at 
7.5 Hz when the neuron adapts, so that firing rate control comes 
for free in the information maximization objective. We therefore 
set γ = 0 when the neuron adapts, and γ = 1 when is does not. In 
fact, the homeostasis constraint only slightly impairs the infomax 
objective: we have checked that the MI reached after learning 
(Figures 4 and 5) does not vary by more than 0.1 bit when γ takes 
values as large as 20.

Triplet-based learning rule
We use the minimal model developed in Pfister and Gerstner (2006) 
with “all-to-all” spike interactions. Presynaptic spikes at synapse j 
leave a trace r

j
 (Figure 3B) which jumps by 1 after each spike and 

otherwise decays exponentially with time constant τ+. Similarly, 
the postsynaptic spikes leave two traces, o

1
 and o

2
, which jump by 

1 after each postsynaptic spike and decay exponentially with time 
constants τ− and τ

y
 respectively:

dr

dt

r
x t

do

dt

o
y t
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o
y tj j

j
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= − + = − + = − +
+ −τ τ τ
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where x
j
(t) and y(t) are sums of δ-functions at each firing time as 

introduced above. The synaptic weight w
j
 undergoes LTD propor-

tionally to o
1
 after each presynaptic spike, and LTP proportionally 

to r
j
o

2
 following each postsynaptic spike:

The MI estimate is the difference of these two entropies, and is 
expressed in bits. In Figure 2C, we introduce the information per 
spike MI’ (bits/spike), obtained by dividing the MI by the expected 
number of spikes in a window of duration K∆. Figure 2B shows 
that the MI approaches its upper bound log

2
(Nφ) as the word size 

increases. The word size considered here (1 s) is large enough to 
capture the effects of SFA while being small enough not to saturate 
the bound.

Although we constrain the postsynaptic firing rate to lie 
around a fixed value ρ

targ
 (see homeostasis in the next section), 

the rate will always jitter. Even a small jitter of less than 0.5 Hz 
(which we have in the present case) makes it impossible to directly 
compare entropies across learning rules. Indeed, while the MI 
depends only weakly on small deviations of the firing rate around 
ρ

targ
, the response and noise entropies have much larger (co-)

variations. In order to compare the entropies across learning 
rules, we need to know what the entropy would have been if the 
rate was exactly ρ

targ
 instead of ρ

targ
 + ε. We therefore compute 

the entropy [H(YK) or H(YK|φ)] for different firing rates in the 
vicinity of ρ

targ
. These firing rates are achieved by slightly rescaling 

the synaptic weights, i.e., w
ij
 ← κw

ij
 where κ takes several values 

around 1. We then fit a linear model H = aρ + b, and evaluate 
H at ρ

targ
.

The computation of the conditional probabilities P(YK|φ) 
was accelerated on an ATI Radeon (HD 4850) graphics process-
ing unit (GPU), which was 130 times faster than a decent CPU 
implementation.

learnIng rules
Optimal learning rule
The optimal learning rule aims at maximizing information trans-
mission under some metabolic constraints (“infomax” principle). 
Toyoizumi et al. (2005, 2007) showed that this can be achieved by 
means of a stochastic gradient ascent on the following objective 
function

L I D= − −γ λΨ  (11)

whereby the mutual information I between input and output spike 
trains competes with a homeostatic constraint on the mean firing 
rate D and a metabolic penalty Ψ for strong weights that are often 
active. The first constraint is formulated as D=  KL P P( ), ( )Y YK K

  
where KL denotes the Kullback–Leibler (KL) divergence. P denotes 
the true probability distribution of output spike trains produced by 
the stochastic neuron model, while P  assumes a similar model in 
which the gain g(t) is kept constant at a target gain g

targ
. Minimizing 

the divergence between P and P  therefore means driving the average 
gain close to g

targ
, thus implementing firing rate homeostasis. The 

second constraint reads Ψ Σ= j j jw n〈 〉XK
, whereby the cost for syn-

apse j is proportional to its weight w
j
 and to the average number n

j
 of 

presynaptic spikes relayed during the K time bins under considera-
tion. The Lagrange multipliers γ and λ set the relative importance 
of the three objectives.

Performing gradient ascent on L yields the following online 
learning rule (Toyoizumi et al., 2005, 2007):

dw

dt
C t B t x tj

o j j= − η λ( ) ( ) ( )post
 (12)
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A t A
t

2 2

3

3

− −=( )
( )



ρ
ρtarg  

(18)

where A2
− is a starting value and ρ is an average of the instanta-

neous firing rate on the timescale of seconds or minutes (time 
constant τρ). Finally, A3

+ is set to make ρ
targ

 an initial fixed point of 
the dynamics in Eq. 17:

A
A

y

3
2+ −
−

+

= τ
ρ τ τ



targ  
(19)

The postsynaptic rate should therefore roughly remain equal to 
its starting value ρ

targ
. In practice, the Poisson assumption is not 

valid because of adaptation and refractoriness, and independence 
becomes violated as learning operates. This causes the postsynaptic 
firing rate to deviate and stabilize slightly away from the target 
ρ

targ
. We therefore always set ρ

targ
 empirically so that the firing rate 

stabilizes to the true desired target.

dw

dt
A r t o t y t A o t x tj

j j= − − 
+ −η ε3 3 2 2 1( ) ( ) ( ) ( ) ( )

 
(16)

where η
3
 denotes the learning rate. Note that o

2
 is taken just before 

its update. Under the assumption that pre- and postsynaptic spike 
trains are independent Poisson processes with rates ρ

x
 and ρ

y
 

respectively, the average weight change was shown in Pfister and 
Gerstner (2006) to be proportional to

∆w
A

A
x y y

y

∝ −










−
−

+
+ρ ρ ρ τ

τ τ
2

3  

(17)

The rule is thus structurally similar to a Bienenstock–Cooper–
Munro (BCM) learning rule (Bienenstock et al., 1982) since it is linear 
in the presynaptic firing rates and non-linear in the postsynaptic rate. 
It is possible to roughly stabilize the postsynaptic firing rate at a target 
value ρ

targ
, by having A2

− slide in an activity-dependent manner:

pre

(Hz)

post

0
10

0

0
0

0

A B

Figure 3 | Description of the three learning rules. (A) Time course of the 
variables involved in the optimal model. ∆w denotes the cumulative weight 
change. (B) Schematic representation of the phenomenological models of 
STDP used in this paper. Each presynaptic spike yields LTD proportionally to 

o1 (blue trace) in both models (pair and triplet). In the pair model, 
postsynaptic spikes evoke LTP proportionally to rj (green trace),  
while in the triplet model rj is combined with an additional postsynaptic  
trace o2 (red).

0 2 4

2

4

6

0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1

A B C

Figure 4 | Triplets are better than pairs when the neuron adapts. 
(A) Distributions of synaptic efficacies obtained after learning. The weights were 
all initialized at 1 mV before learning (black arrow). When SFA is switched off, the 
very same bimodal distributions emerge (not shown). (B) Evolution of the MI 
along learning time. Learning time is arbitrarily indexed from 0 < α < 1. The 
dashed curves represent the MI when the weights taken from the momentary 

distribution at time α are shuffled. Each point is obtained from averaging the MI 
over 10 different shuffled versions of the synaptic weights. Error bars denote 
standard error of the mean (SEM) over 10 independent learning episodes with 
different input spike trains. (C) Same as in (B), but SFA is switched off. The y-scale 
is the same as in (B). Parameters for those simulations were λ = 0, γ = 0 with 
SFA, and γ = 1 without SFA. Other parameters took the values given in Table 1.
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w w w wj j j← +( ) min maxmax , ,0 ∆
 

(22)

This type of bounds, in which the weight change is independ-
ent of the initial synaptic weight itself, is known to yield bimodal 
distributions of synaptic efficacies. In the simulation of Figure 5, 
we also consider the following soft bounds to extend the validity 
of our results to unimodal distributions of weights:
if then

if then

∆ ∆

∆

w w w w

w w w

a
w

w

a

j j j j

j j j
j

≥ ← +

< ← + −
+

+
+







0

0 1
1

1

1

1

0

ww

w
wj

j

0

















∆

 
(23)

where a is a free parameter and w
0
 = 1 mV is the value at which 

synaptic weights are initialized at the beginning of all learning 
experiments. This choice of soft-bounds is further motivated in 
Section “Results.” The shapes of the LTP and LTD weight-dependent 
factors are drawn in Figure 5A, for a = 9. Note that the LTD and 
LTP factors cross at w

0
, which ensures that the balance between LTP 

and LTD set by Eqs 19 and 21 is initially preserved.
When the soft-bounds are used, the parameter τ

C
 of the opti-

mal model is adjusted so that the weight distribution obtained 
with the optimal rule best matches the weight distributions of the 

Pair-based learning rule
We use a pair-based STDP rule structurally similar to the triplet rule 
described by Eq. 16 (Figure 3B). The mechanism for LTD is identical, 
but LTP does not take into account previous postsynaptic firing:

dw

dt
A r t y t A o t x tj

j j= − 
+ −η2 2 2 1( ) ( ) ( ) ( )

 (20)

where η
2
 is the learning rate. A2

− also slides in an activity-dependent 
manner according to Eq. 18, to help stabilizing the output firing rate 
at a target ρ

targ
. A2

+ is set such that LTD initially balances LTP, i.e.,

A
A

2
2+
−

−

+

=
 τ
τ  

(21)

Comparing learning rules in a fair way requires making sure that 
their learning rates are equivalent. Since the two rules share the same 
LTD mechanism, we can simply take the same value for A2

− as well as 
η

2
 = η

3
. Since LTD is dynamically regulated to balance LTP on average 

in both rules, this ensures that they also share the same LTP rate.

Weight bounds
In order to prevent the weights from becoming negative or from 
growing too large, we set hard bounds on the synaptic efficacies for 
all three learning rules, when not stated otherwise. That is, if the 
learning rule requires a weight change ∆w

j
, w

j
 is set to

0

2

4

0.4 0.8

KL
(b

its
)

(s)

1

1.5

2

2.5

3
0

1

0 2 4 6

1

2
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4

0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1
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D

Figure 5 | results hold for “soft-bounded” STDP. The experiments of 
Figure 4 are repeated with soft-bounds on the synaptic weights (see Materials 
and Methods). (A) Bottom: LTP is weight-independent (black line), whereas the 
amount of LTD required by each learning rule (∆w < 0) is modulated by a growing 
function of the momentary weight value (orange curve). The LTP and LTD curves 
cross at w0 = 1 mV, which is also the initial value of the weights in our 
simulations. Top: this form of weight dependence produces unimodal but 
skewed distributions of synaptic weights after learning, for all three learning 
rules. The learning paradigm is the same as in Figure 4. Gray lines denote the 
weight distributions when adaptation is switched off. Note that histograms are 

computed by binning all weight values from all learning experiments, but the 
distributions look similar on individual experiments. In these simulations λ = 0, 
a = 9, and τC = 0.4 s. (B) The parameter τC of the optimal learning rule has been 
chosen such that the weight distribution after learning stays as close as possible 
to that of the pair and triplet models. τC = 0.4 s minimizes the KL divergences 
between the distribution obtained from the optimal model and those from the 
pair (black-blue) and triplet (black-red) learning rules. The distance is then nearly 
as small as the triplet-pair distance (red-blue). (C) MI along learning time in this 
weight-dependent STDP scenario (cf. Figures 4B,C). (D) Normalized information 
gain (see text for definition).
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For each presynaptic neuron, a 5-s input spike train is  generated 
once and for all (see Materials and Methods). All presynaptic spike 
trains are then replayed continuously 5,000 times. All synapses 
undergo STDP according to one of the three learning rules. Synaptic 
weights are all initially set to 1 mV, which yields an initial output 
firing rate of about 7.5 Hz. We set the target firing rate ρ

targ
 of 

each learning rule such that the output firing rate stays very close 
to 7.5 Hz. To gather enough statistics, the whole experiment is 
repeated 10 times independently, each time with different input 
patterns. All results are therefore reported as mean and standard 
error of the mean (SEM) over the 10 trials.

All three learning rules developed very similar bimodal distribu-
tions of synaptic efficacies (Figure 4A), irrespective of the presence 
or absence of SFA. This is a well known consequence of additive 
STDP with hard bounds imposed on the synaptic weights (Kempter 
et al., 1999; Song et al., 2000). The firing rate stabilizes at 7.5 Hz as 
desired, for all plasticity rules (not shown). In Figure 4B, we show 
the evolution of the MI (solid lines) as a function of learning time. It 
is computed as described in Section “Materials and Methods,” from 
the postsynaptic activity gathered during 100 periods (500 s). Since 
we are interested in quantifying the ability of different learning rules 
to enhance information transmission, we look at the information 
gain [defined as MI(α = 1) − MI(α = 0)] rather than the absolute 
value of the MI after learning. The triplet model reaches 98% of 
the “optimal” information gain while the pair model reaches 86% 
of it. Note that we call “optimal” what comes from the optimality 
model, but it is not necessarily the optimum in the space of solu-
tions, because (i) a stochastic gradient ascent may not always lead to 
the global maximum, (ii) Toyoizumi et al.’s (2005) optimal learning 
rule involves a couple of approximations that may result in a sub-
optimal algorithm, and (iii) their learning rule does not specifically 
optimize information transmission for our periodic input scenario, 
but rather in a more general setting where input spike trains are 
drawn continuously from a fixed distribution (stationarity).

It is instructive to compare how much information is lost for 
each learning rule when the synaptic weights are shuffled. Shuffling 
means that the distribution stays exactly the same, while the 
detailed assignment of each w

j
 is randomized. The dashed lines 

in Figure 4B depict the MI under these shuffling conditions. Each 
point is obtained from averaging the MI over 10 different shuffled 
versions of the weights. The optimal and triplet model lose respec-
tively 33 and 32% of their information gains, while the pair model 
loses only 23%. This means that the optimal and triplet learning 
rules make a better choice in terms of the detailed assignment of 
each synaptic weight. For the pair learning rule, a larger part of the 
information gain is a mere side-effect of the weight distribution 
becoming bimodal. As an aside, we observe that the MI is the same 
(4.5 bits) in the “shuffled” condition for all three learning rules. This 
is an indication that we can trust our information comparisons. The 
result is also compatible with the value found by randomly setting 
20 weights to the maximum value and the others to 0 (Figure 2B, 
square mark).

How is adaptation involved in this increased channel capacity? 
In Figure 2C, the MI is plotted as a function of the postsynaptic 
firing rate, for an adaptive (black dots) and a non-adaptive (gray 
dots) neuron, irrespective of synaptic plasticity. Each point in the 
figure is obtained by setting randomly a given fraction χ of  synaptic 

pair and triplet rules. This parameter indeed has an impact on the 
spread of the weight distribution: the optimal model knows about 
the generative model that underlies postsynaptic spike generation, 
and therefore takes optimally the noise into account, as long as τ

C
 

spans no more than the width of the postsynaptic autocorrela-
tion Toyoizumi et al. (2005). If τ

C
 is equal to this width (about 

20 ms), some weights can grow very large (>50 mV), which results 
in non-realistic weight distributions. Increasing τ

C
 imposes more 

detrimental noise such that all weights are kept within reasonable 
bounds. In order to constrain τ

C
 in a non-arbitrary way, we ran the 

learning experiment for several values of τ
C
 and computed the KL 

divergences between weight distributions (optimal-triplet, optimal-
pair). τ

C
 is chosen to minimize these, as shown in Figure 5B.

sIMulatIon of in viTrO exPerIMents
To obtain the predictions of the optimal model on standard in vitro 
STDP experiments, we compute the weight change of a single synapse 
(N = 1) according to Eq. 12. The effect of the remaining thousands of 
synapses is concentrated in a large background noise, obtained by add-
ing a u

b
 = 19 mV baseline to the voltage. The gain becomes g

b
 = g(u

b
)   

( 21.45 Hz, which in combination with adaptation and refractoriness 
would yield a spontaneous firing rate of about 7.5 Hz (see Figure 1). 
Spontaneous firing is artificially blocked, however. Instead, the neuron 
is forced to fire at precise times as described below.

The standard pairing protocol is made of a series of pre–post 
spike pairs, the spikes within the same pair being separated by 
∆s = t

post
 − t

pre
. Pairs are repeated with some frequency f . The aver-

age g  is taken fixed and equal to g
b
, considering that STDP is optimal 

for in vivo conditions such that g  should not adapt to the statistics 
of in vitro conditions. The homeostasis is turned off (γ = 0) in order 
to consider only the effects of the infomax principle.

results
We study information transmission through a neuron modeled as 
a noisy communication channel. It receives input spike trains from 
a hundred plastic excitatory synapses, and stochastically generates 
output spikes according to an instantaneous firing rate modulated 
by presynaptic activities. Importantly, the firing rate is also modu-
lated by the neuron’s own firing history, in a way that captures the 
SFA mechanism found in a large number of cortical cell types. We 
investigate the ability of three different learning rules to enhance 
information transmission in this framework. The first learning rule 
is the standard pair-based STDP model, whereby every single pre-
before-post (resp. post-before-pre) spike pair yields LTP (resp. LTD) 
according to a standard double exponential asymmetric window (Bi 
and Poo, 1998; Song et al., 2000). The second one was developed in 
Pfister and Gerstner (2006) and is based on triplets of spikes. LTD 
is obtained similarly to the pair rule, whereas LTP is obtained from 
pairing a presynaptic spike with two postsynaptic spikes. The third 
learning rule (Toyoizumi et al., 2005) is derived from the infomax 
principle, under some metabolic constraints.

trIPlet-stdP Is better than PaIr-stdP when the neuron adaPts
We assess and compare the performance of each learning rule on 
a simple spatio-temporal receptive field development task, with 
N = 100 presynaptic neurons converging onto a single postsynaptic 
cell (Figure 2A).
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specialization to input features. Such distributions may however be 
advantageous in a memory storage task where old memories which 
are not recalled often need to be erased to store new ones. In this 
scenario, strong weights which become irrelevant can quickly be 
sent back from the tail to the main weight pool around 1 mV. For a 
detailed study of the impact of the weight-dependence on memory 
retention, see Billings and van Rossum (2009).

We see that it is difficult to directly compare absolute values of 
the MI in Figure 5C, since the “shuffled” MIs (dashed lines) do not 
converge to the same value. This is because some weight distribu-
tions are more skewed than others (compare red and blue distribu-
tions in Figure 5A). In the present study, we are more interested in 
knowing how good plasticity rules are at selecting individual weights 
for up- or down-regulation, on the basis of the input structure. We 
would like our performance measure to be free of the actual weight 
distribution, which is mainly shaped by the weight- dependence of 
Eq. 23. We therefore compare the normalized information gain, 
i.e., [MI(α = 1) − MI(α = 0)] / [MI

sh
(α = 1) − MI(α = 0)], where 

MI
sh

 denotes the MI for shuffled weights. The result is shown in 
Figure 5D: the triplet is again better than the pair model, provided 
the postsynaptic neuron adapts.

Our simulations show that when SFA modulates the postsy-
naptic firing rate, the triplet model yields a better gain in infor-
mation transmission than pair-STDP does. When adaptation is 
removed, this advantage vanishes. There must be a specific inter-
action between triplet-STDP and adaptation that we now seek 
to unravel.

trIPlet-stdP Increases the resPonse entroPy when the 
neuron adaPts
Information transmission improves if the neuron learns to pro-
duce more diverse spike trains [H(YK) increases], and if the neu-
ron becomes more reliable [H(YK|φ) decreases] In Figure 6A we 
perform a differential analysis of both entropies, on the same data 
as presented in Figure 4 (i.e., for hard-bounded STDP). Whether 
the postsynaptic neuron adapts (top) or not (bottom), the noise 
entropy (right) is drastically reduced, and the triplet learning rule 
does so better than the pair model (compare red and blue). The 
differential impact of adaptation on the two models can only be 
seen in the behavior of the response entropy H(YK) (left). When 
the postsynaptic neuron adapts, triplet- and optimal STDP both 
increase the response entropy, while it decreases with the pair model. 
This behavior is reflected in the interspike-interval (ISI) distribu-
tions, shown in Figure 6B. With adaptation, the optimal and triplet 
rules produce distributions that are close to an exponential (which 
would be a straight line in the logarithmic y-scale). In contrast, the 
ISI distribution obtained from pair-STDP stays almost flat for ISIs 
between 25 and 120 ms. Without adaptation, the optimal and triplet 
models further sparsifies the ISI distribution which then becomes 
sparser than an exponential, reducing the response entropy.

Qualitative similarities between the optimal and triplet models 
can also be found in the power spectrum of the peri-stimulus time 
histogram (PSTH). The PSTHs are plotted in Figure 6C over a 
full 5-s period, and their average power spectra are displayed in 
Figure 6D. The PSTH is almost flat prior to learning, reflecting the 
absence of feature selection in the input. Learning in all three learn-
ing rules creates sharp peaks in the PSTH, which illustrates the drop 

weights to the upper bound (4 mV), and the rest to 0 mV. The 
weight distribution stays bimodal, which leaves the neuron in a 
high information transmission state. χ is varied in order to cover 
a wide range of firing rates. We see that adaptation enhances infor-
mation transmission at low firing rates (<10 Hz). The MI has a 
maximum at 7.5 Hz when the neuron is adapting (black circles). If 
adaptation is removed, the peak broadens and shifts to about 15 Hz 
(green circles). If the energetic cost of firing spikes is also taken 
into account, the best performance is achieved at 3 Hz, whether 
adaptation is enabled or not. This is illustrated in Figure 2C (lower 
plot) where the information per spike is reported as a function of 
the firing rate.

Is adaptation beneficial in a general sense only, or does it differ-
entially affect the three learning rules? To answer this question, we 
have the neuron learn again from the beginning, SFA being switched 
off. The temporal evolution of the MI for each learning rule is 
shown in Figure 4C. Overall, the MI is lower when the neuron does 
not adapt (compare Figure 4B and Figure 4C), which is in agree-
ment with the previous paragraph and Figure 2C. Importantly, the 
triplet model loses its advantage over the pair model when adapta-
tion is removed (compared red and blue lines in Figure 4C). This 
suggests a specific interaction between synaptic plasticity and the 
intrinsic postsynaptic dynamics in the optimal and triplet models. 
This is further investigated in later sections.

Finally, the main results of Figure 4 also hold when the distribu-
tion of weights remains unimodal. To achieve unimodal distribu-
tions with STDP, the hypothesis of hard-bounded synaptic efficacies 
must be relaxed. We implemented a form of weight-dependence of 
the weight change, such that LTP stays independent of the synaptic 
efficacy, while stronger synapses are depressed more strongly (see 
Materials and Methods). The weight-dependent factor for LTD 
had traditionally been modeled as being directly proportional to 
w

j
 (e.g., van Rossum et al., 2000), which provides a good fit to 

the data obtained from cultured hippocampal neurons by Bi and 
Poo (1998). Morrison et al. (2007) proposed an alternative fit of 
the same data with a different form of weight-dependence of LTP. 
Here we use a further alternative (see Materials and Methods, and 
Figure 5A). We require that the multiplicative factors for LTP and 
LTD exactly match at w

j
 = w

0
 = 1 mV, where initial weights are set 

in our simulations. Further, we found it necessary that the slope of 
the LTD modulation around w

0
 be less than 1. Indeed, our neuron 

model is very noisy, such that reproducible pre–post pairs that need 
to be reinforced actually occur among a sea of random pre–post and 
post–pre pairs. If LTD too rapidly overcomes LTP above w

0
, there 

is no chance for the correlated pre–post spikes to evoke sustainable 
LTP. The slope must be small enough for correlations to be picked 
up. This motivates our choice of weight dependence for LTD as 
depicted in Figure 5A. The weight distributions for all three learn-
ing rules stay indeed unimodal, but highly positively skewed, such 
that the neuron can really “learn” by giving some relevant synapses 
large weights (tails of the distributions in Figure 5A). Note that the 
obtained weight distributions resemble those recorded by Sjöström 
et al. (2001) (see e.g., Figure 3C in their paper).

The evolution of the MI along learning time is reported in 
Figure 5C. Overall, MI values are lower than those of Figure 4B. 
Unimodal distributions of synaptic efficacies are less informative 
than purely bimodal distributions, reflecting the lower degree of 



Frontiers in Computational Neuroscience www.frontiersin.org December 2010 | Volume 4 | Article 143 | 10

Hennequin et al. Optimal STDP in adaptive neurons

firing is a hallmark of the triplet rule, and is absent in the pair 
rule. We therefore investigate the behavior of the optimal learning 
rule on post–pre–post triplets of spikes, and find a clear triplet 
effect (Figure 7).

We consider an isolated post–pre–post triplet of spikes, in this 
order (Figure 7A). Isolated means that the last pre- and postsy-
naptic spikes occurred a very long time before this triplet. Let 
tpost

1 , t
pre

, and tpost
2  denote the spike times. The pre–post interval is 

kept constant equal to ∆s t t= − =post pre ms2 15 . We vary the length 
of the post–post interval ∆p t t= −post post

2 1  from 16 to 500 ms. The 
resulting weight change is depicted in Figure 7B. For comparison, 
the triplet model would produce – by construction – a decaying 
exponential with time constant τ

y
. In the optimal model, poten-

tiation decreases as the post–post interval increases. Two times 
constants show up in this decay, which reflect that of refractori-
ness (2 ms) and adaptation (150 ms). The same curve is drawn 
for two other adaptation time constants (see red and blue curves). 
When adaptation is removed, the triplet effect vanishes (dashed 
curve). It should be noted that the isolated pre–post pair itself 
(i.e., large post–post interval) results in a baseline amount of 
LTP, which is not the case in the triplet model. Figure 7A shows 
how this effect arises mechanistically. Three different triplets 

in noise entropy seen in Figure 6A (right). The pair  learning rule 
produces PSTHs with almost no power at low frequencies (below 
5 Hz). In contrast, these low frequencies are strongly boosted by 
the optimal and triplet models. This is however not specific to SFA 
being on or off (not shown). We give an intuitive account for this 
in Section “Discussion.”

This section has shed light on qualitative similarities in the way 
the optimal and triplet learning rules enhance information trans-
mission in an adaptive neuron. We now seek to understand the 
reason why taking account of triplets of spikes would be close-to-
optimal in the presence of postsynaptic SFA.

the oPtIMal Model exhIbIts a trIPlet effect
How similar is the optimal model to the triplet learning rule? In 
essence, the optimal model is a stochastic gradient learning rule, 
which updates the synaptic weights at every time step depending on 
the recent input–output correlations and the current relevance of 
the postsynaptic state. In contrast to this, phenomenological models 
require changing the synaptic efficacy upon spike occurrence only. 
It is difficult to compress what happens between spikes in the opti-
mal model down to a single weight change at spike times. However 
we know that the dependence of LTP on previous  postsynaptic 
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Figure 6 | Differential analysis of the entropies. The learning experiments 
are the same as in Figure 4, using hard-bounds on the synaptic weights. 
(A) Response entropy (left) and noise entropy (right) with (top) and without 
(bottom) postsynaptic SFA. Entropies are calculated at the end of the learning 
process, except for the gray boxes which denote the entropies prior to 
learning. (B) Interspike-interval distributions with (left) and without (right) SFA, 

after learning (except gray line, before learning). The main plots have a 
logarithmic y-scale, whereas the insets have a linear one. (C) Peri-stimulus 
time histograms (PSTHs) prior to learning (top) and after learning for each 
learning rule, over a full 5-s period. All plots share the same y-scale. (D) Power 
spectra of the PSTHs shown in (C), averaged over the 10 independent 
learning experiments.
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Since we have taken τ
C
 = τ

m
, the first two exponentials collapse 

into ε
j
. To carry out the integration, let us further simplify the 

adaptation model into M t t t A( ) ( ( )/ )= − − −1 1exp post τ , assuming that 
t tpre post− >1 2  ms so that the refractoriness has already vanished at 
the time of the presynaptic spike, while adaptation remains. It is 
also assumed that the triplet is isolated, so that we can neglect the 
cumulative effect of adaptation. Eq. 27 becomes

C t g s
p s
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  

(28)

If ∆s  τ
A
, the last term into square brackets is approximately 

∆s/τ
A
. If not, ε j becomes so small that the whole r.h.s of Eq. 26 

vanishes. To sum up, the total weight change following the second 
postsynaptic spike is given by
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(29)

The first term on the r.h.s of Eq. 29 is a pair term, i.e., a weight 
change that depends only on the pre–post interval ∆s. We note 
that it is proportional to ε j

2, meaning that the time constant of the 
causal part of the STDP learning window is half the membrane 
time constant. The second term exactly matches the triplet model, 
when τ

A
 = τ

y
 and τ+ = τ

m
/2. Indeed, the triplet model would yield 

the following weight change:

∆ ∆
w t A

p
j j

y

triplet
post exp2

3( ) −










+
 ε

τ
 

(30)

From this we conclude that the triplet effect, which primarily 
arose from phenomenological minimal modeling of experimental 
data, also emerges from an optimal learning rule when the postsy-
naptic neuron adapts. To understand in more intuitive terms how 
the triplet mechanism relates to optimal information transmis-
sion, let us consider the case where the postsynaptic neuron is fully 
deterministic. If so, the noise entropy is null, so that maximizing 

are shown, with the pre–post pair being fixed, and the post–
post interval being either 16, 100, or 200 ms (red, purple, and 
blue respectively).

To further highlight the similarity between the optimal learning 
rule and the triplet model, we now derive an analytical expression 
for the optimal weight change that follows a post–pre–post triplet of 
spikes. Let us observe that the final cumulated weight change evoked 
by the triplet is dominated by the jump that occurs just following the 
second postsynaptic spike (Figure 7A) – except for the negative jump 
of size λ that follows the presynaptic spike arrival, but this is a con-
stant. Our analysis therefore concentrates on the values of C tj( )post

2  
and B tpost post( )2 . Let us denote by ε τj ms= −exp( / )∆  the value of the 
unitary synaptic PSP at time tpost

2 . Around the baseline potential 
u

b
 = 19 mV, the gain function is approximately linear (cf. Figure 1A), 

i.e., g u w g g wb j j b b j j( )+ + ′ε ε  where g
b
 = g(u

b
) and ′ =g dg dub ub

/ |  are 
constants. From Eq. 14, we read B t g w gb j j bpost post log[1( ) ( / )] ( ),2 0= + ′ ε δ  
which is approximately equal to

B t
g

g
wb

b

j jpost post
2 0( ) ′

 ε δ( )
 

(24)

assuming the contribution of w
j
ε

j
 is small compared to the baseline 

gain g
b
. The term proportional to M in Eq. 14 is negligible compared 

to the δ-function. From Eq. 13, we see that
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The total weight change following the second postsynaptic spike 
is therefore
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Figure 7 | The optimal model incorporates a triplet effect when the 
postsynaptic neuron adapts. (A) A pre–post pair (∆s = 15 ms interval, black 
lines in the first two rows) is preceded by another postsynaptic spike. The 
post–post interval ∆p is made either 16 (red line), 100 (purple), and 200 ms 

(blue). The time course of Cj, Bpost, and the cumulative weight change ∆w  are 
plotted in the bottom rows. (B) Total weight change (optimal model) as a function 
of the post–post interval, for various adaptation time constants, and without 
adaptation (dashed line).
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information transfer means producing output spike trains with 
maximum entropy. If the mean firing rate ρ

targ
 is a further con-

straint, output spike trains should be Poisson processes, which as 
a by-product would produce exponentially distributed ISIs. If the 
neuron is endowed with refractory and adapting mechanisms, there 
is a natural tendency for short ISIs to appear rarely. Therefore, 
plasticity has to fight against adaptation and refractoriness to bind 
more and more stimulus features to short ISIs. The triplet effect 
is precisely what is needed to achieve this: if a presynaptic spike 
is found to be responsible for a short ISI, it should be reinforced 
more than if the ISI was longer. This issue is further developed in 
Section “Discussion.”

oPtIMal stdP Is target-cell sPecIfIc
The results of the previous sections suggest that STDP may opti-
mally interact with adaptation to enhance the channel capacity. 
In principle, if STDP is optimized for information transmission, 
it cannot ignore the intrinsic dynamics of the postsynaptic cell 
which influences the mapping between input and output spikes. 
The cortex is known to exhibit a rich diversity of cell types, with 
the corresponding range of intrinsic dynamics, and in parallel, 
STDP is target-cell specific (Tzounopoulos et al., 2004; Lu et al., 
2007). Within the optimality framework, we should therefore be 
able to predict this target-cell specificity of STDP by investigating 
the predictions of the optimal model in the context of in vitro pair-
ing experiments. Predictions should be made for different types 
of postsynaptic neurons, and be compared to experimental data. 
The optimal learning rule was shown in Toyoizumi et al. (2007) 
to share some features with STDP. We here extend this work to a 
couple of additional features including the frequency dependence. 
We also apply it to another type of postsynaptic cell, an inhibitory 
FS interneuron, for which in vitro data exist.

Only one synapse is investigated, with unit weight w
0
 = 1 mV 

before the start of the experiment. Sixty pre–post pairs with given 
interspike time ∆s are repeated in time with frequency f. The sub-
sequent weight change given by Eq. 12 is reported as a function of 
both parameters (Figures 8A,B).

The optimal model features asymmetric timing windows at 1, 
20, and 50 Hz pairing frequencies (Figure 8A). At 1 and 20 Hz, 
pre-before-post yields LTP and post-before-pre leads to LTD. At 
50 Hz the whole curve is shifted upwards, resulting in LTP on 
both sides. The model qualitatively agrees with the experimental 
data reported in Sjöström et al. (2001), redrawn for comparison 
(Figure 8A, circles).

The frequency dependence experimentally found in Markram 
et al. (1997) and Sjöström et al. (2001) is also qualitatively repro-
duced (Figure 8B). Post–pre pairing (∆s = −10 ms, green curve) 
switches from LTD at low frequency to LTP at higher frequencies, 
which is consistent with the timing windows in Figure 8A. For 
pre–post pairing (∆s = +10 ms, blue curve), LTP also increases with 
the pairing frequency. We also found that when SFA was removed, 
it was impossible to have a good fit for both the time window and 
the frequency dependence (not shown).

To further elucidate the link between optimal STDP and the 
after-spike kernel (g

R
 + g

A
 in Eq. 5), we ask whether plasticity at 

excitatory synapses onto FS interneurons can be accounted for in 
the same principled manner. In general, the intrinsic dynamics of 

inhibitory interneurons are very different from that of principal 
cells in cortex. STDP at synapses onto those cells is also different 
from STDP at excitatory-to-excitatory synapses (Tzounopoulos 
et al., 2004; Lu et al., 2007). The dynamics of FS cells are well mod-
eled using a kernel which is shown in Figure 8D (Mensi et al., 2010). 
We augment the after-spike kernel with an additional variable g

B
 

governed by

dg

dt

g
q Y tB B

B

B= − +
τ

( )
 (31)

Parameters were set to τ
B
 = 30 ms, τ

A
 = 150 ms, q

B
 = −9, and 

q
A
 = 4. The resulting kernel (i.e., g

R
 + g

A
 + g

B
 – Figure 8D, blue 

kernel) exhibits after-spike refractoriness followed by a short facili-
tating period before adaptation takes over (note that the kernel 
is suppressive, meaning that positive values correspond to sup-
pression of activity while negative values mean facilitation). Since 
interneurons do not project over long distances to other areas, 
the infomax objective function might not appear as well justified. 
Instead, let us consider the simple microcircuit shown in Figure 8D. 
A first principal cell (PC) makes an excitatory synapse onto a sec-
ond PC, and we assume the infomax principle is at work. The 
first PC inhibits the second PC via a FS interneuron. How, intui-
tively, should the PC-to-FS synapse change so that the FS cell also 
contributes to the overall information maximization between the 
two PCs? In a very crude understanding of the infomax principle, 
if a pre-before-post pair of spikes is evoked at the PC–PC syn-
apse (see spike trains in Figure 8D), the probability of having this 
pair again should be increased. If a similar pre-before-post pair is 
simultaneously evoked at the PC–FS synapse, then decreasing its 
weight will make it less likely that the FS spike again after the first 
PC. This in turn makes it more likely that the first PC–PC pair of 
spike will occur again. Therefore, PC–FS synapses should undergo 
some sort of anti-Hebbian learning. In fact, we found information 
minimization (i.e., the optimal model with opposite learning rate) 
to yield a good match between the simulated STDP time window 
(Figure 8C) and that found in Lu et al. (2007), which also exhibits 
LTD on both sides with some LTP at large intervals (see orange 
dots, superimposed). The post-before-pre part of the window can 
be understood intuitively: when a presynaptic spike arrives a few 
milliseconds after a postsynaptic spike, it falls in the period where 
postsynaptic firing is facilitated (q

B
 < 0). Therefore, it still has some 

influence on the subsequent postsynaptic activity. In order to avoid 
later causal pre–post events, the weight should be decreased. We see 
that the optimal STDP window depends on the after-spike kernel 
that describes the dynamical properties of the postsynaptic cell: q

B
 

directly modulates the post–pre part of the window (see dashed 
curve in Figure 8C).

Together, these results suggest that if STDP is considered as 
arising from an optimality principle, it naturally interacts with the 
dynamics of the postsynaptic cell. This might underlie the target-cell 
specificity of STDP (Tzounopoulos et al., 2004; Lu et al., 2007).

dIscussIon
Experiments (Markram et al., 1997; Sjöström et al., 2001; 
Froemke et al., 2006) as well as phenomenological models 
of STDP (Senn et al., 2001; Froemke et al., 2006; Pfister and 
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Our results are not restricted to additive STDP in which the 
amount of weight change is independent of the weight itself. It 
also holds when the amount of LTD increases with the efficacy of 
the synapse, a form which better reflects experimental observations 
(Bi and Poo, 1998; Sjöström et al., 2001). In the model introduced 
here, the amount of LTD is modulated by a sub-linear function of 
the synaptic weight. The deviation from linearity is set by a single 
parameter a > 0, with the purely multiplicative dependence of van 
Rossum et al. (2000) being recovered when a = 0. Since we modeled 
only a fraction of the total input synapses, we assumed a certain 
level of noise in the postsynaptic cell to account for the activity of 
the remaining synapses, thereby staying consistent with the frame-
work of information theory in which communication channels are 
generally considered noisy. Because of this noise level, we found a 
large a was required for the weight distribution to become positively 
skewed as reported by Sjöström et al. (2001) (cortex layer V). For 
both the pair and triplet learning rules, the noisier the postsynaptic 

Gerstner, 2006; Clopath et al., 2010) point to the fact that LTP 
is not accurately described by independent contributions from 
neighboring postsynaptic spikes. In order to reproduce the 
results of recent STDP experiments, at least two postsynaptic 
spikes must interact in the LTP process. We have shown that 
this key feature (“triplet effect” in Pfister and Gerstner, 2006; 
Clopath et al., 2010; and similarly in Senn et al., 2001) hap-
pens to be optimal for an adapting neuron to learn to maximize 
information transmission. We have compared the performance 
of an optimal model (Toyoizumi et al., 2005) to that of two 
minimal STDP models. One of them incorporated the triplet 
effect (Pfister and Gerstner, 2006), while the second one did 
not (standard pair-based learning rule; Gerstner et al., 1996; 
Kempter et al., 1999; Song et al., 2000). The triplet-based model 
performs very close to the optimal one, and this advantage over 
pair-STDP disappears when SFA is removed from the intrinsic 
dynamics of the postsynaptic cell.
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Figure 8 | Optimal plasticity shares features with target-cell specific 
STDP. (A) The optimal model applied on 60 pre–post pairs repeating at 1 (black 
line), 20 (red thick), and 50 Hz (green) yields STDP learning windows that 
qualitatively match those recorded in Sjöström et al. (2001). For comparison, 
the in vitro data has been redrawn with permission. (B) LTP dominates when 
the pairing frequency is increased. The optimal frequency window is plotted for 
post-before-pre (−10 ms, solid green curve) and pre-before-post pairs (+10 ms, 
solid blue) repeated with frequency f (x-axis). Points and error bars are the 
experimental data, redrawn from Sjöström et al. (2001) with permission. 
(C) Learning window that minimizes information transmission at an excitatory 
synapse onto a fast-spiking (FS) inhibitory interneuron. The procedure is the 

same as in (A). The spike-triggered adaptation kernel was updated to better 
match that of a FS cell (see D). Dots are redrawn from Lu et al. (2007). (D) Left: 
after-spike kernels of firing rate suppression for the principal excitatory cell (red, 
same as the one we used throughout the article, see Materials and Methods) 
and the fast-spiking interneuron (blue). The latter was modeled by adding a third 
variable qB < 0 with time constant τB = 30 ms to the initial kernel. Solid blue line: 
qB = −9. Dashed blue line: qB = −8. Right: schematic of a feed-forward inhibition 
microcircuit. A first principal cell (PC) makes an excitatory connection to another 
PC. It also inhibits it indirectly through a FS interneuron. The example spike 
trains illustrate the benefit of having LTD for pre-before-post pairing at the 
PC–FS synapse (see text).



Frontiers in Computational Neuroscience www.frontiersin.org December 2010 | Volume 4 | Article 143 | 14

Hennequin et al. Optimal STDP in adaptive neurons

(2008), which recently provided evidence for high information 
transmission through burst activity in an insect auditory system 
(Locusta migratoria). The recorded neurons encoded almost half 
of the total transmitted information in bursts, and this was also 
shown not to require intrinsic burst dynamics.

Since our results rely on the outcome of a couple of numerical 
experiments, one might be concerned about the validity of the find-
ings outside the range of parameter values we have used. There are 
for example a couple of free parameters in the neuron model. It is 
obviously difficult to browse the full high-dimensional parameter 
space and search for regions where the results would break down. 
We therefore tried to constrain our neuron parameters in a sensible 
manner. For example, the parameters of the SFA mechanism (q

A
 

and τ
A
) were chosen such that the response properties to a step 

in input firing rate would look plausible (Figure 1C). The noise 
parameter r

0
 and the threshold value u

T
 were chosen so as to achieve 

an output rate of 7.5 Hz when all synaptic weights are at 1 mV. 
We acknowledge, though, that r

0
 could be made arbitrarily large 

(reducing the amount of noise) since u
T
 can compensate for it. In 

the limit of very low noise, information transmission cannot be 
improved by increasing the neuron’s reliability anymore, since the 
noise entropy would already be minimal. We have shown however 
that a substantial part of the information gain found in the opti-
mal and triplet models are due to an increased response entropy. 
This qualitative similarity, together with the structural similarities 
highlighted in Figures 7 and 8, lead us to believe that our results 
would still hold in the deterministic limit, and for noise levels in 
between. The optimal plasticity rule becoming ill-defined in this 
limit, we did not investigate this further.

To what extent can we extrapolate our results to the optimal-
ity of synaptic plasticity in the real brain? It obviously depends 
on the amount of trust one can put into this triplet model. 
Phenomenological models of STDP are usually constructed based 
on the results of in vitro experiments. They end up reproducing 
the quantitative outcome of only a few pre–post pairing schemes 
which are far from spanning the full complexity of real spike trains. 
To what extent can these models be trusted in more natural situ-
ations? From a machine learning perspective, a minimal model 
is likely to generalize better than a more detailed model, because 
its small number of free parameters might prevent it from over-
fitting the experimental data at the expense of its interpolation/
extrapolation power. In this study, we have put the emphasis on 
an extrapolation of recent minimal models (Pfister and Gerstner, 
2006; Clopath et al., 2010): the amount of LTP obtained from a 
pre-before-post pair increases with the recent postsynaptic firing 
frequency. By construction, the models account for the frequency 
dependence of the classical pairing experiment (they are fitted on 
this, among other things). However, they are seriously challenged 
by a more detailed study of spike interactions at L2/3 pyramidal 
cells (Froemke et al., 2006). There, it was explicitly shown that 
(n-posts)–pre–post bursts yield an amount of LTD which grows 
with n, the number of postsynaptic spikes in the burst preceding 
the pair. In contrast, post–pre–post triplets in hippocampal slices 
lead to LTP in a way that is consistent with the triplet model (Wang 
et al., 2005). The results of our study should therefore be interpreted 
bearing in mind the variability in experimental results. The recur-
rent in vitro versus in vivo debate should also be considered: synaptic 

neuron, the weaker the LTD weight-dependence (i.e., the larger a) 
must be to keep a significant spread of the weight distribution. This 
means that other (possibly simpler) forms of weight dependence for 
LTD would work equally well, provided the noise level is adjusted 
accordingly. For example, in a nearly deterministic neuron, input–
output correlations are strong enough for the weight-distribution 
to spread even when LTD depends linearly on the synaptic weight 
(a = 0, not shown).

In the original papers where the optimal and triplet rule were 
first described, it was pointed out that both rules could be mapped 
onto the BCM learning rule (Bienenstock et al., 1982). Both learn-
ing rules are quadratic in the postsynaptic activity. In turn, the link 
between the BCM rule and ICA has also already been researched 
(Intrator and Cooper, 1992; Blais et al., 1998; Clopath et al., 2010), 
as has the relationship between the infomax principle and ICA 
(Bell and Sejnowski, 1995). It therefore does not come as a sur-
prise that the triplet model performs close to the infomax optimal 
learning rule. What is novel is the link to adaptation and spike 
after-potential.

We have also shown that when the optimal or triplet plasticity 
models are at work, the postsynaptic neuron learns to transmit 
information in a wider frequency band (Figure 6D): both rules 
evoke postsynaptic responses that have substantial power below 
5 Hz, in contrast to the pair-based STDP rule. This is intuitively 
understood from the triplet effect combined with adaptation. Let 
us imagine STDP starts creating a peak in the PSTH so that we 
have, with high probability, a first postsynaptic spike at time t

0
. 

If a presynaptic spike at time t
0
 + (∆/2) is followed by a further 

postsynaptic spike at time t
0
 + ∆ (∆ on the order of 10 ms), the 

triplet effect reinforces the connection from this presynaptic unit. 
In turn, it will create another peak at time t

0
 + ∆, and this process 

can continue. Peaks thus extend and become broader, until adapta-
tion becomes strong enough to prevent further immediate firing. 
The next series of peaks will then be delayed by a few hundred mil-
liseconds. Broadening of peak widths and ISIs together introduce 
more power at lower frequencies in the PSTH.

One should bear in mind that neurons process incoming signals 
in order to convey them to other receivers. Although the informa-
tion content of the output spike train really is an important quantity 
with respect to information processing, the way it can be decoded 
by downstream neurons should also be taken into account. Some 
“words” in the output spike train may be more suited for subsequent 
transmission than others. It has been suggested (Lisman, 1997) that 
since cortical synapses are intrinsically unreliable, isolated incom-
ing spikes cannot be received properly, whereas bursts of action 
potentials evoke a reliable response in the receiving neuron. There 
is a lot of evidence for burst firing in many sensory systems (see 
Krahe and Gabbiani, 2004 for a review). As shown in Figure 6, the 
optimal and triplet STDP models tend to sparsify the distribution 
of ISIs, meaning that the neuron learns to respond vigorously (very 
short ISIs) to a larger number of features in the input stream, while 
remaining silent for longer portions of the stimulus. The neuron 
thus overcomes the effects of adaptation, which in baseline condi-
tions (before learning) gives the ISI distribution a broad peak and 
a Gaussian-like drop-off. Our results therefore suggest that reliable 
occurrence of short ISIs can arise from STDP in adaptive neurons 
that are not intrinsic bursters. This is in line with Eyherabide et al. 
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